| LNCS 2937

Bernhard Steffen E
GlOI’glO Lev1 (Eds)

Verlflcatlon, S
Model Checkmg,and _
Abstract Interpretation

5th International Conference, VMCAI 2004
Venice, Italy, January 2004
Proceedings

i 5 Bernhard Steffen Giorgio Levi (Eds.)

Verification,
Model Checking, and
Abstract Interpretation

5th International Conference, VMCAI 2004
Venice, Italy, January 11-13, 2004
Proceedings

LA

E200401633

©): Springer

Series Editors

Gerhard Goos, Karlsruhe University, Germany
Juris Hartmanis, Cornell University, NY, USA
Jan van Leeuwen, Utrecht University, The Netherlands

Volume Editors

Bernhard Steffen

Universitit Dortmund, LS V

Baroper Str. 301, 44221 Dortmund, Germany
E-mail: steffen @cs.uni-dortmund.de

Giorgio Levi

Universita di Pisa, Dipartimento di Informatica
Via Buonarroti, 2, 56100 Pisa, Italy

E-mail: levi@di.unipi.it

Cataloging-in-Publication Data applied for
A catalog record for this book is available from the Library of Congress.

Bibliographic information published by Die Deutsche Bibliothek
Die Deutsche Bibliothek lists this publication in the Deutsche Nationalbibliografie;
detailed bibliographic data is available in the Internet at <http://dnb.ddb.de>.

CR Subject Classification (1998): F.3.1-2,D.3.1,D.2.4

ISSN 0302-9743
ISBN 3-540-20803-8 Springer-Verlag Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer-Verlag. Violations are
liable for prosecution under the German Copyright Law.

Springer-Verlag is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2004
Printed in Germany

Typesetting: Camera-ready by author, data conversion by PTP-Berlin, Protago-TeX-Production GmbH
Printed on acid-free paper SPIN: 10975695 06/3142 543210

Lecture Notes in Computer Science 2937
Edited by G. Goos, J. Hartmanis, and J. van Leeuwen

Springer
Berlin
Heidelberg
New York
Hong Kong
London
Milan

Paris

Tokyo

Lecture Notes in Computer Science

For information about Vols. 1-2837

please contact your bookseller or Springer-Verlag

Vol. 2838: N. Lavra¢, D. Gamberger, L. Todorovski,
H. Blockeel (Eds.), Knowledge Discovery in Databases:
PKDD 2003. Proceedings, 2003. XVI, 508 pages. 2003.
(Subseries LNAI).

Vol. 2839: A. Marshall, N. Agoulmine (Eds.), Manage-
ment of Multimedia Networks and Services. Proceedings,
2003. XIV, 532 pages. 2003.

Vol. 2840: J. Dongarra, D. Laforenza, S. Orlando (Eds.),
Recent Advances in Parallel Virtual Machine and Message
Passing Interface. Proceedings, 2003. XVIII, 693 pages.
2003.

Vol. 2841: C. Blundo, C. Laneve (Eds.), Theoretical Com-
puter Science. Proceedings, 2003. XI, 397 pages. 2003.

Vol. 2842: R. Gavalda, K.P. Jantke, E. Takimoto (Eds.),
Algorithmic Learning Theory. Proceedings, 2003. XI, 313
pages. 2003. (Subseries LNAI).

Vol. 2843: G. Grieser, Y. Tanaka, A. Yamamoto (Eds.),
Discovery Science. Proceedings, 2003. XII, 504 pages.
2003. (Subseries LNAI).

Vol. 2844: J.A. Jorge, N.J. Nunes, J.F. e Cunha (Eds.),
Interactive Systems. Proceedings, 2003. XIII, 429 pages.
2003.

Vol. 2846: J. Zhou, M. Yung, Y. Han (Eds.), Applied Cryp-
tography and Network Security. Proceedings, 2003. XI,
436 pages. 2003.

Vol. 2847: R. de Lemos, T.S. Weber, J.B. Camargo Jr.
(Eds.), Dependable Computing. Proceedings, 2003. XIV,
371 pages. 2003.

Vol. 2848: FEE. Fich (Ed.), Distributed Computing. Pro-
ceedings, 2003. X, 367 pages. 2003.

Vol. 2849: N. Garcia, J.M. Martinez, L. Salgado (Eds.),
Visual Content Processing and Representation. Proceed-
ings, 2003. XII, 352 pages. 2003.

Vol. 2850: M.Y. Vardi, A. Voronkov (Eds.), Logic for
Programming, Artificial Intelligence, and Reasoning. Pro-
ceedings, 2003. XIII, 437 pages. 2003. (Subseries LNAI)

Vol. 2851: C. Boyd, W. Mao (Eds.), Information Security.
Proceedings, 2003. X1, 443 pages. 2003.

Vol. 2852: E.S. de Boer, M.M. Bonsangue, S. Graf, W.-P.
de Roever (Eds.), Formal Methods for Components and
Objects. Proceedings, 2003. VIII, 509 pages. 2003.

Vol. 2853: M. Jeckle, L.-J. Zhang (Eds.), Web Services —
ICWS-Europe 2003. Proceedings, 2003. VIII, 227 pages.
2003.

Vol. 2854: J. Hoffmann, Utilizing Problem Structure in
Planning. XIII, 251 pages. 2003. (Subseries LNAI)

Vol. 2855: R. Alur, 1. Lee (Eds.), Embedded Software.
Proceedings, 2003. X, 373 pages. 2003.

Vol. 2856: M. Smirnov, E. Biersack, C. Blondia, O.
Bonaventure, O. Casals, G. Karlsson, George Pavlou, B.
Quoitin, J. Roberts, I. Stavrakakis, B. Stiller, P. Trim-
intzios, P. Van Mieghem (Eds.), Quality of Future Internet
Services. IX, 293 pages. 2003.

Vol. 2857: M.A. Nascimento, E.S. de Moura, A.L. Oliveira
(Eds.), String Processing and Information Retrieval. Pro-
ceedings, 2003. XI, 379 pages. 2003.

Vol. 2858: A. Veidenbaum, K. Joe, H. Amano, H. Aiso
(Eds.), High Performance Computing. Proceedings, 2003.
XV, 566 pages. 2003.

Vol. 2859: B. Apolloni, M. Marinaro, R. Tagliaferri (Eds.),
Neural Nets. Proceedings, 2003. X, 376 pages. 2003.

Vol. 2860: D. Geist, E. Tronci (Eds.), Correct Hardware
Design and Verification Methods. Proceedings, 2003. XII,
426 pages. 2003.

Vol. 2861: C. Bliek, C. Jermann, A. Neumaier (Eds.),
Global Optimization and Constraint Satisfaction. Pro-
ceedings, 2002. XII, 239 pages. 2003.

Vol. 2862: D. Feitelson, L. Rudolph, U. Schwiegelshohn
(Eds.), Job Scheduling Strategies for Parallel Processing.
Proceedings, 2003. VII, 269 pages. 2003.

Vol. 2863: P. Stevens, J. Whittle, G. Booch (Eds.), «<UML»
2003 — The Unified Modeling Language. Proceedings,
2003. X1V, 415 pages. 2003.

Vol. 2864: A K. Dey, A. Schmidt, J.F. McCarthy (Eds.),
UbiComp 2003: Ubiquitous Computing. Proceedings,
2003. XVII, 368 pages. 2003.

Vol. 2865: S. Pierre, M. Barbeau, E. Kranakis (Eds.), Ad-
Hoc, Mobile, and Wireless Networks. Proceedings, 2003.
X, 293 pages. 2003.

Vol. 2866: J. Akiyama, M. Kano (Eds.), Discrete and Com-
putational Geometry. Proceedings, 2002. VIII, 285 pages.
2003.

Vol. 2867: M. Brunner, A. Keller (Eds.), Self-Managing
Distributed Systems. Proceedings, 2003. XIII, 274 pages.
2003.

Vol. 2868: P. Perner, R. Brause, H.-G. Holzhiitter (Eds.),
Medical Data Analysis. Proceedings, 2003. VIII, 127
pages. 2003.

Vol. 2869: A. Yazici, C. Sener (Eds.), Computer and Infor-
mation Sciences — ISCIS 2003. Proceedings, 2003. XIX,
1110 pages. 2003.

Vol. 2870: D. Fensel, K. Sycara, J. Mylopoulos (Eds.),
The Semantic Web - ISWC 2003. Proceedings, 2003. XV,
931 pages. 2003.

Vol. 2871: N. Zhong, Z.W. Ra$, S. Tsumoto, E. Suzuki
(Eds.), Foundations of Intelligent Systems. Proceedings,
2003. XV, 697 pages. 2003. (Subseries LNAI)

Vol. 2873: J. Lawry, J. Shanahan, A. Ralescu (Eds.),
Modelling with Words. XIII, 229 pages. 2003. (Subseries
LNAI)

Vol. 2874: C. Priami (Ed.), Global Computing. Proceed-
ings, 2003. XIX, 255 pages. 2003.

Vol. 2875: E. Aarts, R. Collier, E. van Loenen, B. de Ruyter
(Eds.), Ambient Intelligence. Proceedings, 2003. XI, 432
pages. 2003.

Vol. 2876: M. Schroeder, G. Wagner (Eds.), Rules and
Rule Markup Languages for the Semantic Web. Proceed-
ings, 2003. VII, 173 pages. 2003.

Vol. 2877: T. Bohme, G. Heyer, H. Unger (Eds.), Inno-
vative Internet Community Systems. Proceedings, 2003.
VIII, 263 pages. 2003.

Vol. 2878: R.E. Ellis, T.M. Peters (Eds.), Medical Im-
age Computing and Computer-Assisted Intervention -
MICCALI 2003. Part . Proceedings, 2003. XXXIII, 819
pages. 2003.

Vol. 2879: R.E. Ellis, T.M. Peters (Eds.), Medical Im-
age Computing and Computer-Assisted Intervention -
MICCAI 2003. Part II. Proceedings, 2003. XXXIV, 1003
pages. 2003.

Vol. 2880: H.L. Bodlaender (Ed.), Graph-Theoretic Con-
cepts in Computer Science. Proceedings, 2003. XI, 386
pages. 2003.

Vol. 2881: E. Horlait, T. Magedanz, R.H. Glitho (Eds.),
Mobile Agents for Telecommunication Applications. Pro-
ceedings, 2003. IX, 297 pages. 2003.

Vol. 2882: D. Veit, Matchmaking in Electronic Markets.
XV, 180 pages. 2003. (Subseries LNAI)

Vol. 2883: J. Schaeffer, M. Miiller, Y. Bjornsson (Eds.),
Computers and Games. Proceedings, 2002. X1, 431 pages.
2003.

Vol. 2884: E. Najm, U. Nestmann, P. Stevens (Eds.), For-
mal Methods for Open Object-Based Distributed Systems.
Proceedings, 2003. X, 293 pages. 2003.

Vol. 2885: 1.S. Dong, J. Woodcock (Eds.), Formal Meth-
ods and Software Engineering. Proceedings, 2003. X1, 683
pages. 2003.

Vol. 2886: 1. Nystrom, G. Sanniti di Baja, S. Svensson
(Eds.), Discrete Geometry for Computer Imagery. Pro-
ceedings, 2003. XII, 556 pages. 2003.

Vol. 2887: T. Johansson (Ed.), Fast Software Encryption.
Proceedings, 2003. IX, 397 pages. 2003.

Vol. 2888: R. Meersman, Zahir Tari, D.C. Schmidt et
al. (Eds.), On The Move to Meaningful Internet Systems
2003: CooplS, DOA, and ODBASE. Proceedings, 2003.
XXI, 1546 pages. 2003.

Vol. 2889: Robert Meersman, Zahir Tari et al. (Eds.), On
The Move to Meaningful Intemet Systems 2003: OTM
2003 Workshops. Proceedings, 2003. XXI, 1096 pages.
2003.

Vol. 2890: M. Broy, A.V. Zamulin (Eds.), Perspectives of
System Informatics. Proceedings, 2003. XV, 572 pages.
2003.

Vol. 2891: J. Lee, M. Barley (Eds.), Intelligent Agents and
Multi-Agent Systems. Proceedings, 2003. X, 215 pages.
2003. (Subseries LNAI)

Vol. 2892: F. Dau, The Logic System of Concept Graphs
with Negation. XI, 213 pages. 2003. (Subseries LNAI)

Vol. 2893: J.-B. Stefani, I. Demeure, D. Hagimont (Eds.),
Distributed Applications and Interoperable Systems. Pro-
ceedings, 2003. XIII, 311 pages. 2003.

Vol. 2894: C.S. Laih (Ed.), Advances in Cryptology - ASI-
ACRYPT 2003. Proceedings, 2003. X111, 543 pages. 2003.

Vol. 2895: A. Ohori (Ed.), Programming Languages and
Systems. Proceedings, 2003. XIII, 427 pages. 2003.

Vol. 2896: V.A. Saraswat (Ed.), Advances in Comput-
ing Science — ASIAN 2003. Proceedings, 2003. VIII, 305
pages. 2003.

Vol. 2897: O. Balet, G. Subsol, P. Torguet (Eds.), Virtual
Storytelling. Proceedings, 2003. XI, 240 pages. 2003.

Vol. 2898: K.G. Paterson (Ed.), Cryptography and Coding.
Proceedings, 2003. IX, 385 pages. 2003.

Vol. 2899: G. Ventre, R. Canonico (Eds.), Interactive Mul-
timedia on Next Generation Networks. Proceedings, 2003.
X1V, 420 pages. 2003.

Vol. 2901: F. Bry, N. Henze, J. Maluszyriski (Eds.), Prin-
ciples and Practice of Semantic Web Reasoning. Proceed-
ings, 2003. X, 209 pages. 2003.

Vol. 2902: F. Moura Pires, S. Abreu (Eds.), Progress in
Artificial Intelligence. Proceedings, 2003. XV, 504 pages.
2003. (Subseries LNAI).

Vol. 2903: T.D. Gedeon, L.C.C. Fung (Eds.), A 2003: Ad-
vances in Artificial Intelligence. Proceedings, 2003. XVI,
1075 pages. 2003. (Subseries LNAI).

Vol. 2904: T. Johansson, S. Maitra (Eds.), Progress in
Cryptology —INDOCRYPT 2003. Proceedings, 2003. X1,
431 pages. 2003.

Vol. 2905: A. Sanfeliu, J. Ruiz-Shulcloper (Eds.), Progress
in Pattern Recognition, Speech and Image Analysis. Pro-
ceedings, 2003. XVII, 693 pages. 2003.

Vol. 2906: T. Ibaraki, N. Katoh, H. Ono (Eds.), Algorithms
and Computation. Proceedings, 2003. XVII, 748 pages.
2003.

Vol. 2910: M.E. Orlowska, S. Weerawarana, M.P. Papa-
zoglou, J. Yang (Eds.), Service-Oriented Computing —
ICSOC 2003. Proceedings, 2003. XIV, 576 pages. 2003.

Vol. 2911: TM.T. Sembok, H.B. Zaman, H. Chen, S.R.
Urs, S.H.Myaeng (Eds.), Digital Libraries: Technology
and Management of Indigenous Knowledge for Global
Access. Proceedings, 2003. XX, 703 pages. 2003.

Vol. 2913: T.M. Pinkston, V.K. Prasanna (Eds.), High Per-
formance Computing — HiPC 2003. Proceedings, 2003.
XX, 512 pages. 2003.

Vol. 2914: P.K. Pandya, J. Radhakrishnan (Eds.), FST TCS
2003: Foundations of Software Technology and Theo-
retical Computer Science. Proceedings, 2003. XIII, 446
pages. 2003.

Vol. 2916: C. Palamidessi (Ed.), Logic Programming. Pro-
ceedings, 2003. XII, 520 pages. 2003.

Vol. 2918: S.R. Das, S.K. Das (Eds.), Distributed Com-
puting — IWDC 2003. Proceedings, 2003. XIV, 394 pages.
2003.

Vol. 2922: F. Dignum (Ed.), Advances in Agent Communi-
cation. Proceedings, 2003. X, 403 pages. 2004. (Subseries
LNAI).

Vol. 2923: V. Lifschitz, I. Niemeld (Eds.), Logic Program-

ming and Nonmonotonic Reasoning. Proceedings, 2004.
IX, 365 pages. 2004. (Subseries LNAI).

Vol. 2927: D. Hales, B. Edmonds, E. Norling, J. Rouchier
(Eds.), Multi-Agent-Based Simulation III. Proceedings,
2003. X, 209 pages. 2003. (Subseries LNAT).

Vol. 2929: H. de Swart, E. Orlowska, G. Schmidt, M.
Roubens (Eds.), Theory and Applications of Relational
Structures as Knowledge Instruments. Proceedings. VII,
273 pages. 2003.

Vol. 2932: P. Van Emde Boas, J. Pokorny, M. Bielikov4,
1. Stuller (Eds.), SOFSEM 2004: Theory and Practice of
Computer Science. Proceedings, 2004. XIII, 385 pages.
2004.

Vol. 2937: B. Steffen, G. Levi (Eds.), Verification, Model

Checking, and Abstract Interpretation. Proceedings, 2004.
X1, 325 pages. 2004.

Preface

This volume contains the proceedings of the 5th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCALI 2004), held
in Venice, January 11-13, 2004, in conjunction with POPL 2004, the 31st Annual
Symposium on Principles of Programming Languages, January 14-16, 2004. The
purpose of VMCAI is to provide a forum for researchers from three communities—
verification, model checking, and abstract interpretation—which will facilitate
interaction, cross-fertilization, and the advance of hybrid methods that combine
the three areas. With the growing need for formal tools to reason about complex,
infinite-state, and embedded systems, such hybrid methods are bound to be of
great importance.

Topics covered by VMCAI include program verification, static analysis tech-
niques, model checking, program certification, type systems, abstract domains,
debugging techniques, compiler optimization, embedded systems, and formal
analysis of security protocols.

This year’s meeting follows the four previous events in Port Jefferson (1997),
Pisa (1998), Venice (2002), LNCS 2294 and New York (2003), LNCS 2575. In
particular, we thank VMCAI 2003’s sponsor, the Courant Institute at New York
University, for allowing us to apply a monetary surplus from the 2003 meeting
to this one.

The program committee selected 22 papers out of 68 on the basis of three re-
views. The principal criteria were relevance and quality. The program of VMCAI
2004 included, in addition to the research papers,

— a keynote speech by David Harel (Weizmann Institute, Israel) on A Grand
Challenge for Computing: Full Reactive Modeling of a Multicellular Animal,

— an invited talk by Dawson Engler (Stanford University, USA) on Static Anal-
ysis Versus Software Model Checking for Bug Finding,

— an invited talk by Mooly Sagiv (Tel Aviv University, Israel) called On the
Ezxpressive Power of Canonical Abstraction, and

— a tutorial by Joshua D. Guttman (Mitre, USA) on Security, Protocols, and
Trust.

We would like to thank the Program Committee members and the reviewers,
without whose dedicated effort the conference would not have been possible.
Our thanks go also to the Steering Committee members for helpful advice, to
Agostino Cortesi, the Local Arrangements Chair, who also handled the con-
ference’s Web site, and to David Schmidt, whose expertise and support was
invaluable for the budgeting. Special thanks are due to Martin Karusseit for
installing, managing, and taking care of the METAFrame Online Conference
Service, and to Claudia Herbers, who, together with Alfred Hofmann and his
team at Springer-Verlag, collected the final versions and prepared the proceed-
ings.

VI Preface

Special thanks are due to the institution that helped sponsor this event, the
Department of Computer Science of Ca’ Foscari University, and to the profes-
sional organizations that support the event: VMCAI 2004 is held in cooperation
with ACM and is sponsored by EAPLS.

January 2004 Bernhard Steffen

Steering Committee

Agostino Cortesi (Italy)

E. Allen Emerson (USA)
Giorgio Levi (Italy)

Andreas Podelski (Germany)
Thomas W. Reps (USA)
David A. Schmidt (USA)
Lenore Zuck (USA)

Program Committee

Chairs: Giorgio Levi (University of Pisa)
Bernhard Steffen (Dortmund University)

Ralph Back (Abo Akademi University, Finland)

Agostino Cortesi (Universita Ca’ Foscari di Venezia, Italy)
Radhia Cousot (CNRS and Ecole Polytechnique, France)
Susanne Graf (VERIMAG Grenoble, France)

Radu Grosu (SUNY at Stony Brook, USA)

Orna Grumberg (Technion, Israel)

Gerhard Holzmann (Bell Laboratories, USA)

Yassine Lakhnech (Université Joseph Fourier, France)

Jim Larus (Microsoft Reseach, USA)

Markus Miiller-Olm (FernUniversitét in Hagen, Germany)
Hanne Riis Nielson (Technical University of Denmark, Denmark)
David A. Schmidt (Kansas State University, USA)

Lenore Zuck (New York University, USA)

VIII Reviewers

Reviewers

Rajeev Alur
Roberto Bagnara
Jttai Balaban
Rudolf Berghammer
Chiara Bodei
Victor Bos

Dragan Bosnacki
Marius Bozga
Liana Bozga
Chiara Braghin
Roberto Bruni
Glenn Bruns

Sagar Chaki
Patrick Cousot
Silvia Crafa
Pierpaolo Degano
Benet Devereux
Agostino Dovier
Christian Ene
Javier Esparza
Jérome Feret
Jean-Claude Fernandez
Gianluigi Ferrari
Riccardo Focardi
Martin Fréanzle
John Gallagher
Roberto Giacobazzi

Arie Gurfinkel

Rene Rydhof Hansen
Jonathan Herzog
Patricia Hill

Frank Huch

Radu losif

Romain Janvier
Salvatore La Torre
Flavio Lerda
Francesca Levi
Flaminia Luccio
Jens Knoop

Daniel Kroening
Damiano Macedonio
Monika Maidl

Oded Maler

Damien Massé
Laurent Mauborgne
Fred Mesnard
Antoine Miné
Jean-Francois Monin
David Monniaux
Laurent Mounier
Kedar Namjoshi
Flemming Nielson
Sinha Nishant
Tulian Ober

Joél Ouaknine
Carla Piazza

Amir Pnueli

Cory Plock

Shaz Qadeer
Sriram Rajamani
Xavier Rival
Sabina Rossi
Grigore Rosu
Oliver Riithing
Nicoletta Sabadini
Ursula Scheben
Axel Simon

Eli Singerman
Francesca Scozzari
Margaret H. Smith
Muralidhar Talupur
Simone Tini
Tayssir Touili
Stavros Tripakis
Enrico Tronci
Helmut Veith
Andreas Wolf

Ben Worrell
James Worrell
Aleksandr Zaks

Table of Contents

Tutorial

Security, Protocols, and Trust 1
J.D. Guttman

Security

Security Types Preserving Compilation 2

G. Barthe, A. Basu, T. Rezk

History-Dependent Scheduling for Cryptographic Processes............. 16
V. Vanackére

Formal Methods I

Construction of a Semantic Model for a Typed Assembly Language 30
G. Tan, A.W. Appel, K.N. Swadi, D. Wu

Rule-Based Runtime Verification................... 44
H. Barringer, A. Goldberg, K. Havelund, K. Sen

Invited Talk

On the Expressive Power of Canonical Abstraction 58
M. Sagiv

Miscellaneous

Boolean Algebra of Shape Analysis Constraints 59

V. Kuncak, M. Rinard
Model Checking

Approximate Probabilistic Model Checking 73
T. Hérault, R. Lassaigne, F. Magniette, S. Peyronnet

Completeness and Complexity of Bounded Model Checking. 85
E. Clarke, D. Kroening, J. Ouaknine, O. Strichman

Model Checking for Object Specifications in Hidden Algebra 97
D. Lucanu, G. Ciobanu

X Table of Contents

Formal Methods II

Model Checking Polygonal Differential Inclusions Using

Invariance Kernels 110
G.J. Pace, G. Schneider

Checking Interval Based Properties for Reactive Systems............... 122
P. Yu, X. Qiwen

Widening Operators for Powerset Domains 135
R. Bagnara, P.M. Hill, E. Zaffanella

Software Checking

Type Inference for Parameterized Race-Free Java 149
R. Agarwal, S.D. Stoller

Certifying Temporal Properties for Compiled C Programs 161
S. Xia, J. Hook

Verifying Atomicity Specifications for Concurrent
Object-Oriented Software Using Model-Checking 175
J. Hatcliff, Robby, M.B. Dwyer

Invited Talk

Static Analysis versus Software Model Checking for Bug Finding 191
D. Engler, M. Musuvathi

Software Checking

Automatic Inference of Class Invariants 211
F. Logozzo

Liveness and Completeness

Liveness with Invisible Ranking 223
Y. Fang, N. Piterman, A. Pnueli, L. Zuck

A Complete Method for the Synthesis of Linear Ranking Functions. 239
A. Podelski, A. Rybalchenko

Symbolic Implementation of the Best Transformer 252
T. Reps, M. Sagiv, G. Yorsh

Formal Methods 111

Constructing Quantified Invariants via Predicate Abstraction 267
S.K. Lahiri, R.E. Bryant

Table of Contents X1
Analysis of Recursive Game Graphs Using Data Flow Equations 282
K. Etessami

Applying Jlint to Space Exploration Software 297
C. Artho, K. Havelund

Why AI + ILP Is Good for WCET, but MC Is Not, Nor ILP Alone 309
R. Wilhelm

Key Note

A Grand Challenge for Computing: Towards Full Reactive Modeling
of a Multi-cellular Animal 323
D. Harel

Author Index 325

Security, Protocols, and Trust*

Joshua D. Guttman

guttman@mitre.org
http://www.ccs.neu.edu/home/guttman

Information security has benefited from mathematically cogent modeling and
analysis, which can assure the absence of specific kinds of attacks. Information
security provides the right sorts of problems: Correctness conditions may be
subtle, but they have definite mathematical content. Systems may be complex,
but the essential reasons for failures are already present in simple components.
Thus, rigorous methods lead to clear improvements.

In this tutorial, we focus on one problem area, namely cryptographic proto-
cols. Cryptographic protocols are often wrong, and we will start by studying how
to break them. Most protocol failures arise from unintended services contained
in the protocols themselves. An unintended service is an aspect of the protocol
that requires legitimate principals unwittingly to provide an attacker with in-
formation that helps the attacker defeat the protocol. We describe a systematic
way to discover unintended services and to piece them together into attacks.

Turning to the complementary problem of proving that there are no attacks
on a particular protocol, we use the same insights to develop three basic patterns
for protocol verification. These patterns concern the way that fresh, randomly
chosen values (“nonces”) are transmitted and later received back in cryptograph-
ically altered forms. We explain how these patterns, the authentication tests, are
used to achieve authentication and to guarantee recency. They serve as a design
method as well as a verification method.

In themselves, however, these methods do not explain the commitments that
a principal makes by specific protocol actions, nor the trust one principal must
have in another in order to be willing to continue a protocol run. In the last part
of the tutorial, we describe how to combine protocol analysis with a trust man-
agement logic in order to formalize the trust consequences of executing protocols
for electronic commerce and access control.

* Supported by the United States National Security Agency and the MITRE-
Sponsored Research Program.

B. Steffen and G. Levi (Eds.): VMCAI 2004, LNCS 2937, p. 1, 2004.
(© Springer-Verlag Berlin Heidelberg 2004

Security Types Preserving Compilation*
(Extended Abstract)

Gilles Barthe!, Amitabh Basu?**, and Tamara Rezk!

! INRIA Sophia-Antipolis, France {Gilles.Barthe,Tamara.Rezk}@sophia.inria.fr
2 IIT Delhi, India csu00099@cse.iitd.ernet.in

Abstract. Initiating from the seminal work of Volpano and Smith, there
has been ample evidence that type systems may be used to enforce con-
fidentiality of programs through non-interference. However, most type
systems operate on high-level languages and calculi, and “low-level lan-
guages have not received much attention in studies of secure informa-
tion flow” (Sabelfeld and Myers, [16]). Further, security type systems for
low-level languages should appropriately relate to their counterparts for
high-level languages; however, we are not aware of any study of type-
preserving compilers for type systems for information flow.

In answer to these questions, we introduce a security type system for
a low-level language featuring jumps and calls, and show that the type
system enforces termination-insensitive non-interference. Then, we intro-
duce a compiler from a high-level imperative programming language to
our low-level language, and show that the compiler preserves security

types.

1 Introduction

Type systems are popular artefacts to enforce safety properties in the context of
mobile and embedded code. While such safety properties fail short of providing
appropriate guarantees with respect to security policies to which mobile and em-
bedded code must adhere, recent work has demonstrated that type systems are
adequate to enforce statically security policies. These works generally focus on
confidentiality and in particular on non-interference [7], which ensures confiden-
tiality through the absence of information leakage. Initiating from the seminal
work of Volpano, Smith and Irvine [20], type systems for non-interference have
been thoroughly studied in the literature, see e.g. [16] for a survey. However, most
works focus on high-level calculi, including A-calculus, see e.g. [8], m-calculus, see
e.g. [9], and ¢-calculus [3], or high-level programming languages, including Java
[2,12] and ML [15].

In contrast, relatively little is known about non-interference for low-level
languages, in particular because their lack of structure renders control flow more
intricate; in fact existing works, see e.g. [4,5], use model-checking and abstract

* Work partially supported by IST Projects Profundis and Verificard.
** This work was performed while the author was visiting INRIA Sophia- Antipolis.

B. Steffen and G. Levi (Eds.): VMCAI 2004, LNCS 2937, pp. 2-15, 2004.
(@© Springer-Verlag Berlin Heidelberg 2004

Security Types Preserving Compilation 3

interpretation techniques to detect illegal information flows, but do not provide
proofs of non-interference for programs that are accepted by their analysis. Thus
the first part of this paper is devoted to the definition of a security type system
for a low-level language with jumps and calls, and a proof that the type system
enforces termination-insensitive non-interference.

Of course, security type systems for low-level languages should appropriately
relate to their counterparts for high-level languages. Indeed, one would expect
that compilation preserves security typing. Thus the second part of the paper is
devoted to a case study in compilation with security types: we define a high-level
imperative language with procedures, and a compiler to the low-level language
studied in the first part of the paper. Further, we endorse the language with a
type system that guarantees termination-insensitive non-interference, and show
that compilation function preserves typing. The proof that compilation preserves
typing proceeds by induction on the structure of derivations, and can be viewed
as a procedure to compute, from a certificate of well-typing at the source pro-
gram, another certificate of well-typing for the compiled program. It is thus very
close in spirit to a certifying compiler [13].

Contents. The remaining of the paper is organized as follows. In Section 2
we define an assembly language that shall serve as the compiler target, en-
dorse it with a security type system, and prove that the type system enforces
termination-insensitive non-interference. In Section 3, we introduce a high-level
imperative language with procedures and its associated type system. Further,
we introduce a compiler that we show to preserve security typing; we also dis-
cuss how type-preserving compilation can be used to lift non-interference to the
high-level language. We conclude in Section 4, with related work and directions
for further research.

2 Assembly Language

2.1 Syntax and Operational Semantics

The assembly language is a small language with jumps and procedures. A pro-
gram P is a set of procedures with a distinguished, main, procedure; we let Py be
the procedure associated to an identifier f in P. Each procedure Py consists of
an array of instructions; we let P[] be the i-th instruction in P;. The set Instr
of instructions and the set Prog, of compiled programs are defined in Figure 1.
We often denote programs by P, :: [f := i*]*. Given a program P, we let PP
be its set of programs points, i.e. the set of pairs (f,i) with f € F, where F is
a set of procedure names, and i € dom(Py). Further, we assume programs to
satisfy the usual well-formedness conditions, such as code containment: for every
program point (f, 1), Psli] =if j = j € dom(Ps), etc.

The operational semantics is given as a transition relation between states.
In our setting, values are integers, i.e. V = Z and states are triples of the form
(cs, p, s) where cs € PP* is a call string whose length is bounded by some

