| ecture Notes In

Computer Science

Edited by G. Goos and J. Hartmenis

106

The Programmmg Language

l \d a Reference Manual

Proposed Standard Document o
United States Department of Defense

‘ SpringerVerlag.
Berhn Hendelberg NewYork

Tr21z - B261006
P Lecture Notes In
Computer Science

Edited by G. Goos and J. Hartmanis

\\llm

10 E826150

The Programming Language

‘s |
Reference Manual ?

Proposed Standard bocu ment
United States Department of Defense

Springer-Verlag |
Berlin Heidelberg New York 1981

Editorial Board

W. Brauer P. Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth

Honeywell, Inc.

Systems and Research Center
2600 Ridgway Parkway
Minneapolis, MN 55413/USA
and

Cii Honeywell Bull

68 Route de Versailles

78430 Louveciennes, France

ISBN 3-540-10693-6 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-10693-6 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by photocopying machine or similar means,
- and storage in data banks.

© 1980 by the United States Government as represented by the Director, Defense
Advanced Research Projects Agency.

Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-54321

¢ 3

i B ~:-; f

N D

Lecture Notes in Computer Science

Vol. 1: Gl-Gesellschaftfiir Informatik e.V. 3. Jahrestagung, Ham-
burg, 8.-10. Oktober 1973. Herausgegeben im Auftrag der Ge-
sellschaft fur Informatik von W. Brauer. XI, 508 Seiten. 1973.

Vol. 2: Gl-Gesellschaft fiir Informatik e.V. 1. Fachtagung iiber
Automatentheorie und Formale Sprachen, Bonn, 9.-12. Juli 1973.
Herausgegeben im Auftrag der Gesellschaft fiir Informatik von
K.-H. Béhling und K. Indermark. VI, 322 Seiten. 1973.

Vol. 3: 5th Conference on Optimization Techniques, Part |.
(Series: LF.LP. TC7 Optimization Conferences.) Edited by R.
Conti and A. Ruberti. X, 565 pages. 1973.

Vol. 4: 5th Conference on Optimization Techniques, Part Il.
(Series: I.F.LP. TC7 Optimization Conferences.) Edited by R.
Conti and A. Ruberti. XIIl, 389 pages. 1973.

Vol. 5: International Symposium on Theoretical Programming.
Edited by A. Ershov and V. A. Nepomniaschy. VI, 407 pages.
1974.

Vol. 6: B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
Y.lkebe, V. C.Klema, and C. B. Moler, Matrix Eigensystem Routines -
EISPACK Guide. XI, 551 pages. 2nd Edition 1974.1976.

Vol. 7: 3. Fachtagung iiber Programmiersprachen, Kiel, 5.-7.
Mérz 1974. Herausgegeben von B. Schlender und W. Frieling-
haus. VI, 225 Seiten. 1974.

Vol. 8: GI-NTG Fachtagung iiber Struktur und Betrieb von
Rechensystemen, Braunschweig, 20.-22. Médrz 1974. Heraus-
gegeben im Auftrag der Gl und der NTG von H.-O. Leilich. VI,
340 Seiten. 1974.

Vol. 9: GI-BIFOA Internationale Fachtagung: Informationszen-
tren in Wirtschaft und Verwaltung. Kéin, 17./18. Sept. 1973.
Herausgegeben im Auftrag der Gl und dem BIFOA von P.
Schmitz. VI, 259 Seiten. 1974.

Vol. 10: Computing Methods in Applied Sciences and Engineer-
ing, Part 1. International Symposium, Versailles, December 17-21,
1973. Edited by R. Glowinski and J. L. Lions. X, 497 pages. 1974.

Vol. 11: Computing Methods in Applied Sciences and Engineer-
ing, Part 2. International Symposium, Versailles, December 17-21,
1973. Edited by R. Glowinski and J. L. Lions. X, 434 pages. 1974.

Vol. 12: GFK-GI-GMR Fachtagung Prozessrechner 1974. Karls-
ruhe, 10.-11. Juni 1974. Herausgegeben von G. Kriiger und
R. Friehmelt. XI, 620 Seiten. 1974.

Vol. 13: Rechnerstrukturen und Betriebsprogrammierung, Er-

langen, 1970. (Gl-Gesellschaft fiir Informatik e.V.) Herausgege-

ben von W. Handler und P. P. Spies. VIl, 333 Seiten: 1974.

Vol. 14: Automata, Languages and Programming - 2nd Col-
loquium, University of Saarbriicken, July 29-August 2, 1974.
Edited by J. Loeckx. VIIl, 611 pages. 1974.

Vol. 15: L Systems. Edited by A. Salomaa and G. Rozenberg. P

VI, 338 pages. 1974.

Vol. 16: Operating Systems, International Symposium, Rocquen-
court 1974. Edited by E. Gelenbe and C. Kaiser. VlI, 310 pages.
1974,

Vol. 17: Rechner-Gestiitzter Unterricht RGU '74, Fachtagung,
Hamburg, 12.-14. August 1974, ACU-Arbeitskreis Computer-
Unterstiitzter Unterricht. Herausgegeben im Auftrag der Gl von
K. Brunnstein, K. Haefner und W. Héndler. X, 417 Seiten. 1974.

Vol. 18: K. Jensen and N. E. Wirth, PASCAL - User Manual and
Report. VII, 170 pages. Corrected Reprint of the 2nd Edition 1976.

Vol. 19: Programming Symposium. Proceedings 1974. V, 425 pages.

1974.

Vol. 20: J. Engelfriet, Simple Program Schemes and Formal
Languages. VII, 254 pages. 1974.

Vol. 21: Compiler Construction, An Advanced Course. Edited by
F. L. Bauer and J. Eickel. XIV. 621 pages. 1974.

Vol. 22: Formal Aspects of Cognitive Processes. Proceedings 1972.

Edited by T. Storer and D. Winter. V, 214 pages. 1975.

A

Vol. 23: Programming Methodology. 4th Informatik Symposium,
IBM Germany Wildbad, September 25-27, 1974. Edited by C. E.
Hackl. V1,501 pages. 1975.

Vol. 24: Parallel Processing. Proceedings 1974. Edited by T. Feng.
VI, 433 pages. 1975.

Vol. 25: Category Theory Applied to Computation and Control. Pro-
ceedings 1974. Edited by E. G. Manes. X, 245 pages. 1975.

Vol. 26: GI-4. Jahrestagung, Berlin, 9.-12. Oktober 1974. Her-
ausgegeben im Auftrag der Gl von D. Siefkes. IX, 748 Seiten.
1975.

Vol. 27: Optimization Techniques. IFIP Technical Conference.
Novosibirsk, July 1-7, 1974. (Series: L.F.L.P. TC7 Optimization
Conferences.) Edited by G. I. Marchuk. VIIl, 507 pages. 1975.

Vol. 28: Mathematical Foundations of Computer Science. 3rd
Symposium at Jadwisin near Warsaw, June 17-22, 1974. Edited
by A. Blikle. VIl, 484 pages. 1975.

Vol. 29: Interval Mathematics. Procedings 1975. Edited by K. Nickel.
VI, 331 pages. 1975.

Vol. 30: Software Engineering. An Advanced Course. Edited by
F. L. Bauer. (Formerly published 1973 as Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 81) XII, 545 pages. 1975.

Vol. 31: S. H. Fuller, Analysis of Drum and Disk Storage Units. X,
283 pages. 1975.

Vol. 32: Mathematical Foundations of Computer Science 1975.
Proceedings 1975. Edited by J. Betvat. X, 476 pages. 1975.

Vol. 33: Automata Theory and Formal Languages, Kaiserslautern,
May 20-23, 1975. Edited by H. Brakhage on behalf of Gl. VI,
292 Seiten. 1975.

Vol. 34: GI - 5. Jahrestagung, Dortmund 8.-10. Oktober 1975.
Herausgegeben im Auftrag der Gl von J. Miihlbacher. X, 755 Seiten.
1975.

Vol. 35: W. Everling, Exercises in Computer Systems Analysis.
(Formerly published 1972 as Lecture Notes in Economics and
Mathematical Systems, Vol. 65) VIll, 184 pages. 1975.

Vol. 36: S. A. Greibach, Theory of Program Structures: Schemes,
Semantics, Verification. XV, 364 pages. 1975.

Vol. 37: C. Béhm, A-Calculus and Computer Science Theory. Pro-
ceedings 1975. XlI, 370 pages. 1975.

Vol.'@8: P. Branquart, J.-P. Cardinael, J. Lewi, J.-P. Delescaille,
M Vanbegin. An Optimized Translation Process and lts Application
to ALGOL'88. IX, 334 pages. 1976.

Vol. 39: Data Base Systems. Proceedings 1975. Edited by H. Hassel-
meier and V. Spruth. VI, 386 pages. 1976.

<@l 40: Optimization Techniques. Modeling and Optimization in the

‘Service ‘of Man. Part 1. Proceedings 1975. Edited by J. Cea. XIV,
854 pages. 1976.

Vol. 41: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 2. Proceedings 1975. Edited by J. Cea. XIlI,
852 pages. 1976.

Vol. 42: James E. Donahue, Complementary Definitions of Pro-
gramming Language Semantics. VII, 172 pages. 1976.

Vol.43: E. Specker und V. Strassen, Komplexitét von Entscheidungs-
problemen. Ein Seminar. V, 217 Seiten. 1976.

Vol. 44: ECI Conference 1976. Proceedings 1976. Edited by K.
Samelson. VIIl, 322 pages. 1976.

Vol. 45: Mathematical Foundations of Computer Science 1976.
Proceedings 1976. Edited by A. Mazurkiewicz. XI, 601 pages. 1976.

Vol. 46: Language Hierarchies and Interfaces. Edited by F. L. Bauer
and K. Samelson. X, 428 pages. 1976.

Vol. 47: Methods of Algorithmic Language Implementation. Edited
by A. Ershov and C. H. A. Koster. VI, 351 pages. 1977.

Vol. 48: Theoretical Computer Science, Darmstadt, March 1977.
Edited by H. Tzschach, H. Waldschmidt and H. K.-G. Walter on
behalf of Gl. VIII, 418 pages. 1977.

EDITORS NOTE

This edition of the Ada Reference Manual is a photographic reproduction of the official November 1980 printing
(Honeywell, Minneapolis). Because of the photo composition process, some errors were introduced in the
November 1980 version which did not exist in the July 1980 version. These are listed below.

Section Corrections

Table of contents Change section numbers:

“)_ 5% into “2.5¢
“2—6" into “2.6%
“1-7 into *“2.7°

03.05.05 In page 3—12, in T'SUCC(X), change “:item T'PRED(X) 11 The* into “T’PRED(X)"
at the beginning of a new line and “The* tabulated as the previous lines.

03.07 Top of printed page 3—24 contains the following typos:

— Ist line: “cvonents* should be “components*

— Ist line of 1st paragraph: “of the le first should be *‘of the list are first*
— 5th line of 2nd paragraph: “ycorresponding* should be “corresponding*
— 6th line of 2nd paragraph: “arrayype should be “array type®.

04.01.01 The header of page 4—2 should not be “Names and Expressions* but
“Ada Reference Manual* justified at the right edge of the page.

10.04 The printed page 10—10 contains the following typos in the 3rd paragraph.

— “prngram‘* should be *“programm"

— After “other program® in the 2nd line, the following words should be found:
“libraries. Finally, there should be commands for interrogating the status of the
units of a program library. The form of the commands*

— suppress “nds* at the beginning of 3rd line.

14.01.02 In the first line of the 2nd paragraph after TRUNCATE, “phys*
should be “physical®.

C In lower case letters, change ‘A‘ into ‘a‘ and ‘Z° into ‘z".

N

Foreword

Ada is the result of a collective effort to design a common language for programming large scale and real-
time systems.

The common high order language program began in 1974. The DoD requirements were formalized in a
series of documents which were extensively reviewed by the Services, industrial organizations, universities,
and foreign military departments. The culmination of that process was the Steelman Report to which the
Ada language has been designed.

The Ada design team was led by Jean D. Ichbiah and has included Bernd Krieg-Brueckner, Brian A.
Wichmann, Henry F. Ledgard, Jean-Claude Heliard, Jean-Raymond Abrial, John G.P. Barnes, Mike
Woodger, Olivier Roubine, Paul N. Hilfinger, and Robert Firth.

At various stages of the project, several people closely iated with the design team made major con-
tributions. They include J.B. Goadenauyh M.W. Daws G. Ferran, L. Maclaren, E. Morel, I.R. Nassi, I.C.
Pyle, S.A. Schuman, and S.C. Vestal.

Two parallel efforts that were started in the second phase of this design had a deep influence on the
language. One js the development of a formal definition using denotational semantics, with the participa-
tion of V. Donzeau-Gouge, G. Kahn and B. Lang. The other is the design of a test translator with the par-
ticipation of K. Ripken, P. Boullier, P. Cadiou, J. Holden, J.F. Hueras, R.G. Lange, and D.T. Cornhill. The
entire effort benefitted from the dedicated assistance of Lyn Churchill and Marion Myers, and the effective
technical support of B. Gravem and W.L. Heimerdinger. H.G. Schmitz served as program manager.

Over the three years spent on this project, five intense one-week design reviews were conducted with the
participation of H. Harte, A.L. Hisgen, P. Knueven, M. Kronental, G. Seegmueller, V. Stenning, and also F.
Belz, P. Cohen, R. Converse, K. Correll, R. Dewar, A. Evans, A.N. Habermann, J. Sammet, S. Squires, J. Tel-
ler, P. Wegner, and P.R. Wetherall.

Several persons had a constructive influence with their comments, criticisms and suggestions. They include
P. Brinch Hansen, G. Goos, C.A.R. Hoare, Mark Rain, W.A. Wulf, and also P. Belmont, E. Boebert, P. Bon-
nard, R. Brender, B. Brosgol, H. Clausen, M. Cox, T. Froggatt, H. Ganzinger, C. Hewitt, S. Kamin, J.L. Man-
sion, F. Minel, T. Phinney, J. Roehrich, V. Schneider, A. Singer, D. Slosberg, I.C. Wand, the reviewers of the
group Ada-Europe, and the reviewers of the Tokyo study group assembled by N. Yoneda, E. Wada, and K.
Kakehi.

These reviews and comments, the numerous evaluation reports received at the end of the first and second
phase, the more than nine hundred language issue reports, comments, and test and evaluation reports
received from fifteen different countries during the third phase of the project, and the on-going work of the
IFIP Working Group 2.4 on system implementation languages and that of LTPL-E of Purdue Europe, all had
a substantial influence on the final definition of Ada.

The Military Departments and Agencies have provided a broad base of support including funding, extensive
reviews, and countless individual contributions by the members of the High Order Language Working Group
and other interested personnel. In particular, William A. Whitaker provided leadership for the program dur-
ing the formative stages. David A. Fisher was responsible for the successful development and iteration of
language requirements documents, leading to the Steelman specification.

This language definition was developed by Cii Honeywell Bull and Honeywell Systems and Research Center
under contract to the United States Department of Defense. William E. Carlson served as the technical
representative of the Government and effectively coordinated the efforts of all participants in the Ada
program.

This reference manual was prepared with a formatter specialized for Ada texts. It was developed by Jon F.
Hueras for Multics, using the Cii Honeywell Bull photocomposition system.

Table of Contents

1. Introduction

1.1

a.__._.
opwiN

Design Goals

Language Summary

Sources

Syntax Notation

Structure of the Reference Manual
Classification of Errors

2. Lexical Elements

2.1
2.2

Character Set
Lexical Units and Spacing Conventions
Identifiers
Numeric Literals
Based Numbers
Character Literals
Character Strings
Comments
Pragmas
Reserved Words
Transliteration

3. Declarations and Types

3.1

wihs Smmwmm&ww;

POWRWRVWVWRRWWRWWWEWRWWWW
WN =

VONNNNOODOnOOnnnaanahWN

Declarations

Object and Number Declarations
Type and Subtype Declarations
Derived Type Definitions

Scalar Types

Enumeration Types

Character Types

Boolean Type

Integer types

Attributes of Discrete Types and Subtypes

Real Types

Floating Point Types

Attributes of Floating Point Types
Fixed Point Types

Attributes of Fixed Point Types
Array Types

Index Constraints and Discrete Ranges
Array Attributes

Strings

Record Types

Discriminants

Discriminant Constraints

Variant Parts

Access Types

Declarative Parts

OO OThEN -

" 4. Names and Expressions

4.9
4.10

Names

Indexed Components

Slices"

Selected Components

Attributes

Literals

Aggregates

Record Aggregates

Array Aggregates

Expressions

Operators and Expression Evaluation
Logical Operators and Short Circuit Control Forms
Relational and Membership Operators
Adding Operators

Unary Operators

Multiplying Operators

Exponentiating Operator

The Function ABS

Accuracy of. Operations with Real Operands
Type Conversions

Qualified Expressions

Allocators

Static Expressions

Literal Expressions

5. Statements

5.1

Simple and Compound Statements - Sequences of Statements
Assignment Statement

Array Assignments

If Statements

Case Statements

Loop Statements

Blocks

Exit Statements

Return Statements

Goto Statements’

6. Subprograms

6.1
6.2
6.3
6.4
6.4.1
6.4.2
6.5
6.6
6.7

Subprogram Declarations
Formal Parameters
Subprogram Bodies
Subprogram Calls

Actual Parameter Associations
Default Actual Parameters
Function Subprograms
Overloading of Subprograms
Overloading of Operators

Vi

Vil

7. Packages
7.4
7:2
7.3
7.4
7.4.1
7.4.2
7.5
7.6

Ao Siciiay NG st xSl W g

Package Structure

Package Specifications and Declarations
Package Bodies

Private Type Definitions

Private Types

Limited Private Types

An lllustrative Table Management Package
Example of a Text Handling Package

8. Visibility Rules

8.1
8.2
8.3
8.4
8.5

COOOOOOOOOOO®
LSO NNNNOORPW
WN =

N=O

10. Program
10.1
10.1.1
10.1.2
10.2
10.2.1
10.3
104
10.5
10.6

Definitions of Terms

Scope of Declaration

Visibility of Identifiers and Declarations
Use Clauses

Renaming Declarations

Predefined Environment

Task Specifications and Task Bodies
Task Objects and Task Types

Task Execution

Normal Termination of Tasks
Entries and Accept Statements
Delay Statements, Duration and Time
Select Statements

Selective Wait Statements
Conditional Entry Calls

Timed Entry Calls

Priorities

Task and Entry Attributes

Abort Statements

Shared Variables

Example of Tasking

Structure and Compilation Issues
Compilation Units - Library Units
With Clauses

Examples of Compilation Units.
Subunits of Compilation Units
Examples of Subunits

Order of Compilation

Program Library

Elaboration of Compilation Units
Program Optimization

11. Exceptions

1.1
11.2
1.3
1.4
11.4.1
11.4.2

Exception Declarations

Exception Handlers

Raise Statements

Dynamic Association of Handlers with Exceptions
Exceptions Raised During the Execution of Statements
Exceptions Raised During the Elaboration of Declarations

e o a0

A e] - SV

105
106

110
113
114

115

118
119
120
122
123
123
125
126

128
128
129
130

131
133
134
136
137
139
140
141
141

143
144
145
146
146
148

Exceptions Raised in Communicating Tasks
Raising the Exception Failure in Another Task
Suppressing Checks

Exceptions and Optimization

12. Generic Program Units

12.1

12.1.1
12:1:2
12.1.3
12.2

12.3

12.31
12.3.2
12.3.3
12.3.4
12.3.5
12.3.6
12.3.7
12.4

13. Representation Specification and Implementation Dependent Features

13.1
13.2
13.3
13.4
13.6
13.5.1
13.6
13.7
13.7.1
13.8
13.9
13.10
13.10.1
13.10

Generic Declarations

Parameter Declarations in Generic Parts
Generic Type Definitions

Generic Formal Subprograms

Generic Bodies

Generic Instantiation

Matching Rules For Formal Objects
Matching Rules for Formal Private Types
Matching Rules for Formal Scalar Types
Matching Rules for Formal Array Types
Matching Rules for Formal Access Types
Matching Rules for Formal Subprograms
Matching Rules for Actual Derived Types
Example of a Generic Package

Representation Specifications

Length Specifications

Enumeration Type Representations
Record Type Representations

Address Specifications

Interrupts

Change of Representations
Configuration and Machine Dependent Constants
Representation Attributes of Real Types
Machine Code Insertions

Interface to Other Languages
Unchecked Programming

Unchecked Storage Deallocation
Unchecked Type Conversions

14. Input-Output

14.1
14.1.1

General User Level Input-Output

Files

File Processing

Specification of the Package INPUT_OUTPUT
Text Input-Output

Default Input and Output Files

Layout

Input-Output of Characters and Strings
Input-Output for Other Types
Input-Output for Numeric Types
Input-Output for Boolean Type
Input-Output for Enumeration Types
Specification of the Package TEXT_IO
Example of Text Input-Output

Low Level Input-Output

149
150
150
162

155
157
157
168

160
161
162
162
163
164
164
165
166

169
170
172
173
174
175
176
177
178
179
179
180
180
181

183
184
186
189
190
191
192
194
196
196
199
200
201
205
206

X

Appendices

A

B
C.
D

E.
F.

Predefined Language Attributes

. Predefined Language Pragmas

Predefined Language Environment

. Glossary

Syntax Summary

Implementation Dependent Characteristics

Index

207
211
213
217
221
235

237

1. Introduction

This report describes the programming language Ada, designed in accordance with the Steelman
requirements of the United States Department of Defense. Overall, the Steelman requirements
call for a language with considerable expressive power covering a wide application domain. As a
result the language includes facilities offered by classical languages such as Pascal as well as
facilities often found only in specialized languages. Thus the language is a modern algorithmic
language with the usual control structures, and the ability to define types and subprograms. It also
serves the need for modularity, whereby data, types, and subprograms can be packaged. It treats
modularity in the physical sense as well, with a facility to support separate compilation.

In addition to these aspects, the language covers real time programming, with facilities to model
paralle! tasks and to handle exceptions. It also covers systems program applications. This requires
access to system dependent parameters and precise control over the representation of data. Final-
ly, both application level and machine level input-output are defined.

1.1 Design Goals

Ada was designed with three overriding concerns: a recognition of the importance of program
reliability and maintenance, a concern for programming as a human activity, and efficiency.

The need for languages that promote reliability and simplify maintenance is well established.

Hence emphasis was placed on program readability over ease of writing. For example, the rules of
the language require that program variables be explicitly declared and that their type be specified.
Since the type of a variable is invariant, compilers can ensure that operations on variables are com-
patible with the properties intended for objects of the type. Furthermore, error prone notations
have been avoided, and the syntax of the language avoids the use of encoded forms in favor of
more English-like constructs. Finally, the language offers support for separate compilation of
program units in a way that facilitates program development and maintenance, and which
provides the same degree of checking as within a unit.

Concern for the human programmer was also stressed during the design. Above all, an attempt
was made to keep the language as small as possible, given the ambitious nature of the application
domain. We have attempted to cover this domain with a small number of underlying concepts
integrated in a consistent and systematic way. Nevertheless we have tried to avoid the pitfalls of
excessive involution, and in the constant search for simpler designs we have tried to provide
language constructs with an intuitive mapping on what the user will normally expect.

Like many other human activities, the development of programs is becoming more and more
decentralized and distributed. Consequently the ability to assemble a program from independently
produced software components has been a central idea in this design. The concepts of packages,
of private types, and of generic program units are directly related to this idea, which has ramifica-
tions in many other aspects of the language.

2 Ada Reference Manual

No language can avoid the problem of efficiency. Languages that require overly elaborate com-
pilers or that lead to the inefficient use of storage or execution time force these inefficiencies on all
machines and on all programs. Every construct of the language was examined in the light of pre-
sent implementation techniques. Any proposed construct whose implementation was unclear or
required excessive machine resources was rejected.

Perhaps most importantly, none of the above goals was considered something that could be
achieved after the fact. The design goals drove the entire design process from the beginning.

1.2 Language Summary

An Ada program is composed of one or more program units, which can be compiled separately.
Program units may be subprograms (which define executable algorithms), packages (which define
collections of entities), or tasks (which define concurrent computations). Each unit normally con-
sists of two parts: a specification, containing the information that must be visible to other units,
and a body, containing the implementation details, which need not be visible to other units.

This distinction of the specification and body, and the ability to compile units separately allow a
program to be designed, written, and tested as a set of largely independent software components.

An Ada program will normally make use of a library of program units of general utility. The
language provides means whereby individual organizations can construct their own libraries. To
allow accurate control of program maintenance, the text of a separately compiled program unit
must name the library units it requires.

Program units.

A subprogram is the basic unit for expressing an algorithm. There are two kinds of subprograms:
procedures and functions. A procedure is the logical counterpart to a series of actions. For exam-
ple, it may read in data, update variables, or produce some output. It may have parameters, to
provide a controlled means of passing information between the procedure and the point of call. A
function is the logical counterpart to the computation of a value. It is similar to a procedure, but in
addition will return a result.

A package is the basic unit for defining a collection of logically related entities. For example, a
package can be used to define a common pool of data and types, a collection of related sub-
programs, or a set of type declarations and associated operations. Portions of a package can be
hidden from the user, thus allowing access only to the logical properties expressed by the package
specification.

A task is the basic unit for defining a sequence of actions that may be executed in parallel with
other similar units. Parallel tasks may be implemented on multicomputers, multiprocessors, or with
interleaved execution on a single processor. A task unit may define either a single executing task
object or a task type defining similar task objects.

Declarations and Statements
The body of a program unit generally contains two parts: a declarative part, which defines the

logical entities to be used in the program unit, and a sequence of statements, which defines the
execution of the program unit.

|
i
|
]
!

Introduction 3

The declarative part associates names with declared entities. For example, a name may denote a
type, a constant, a variable, or an exception. A declarative part also introduces the names and
parameters of other nested subprograms, packages, and tasks to be used in the program unit.

The sequence of statements describes a sequence of actions that are to be performed. The state-
ments are executed in succession (unless an exit, return, or goto statement, or the raising of an
exception causes execution to continue from another place).

An assignment statement changes the value of a variable. A procedure call invokes execution of a
procedure after associating any arguments provided at the call with the corresponding formal
parameters of the subprogram.

Case statements and if statements allow the selection of an enclosed sequence of statements
based on the value of an expression or on the value of a condition.

The basic iterative mechanism in the language is the loop statement. A loop statement specifies
that a sequence of statements is to be executed repeatedly until an iteration clause is completed or
an exit statement is encountered.

A block comprises a sequence of statements preceded by the declaration of local entities used by
the statements.

Certain statements are only applicable to tasks. A delay statement delays the execution of a task
for a specified duration. An entry call is written as a procedure call; it specifies that the task issu-
ing the call is ready for a rendezvous with another task that has this entry. The called task is ready
to accept the entry call when its execution reaches a corresponding accept statement, which
specifies the actions then to be performed. After completion of the rendezvous, both the calling
task and the task having the entry may continue their execution in parallel. A select statement
allows a selective wait for one of several alternative rendezvous. Other forms of the select state-
ment allow conditional or timed entry calls.

Execution of a program unit may lead to exceptional situations in which normal program execution
cannot continue. For example, an arithmetic computation may exceed the maximum allowed
value of a number, or an attempt may be made to access an array component by using an incorrect
index value. To deal with these situations, the statements of a program unit can be textually fol-
lowed by exception handlers describing the actions to be taken when the exceptional situation
arises. Exceptions can be raised explicitly by a raise statement.

Data Types

Every object in the language has a type which characterizes a set of values and a set of applicable
operations. There are four classes of types: scalar types (comprising enumeration and numeric
types), composite types, access types, and private types.

An enumeration type defines an ordered set of distinct enumeration literals, for example a list of
states or an alphabet of characters. The enumeration types BOOLEAN and CHARACTER are
predefined.

Numeric types provide a means of performing exact or approximate computations. Exact com-
putations use integer types, which denote sets of consecutive integers. Approximate computations
use either fixed point types, with absolute bound on the error, or floating point types, with relative
bound on the error. The numeric types INTEGER and DURATION are predefined.

4 Ada Reference Manual

Composite types allow definitions of structured objects with related components. The composite
types in the language provide for arrays and records. An array is an object with indexed compo-
nents of the same type. A record is an object with named components of possibly different types.

A record may have distinguished components called discriminants. Alternative record structures
that depend on the values of discriminants can be defined within a record type.

Access types allow the construction of linked data structures created by the execution of
allocators. They allow several variables of an access type to designate the same object, and com-
ponents of one object to designate the same or other objects. Both the elements in such a linked
data structure and their relation to other elements can be altered during program execution.

Private types can be defined in a package that conceals irrelevant structural details. Only the
logically necessary properties (including any discriminants) are made visible to the users of such
types.

The concept of a type is refined by the concept of a subtype, whereby a user can constrain the set
of allowed values in a type. Subtypes can be used to define subranges of scalar types, arrays with
a limited set of index values, and records and private types with particular discriminant values.

Other Facilities

Representation specifications can be used to specify the mapping between data types and features
of an underlying machine. For example, the user can specify that objects of a given type must be
represented with a specified number of bits, or that the components of a record are to be
represented in a specified storage layout. Other features allow the controlled use of low level, non
portable, or implementation dependent aspects, including the direct insertion of machine code.

Input-output is defined in the language by means of predefined library packages. Facilities are
provided for input-output of values of user-defined as well as of predefined types. Standard means
of representing values in display form are also provided.

Finally the language provides a powerful means of parameterization of program units, called
generic program units. The generic parameters can be types and subprograms (as well as objects)
and so allow general algorithms to be applied to all types of a given class.

1.3 Sources

A continual difficulty in language design is that one must both identify the capabilities required by
the application domain and design language features that provide these capabilities.

The difficulty existed in this design, although to a much lesser degree than usual because of the
Steelman requirements. These requirements often simplified the design process by permitting us
to concentrate on the design of a given system satisfying a well defined set of capabilities, rather
than on the definition of the capabilities themselves.

Introduction 5

Another significant simplification of our design work resulted from earlier experience acquired by
several successful Pascal derivatives developed with similar goals. These are the languages
Euclid, Lis, Mesa, Modula, and Sue. Many of the key ideas and syntactic forms developed in these
languages have a counterpart in Ada. We may say that whereas these previous designs could be
considered as genuine research efforts, the language Ada is the result of a project in language
design engineering, in an attempt to develop a product that represents the current state of the art.

Several existing languages such as Algol 68 and Simula and also recent research languages such
as Alphard and Clu, influenced this language in several respects, although to a lesser degree than
the Pascal family.

Finally, the evaluation reports received on the initial formulation of the Green language, the Red,
Blue and Yellow language proposals, the language reviews that took place at different stages of

this project, and the more than nine hundred reports received from fifteen different countries on
the preliminary definition of Ada, all had a significant impact on the final definition of the language.

1.4 Syntax Notation
The context-free syntax of the language is described using a simple variant of Backus-Naur Form.
In particular,

(a) Lower case words, some containing embedded underscores, denote syntactic categories, for
example

adding_operator

(b) Boldface words denote reserved words, for example

array

(c) Square brackets enclose optional items, for example
end [identifier];
(d) Braces enclose a repeated item. The item may appear zero or more times. Thus an identifier
list is defined by
identifier_list = identifier {, identifier}
(e) A vertical bar separates alternative items, unless it occurs immediately after an opening brace,
in which case it stands for itself:
letter_or_digit ::= letter | digit

component_association ::= [choice {| choice} =>] expression

(f) Any syntactic category prefixed by an italicized word and an underscore is equivalent to the
unprefixed corresponding category name. The prefix is intended to convey some semantic
information. For example type_name and task_name are both equivalent to the category
name.

