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Preface

This book has been written to serve all persons interested in the prop-
erties, fabrication, uses, and testing of basic engineering materials.

It is divided into three parts. Part I consists of Chapters 1 through
12 and deals with metallic materials. Part II consists of Chapters 13
through 15 and covers inorganic nonmetallic materials. Part III con-
sists of Chapters 16 through 19 and is concerned with organic substances
which are, of course, nonmetallic materials.

The author wishes to express his appreciation to the staff of the School
of Engineering, University of Massachusetts, for their suggestions,
interest, and encouragement; to the many companies who supplied
illustrations and other information; and to his students who by their
questions aided in the crystallization of the thoughts expressed herein.

CARL A. KEYSER

Ambherst, Massachusetts
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Metallic Materials






CHAPTER 1

Fundamentals of Metal Structure

1.1 Submicroscopic Structure of Metals. The submicroscopic struc-
ture of metals has been determined largely by x-ray diffraction, electron
diffraction, and electron microscopy. (/.1), (1.2), (1.3), (1.4), and (1.5)!
These studies have shown that solid metals consist of basic blocks
known as unit cells. The unit cell is the smallest subdivision of metal in
which there is an orderly arrangement or spacing between similar ad-
joining atoms. This orderly arrangement characterizing unit cells is
repeated over and over in space in all directions and is typical of all
crystalline substances. Metals, then, are crystalline substances, and
crystals are characterized by an orderly rather than random array of
atoms. The opposite of crystalline is amorphic. Amorphic materials
are characterized by a relatively disordered and random spacing of atoms.

Only three kinds of unit cells are necessary to describe the sub-
microscopic structure of most, but not all, solid metals. These unit
cells are shown in Fig. 1.1. They are known as body-centered cubic,
face-centered cubic, and hexagonal close-packed, abbreviated re-
spectively BCC, FCC, and HCP. Crystals of metals consist of many
millions of unit cells arranged like neatly stacked building blocks.
Similar or corresponding faces of any two unit cells in a single, perfect
(rare) crystal are parallel to one another, as shown in Fig. 1.2(a).

Some metals exist in more than one crystal form. For instance, pure
iron has a body-centered cubic structure up to 1670°F (910°C). Be-
tween 1670°F and 2552°F (1400°C) iron has a face-centered cubic
structure. Such a change from one crystalline form to another is
known as an allotropic change.

Metals encountered in everyday living are called polycrystalline since
they contain many crystals or grains (as the crystals are called in this
case). Within each grain of polycrystalline metal the identical faces of

U Italicized numbers in parentheses refer to the bibliography at the end of each
chapter.
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4 FUNDAMENTALS OF METAL STRUCTURE [§1.2

all unit cells are parallel, but the identical faces of unit cells in adjoining
grains are not parallel. This cannot readily be shown in a three-
dimensional drawing but has been represented in a two-dimensional
sketch, Fig. 1.2(b). Note how the atomic spacing of the unit cells is
altered where adjoining crystals meet. This region of relative disorder,
known as the grain boundary, possesses properties different from those

a> 7 > B .
Y12t Y17 a

A A

b (@) b (b)

Q Q

! 1
C—» I R 1 b

(Il I a»_ B T
(24 14 Yo
8 =Th = a

I\l b”

O"

() (d)

Fig. 1.1. Unit cells of the common metals. The sides of the unit cells are assigned
the letters a, b, and ¢; corresponding angles opposite the sides are called «, 8, and 7.

(a) Body-centered cubic: @ = b — ¢, and « = B = v = 90°. Ex: « — Fe, Mo, W.
(b) Face-centered cubic: a = b = ¢, end o -~ B = v = 90°. Ex: v — Fe, Al, Cu, Ni.
(c) Hexagonal close-packed: @ = b -« ¢, end o« = B = 90°, v = 60°. Ex: Mg, Zn.

(d) Body-centered tetragonal: a = b -« ¢, and o — vy = 90°. Ex: v — Mn, 8 — Sn.

of the grain center. The crystals or grains found in polycrystalline
metals are often spoken of as crystallites. A fine-grained metal is one in
which the crystallites are smaller and the proportion of grain boundary
material is higher than in a coarse-grained metal.

1.2 Metallic Crystal Binding. Although unit cells have been described
as regular and orderly arrangements of atoms, the statement is not,
strictly speaking, accurate. Actually, in solid metals, atoms are not
believed to exist as such, but, rather, are present as ions floating in a
‘“sea’ of valence electrons. The term metallic crystal binding refers to



§1.3] FUNDAMENTALS OF METAL STRUCTURE 5

the forces which are acting to position the ions in the unit cell. The
positions which the ions assume depend upon the establishment of
equilibrium between all the forces involved. Similar electric charges on
each ion tend to establish repellant forces between any pair of ions.
For the same reason the electrons maintain a fairly uniform distribution
in the electron “‘sea.”” There are also forces of attraction between the

L L L

(a) (b) (¢)

Fig. 1.2. Submicroscopic structure of metal. (a) A single crystal, showing how the
unit cells are arranged like building blocks. (b) A two-dimensional sketch, showing
three grains meeting at a point. (c) The point of intersection, magnified to show
distribution of the unit cells at the grain boundary.

ions (carrying positive charges) and the electrons (carrying negative
charges). There are also relatively weak forces of gravitational at-
traction between the ions. It will be recalled that gravitational attrac-
tion between two bodies varies directly as the product of the masses and
inversely as the square of the distance between them. Although the
mass of the ion is small, being approximately equal to the atomic mass
divided by Avogadro’s number (1023), the distance between ions is also
extremely small, being of the order of magnitude of about two Angstrom
units (abbreviated 2A) which is equal to 2 X 10-8 cm. The gravitational
forces are much less significant than the electrical forces. A description
of other types of binding forces encountered in nonmetallic crystals is
given in references (/.1) and (1.6). "

1.3 Anisotropy. When measured in directions differing with respect
to the crystal axes, the properties of metal single crystals vary. Measure-
ments made in directions parallel to one another give the same results.
The directionality of properties is known as anisotropy. Anisotropy is
probably associated with similarity of ionic spacing in similar crystallo-
graphic directions and differences in spacing in unlike directions.
Anisotropy applies to mechanical, physical, and chemical properties
such as strength, electric resistance, thermal conductivity, and resistance



