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Preface

This volume contains the proceedings of the 5th International Conference on
Verification, Model Checking, and Abstract Interpretation (VMCALI 2004), held
in Venice, January 11-13, 2004, in conjunction with POPL 2004, the 31st Annual
Symposium on Principles of Programming Languages, January 14-16, 2004. The
purpose of VMCAI is to provide a forum for researchers from three communities—
verification, model checking, and abstract interpretation—which will facilitate
interaction, cross-fertilization, and the advance of hybrid methods that combine
the three areas. With the growing need for formal tools to reason about complex,
infinite-state, and embedded systems, such hybrid methods are bound to be of
great importance.

Topics covered by VMCAI include program verification, static analysis tech-
niques, model checking, program certification, type systems, abstract domains,
debugging techniques, compiler optimization, embedded systems, and formal
analysis of security protocols.

This year’s meeting follows the four previous events in Port Jefferson (1997),
Pisa (1998), Venice (2002), LNCS 2294 and New York (2003), LNCS 2575. In
particular, we thank VMCAI 2003’s sponsor, the Courant Institute at New York
University, for allowing us to apply a monetary surplus from the 2003 meeting
to this one.

The program committee selected 22 papers out of 68 on the basis of three re-
views. The principal criteria were relevance and quality. The program of VMCAI
2004 included, in addition to the research papers,

— a keynote speech by David Harel (Weizmann Institute, Israel) on A Grand
Challenge for Computing: Full Reactive Modeling of a Multicellular Animal,

— an invited talk by Dawson Engler (Stanford University, USA) on Static Anal-
ysis Versus Software Model Checking for Bug Finding,

— an invited talk by Mooly Sagiv (Tel Aviv University, Israel) called On the
Ezxpressive Power of Canonical Abstraction, and

— a tutorial by Joshua D. Guttman (Mitre, USA) on Security, Protocols, and
Trust.

We would like to thank the Program Committee members and the reviewers,
without whose dedicated effort the conference would not have been possible.
Our thanks go also to the Steering Committee members for helpful advice, to
Agostino Cortesi, the Local Arrangements Chair, who also handled the con-
ference’s Web site, and to David Schmidt, whose expertise and support was
invaluable for the budgeting. Special thanks are due to Martin Karusseit for
installing, managing, and taking care of the METAFrame Online Conference
Service, and to Claudia Herbers, who, together with Alfred Hofmann and his
team at Springer-Verlag, collected the final versions and prepared the proceed-
ings.



VI Preface

Special thanks are due to the institution that helped sponsor this event, the
Department of Computer Science of Ca’ Foscari University, and to the profes-
sional organizations that support the event: VMCAI 2004 is held in cooperation
with ACM and is sponsored by EAPLS.

January 2004 Bernhard Steffen
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Security, Protocols, and Trust*

Joshua D. Guttman

guttman@mitre.org
http://www.ccs.neu.edu/home/guttman

Information security has benefited from mathematically cogent modeling and
analysis, which can assure the absence of specific kinds of attacks. Information
security provides the right sorts of problems: Correctness conditions may be
subtle, but they have definite mathematical content. Systems may be complex,
but the essential reasons for failures are already present in simple components.
Thus, rigorous methods lead to clear improvements.

In this tutorial, we focus on one problem area, namely cryptographic proto-
cols. Cryptographic protocols are often wrong, and we will start by studying how
to break them. Most protocol failures arise from unintended services contained
in the protocols themselves. An unintended service is an aspect of the protocol
that requires legitimate principals unwittingly to provide an attacker with in-
formation that helps the attacker defeat the protocol. We describe a systematic
way to discover unintended services and to piece them together into attacks.

Turning to the complementary problem of proving that there are no attacks
on a particular protocol, we use the same insights to develop three basic patterns
for protocol verification. These patterns concern the way that fresh, randomly
chosen values (“nonces”) are transmitted and later received back in cryptograph-
ically altered forms. We explain how these patterns, the authentication tests, are
used to achieve authentication and to guarantee recency. They serve as a design
method as well as a verification method.

In themselves, however, these methods do not explain the commitments that
a principal makes by specific protocol actions, nor the trust one principal must
have in another in order to be willing to continue a protocol run. In the last part
of the tutorial, we describe how to combine protocol analysis with a trust man-
agement logic in order to formalize the trust consequences of executing protocols
for electronic commerce and access control.

* Supported by the United States National Security Agency and the MITRE-
Sponsored Research Program.

B. Steffen and G. Levi (Eds.): VMCAI 2004, LNCS 2937, p. 1, 2004.
(© Springer-Verlag Berlin Heidelberg 2004



Security Types Preserving Compilation*
(Extended Abstract)

Gilles Barthe!, Amitabh Basu?**, and Tamara Rezk!

! INRIA Sophia-Antipolis, France {Gilles.Barthe,Tamara.Rezk}@sophia.inria.fr
2 IIT Delhi, India csu00099@cse.iitd.ernet.in

Abstract. Initiating from the seminal work of Volpano and Smith, there
has been ample evidence that type systems may be used to enforce con-
fidentiality of programs through non-interference. However, most type
systems operate on high-level languages and calculi, and “low-level lan-
guages have not received much attention in studies of secure informa-
tion flow” (Sabelfeld and Myers, [16]). Further, security type systems for
low-level languages should appropriately relate to their counterparts for
high-level languages; however, we are not aware of any study of type-
preserving compilers for type systems for information flow.

In answer to these questions, we introduce a security type system for
a low-level language featuring jumps and calls, and show that the type
system enforces termination-insensitive non-interference. Then, we intro-
duce a compiler from a high-level imperative programming language to
our low-level language, and show that the compiler preserves security

types.

1 Introduction

Type systems are popular artefacts to enforce safety properties in the context of
mobile and embedded code. While such safety properties fail short of providing
appropriate guarantees with respect to security policies to which mobile and em-
bedded code must adhere, recent work has demonstrated that type systems are
adequate to enforce statically security policies. These works generally focus on
confidentiality and in particular on non-interference [7], which ensures confiden-
tiality through the absence of information leakage. Initiating from the seminal
work of Volpano, Smith and Irvine [20], type systems for non-interference have
been thoroughly studied in the literature, see e.g. [16] for a survey. However, most
works focus on high-level calculi, including A-calculus, see e.g. [8], m-calculus, see
e.g. [9], and ¢-calculus [3], or high-level programming languages, including Java
[2,12] and ML [15].

In contrast, relatively little is known about non-interference for low-level
languages, in particular because their lack of structure renders control flow more
intricate; in fact existing works, see e.g. [4,5], use model-checking and abstract
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interpretation techniques to detect illegal information flows, but do not provide
proofs of non-interference for programs that are accepted by their analysis. Thus
the first part of this paper is devoted to the definition of a security type system
for a low-level language with jumps and calls, and a proof that the type system
enforces termination-insensitive non-interference.

Of course, security type systems for low-level languages should appropriately
relate to their counterparts for high-level languages. Indeed, one would expect
that compilation preserves security typing. Thus the second part of the paper is
devoted to a case study in compilation with security types: we define a high-level
imperative language with procedures, and a compiler to the low-level language
studied in the first part of the paper. Further, we endorse the language with a
type system that guarantees termination-insensitive non-interference, and show
that compilation function preserves typing. The proof that compilation preserves
typing proceeds by induction on the structure of derivations, and can be viewed
as a procedure to compute, from a certificate of well-typing at the source pro-
gram, another certificate of well-typing for the compiled program. It is thus very
close in spirit to a certifying compiler [13].

Contents. The remaining of the paper is organized as follows. In Section 2
we define an assembly language that shall serve as the compiler target, en-
dorse it with a security type system, and prove that the type system enforces
termination-insensitive non-interference. In Section 3, we introduce a high-level
imperative language with procedures and its associated type system. Further,
we introduce a compiler that we show to preserve security typing; we also dis-
cuss how type-preserving compilation can be used to lift non-interference to the
high-level language. We conclude in Section 4, with related work and directions
for further research.

2 Assembly Language

2.1 Syntax and Operational Semantics

The assembly language is a small language with jumps and procedures. A pro-
gram P is a set of procedures with a distinguished, main, procedure; we let Py be
the procedure associated to an identifier f in P. Each procedure Py consists of
an array of instructions; we let P[] be the i-th instruction in P;. The set Instr
of instructions and the set Prog, of compiled programs are defined in Figure 1.
We often denote programs by P, :: [f := i*]*. Given a program P, we let PP
be its set of programs points, i.e. the set of pairs (f,i) with f € F, where F is
a set of procedure names, and i € dom(Py). Further, we assume programs to
satisfy the usual well-formedness conditions, such as code containment: for every
program point (f, 1), Psli] =if j = j € dom(Ps), etc.

The operational semantics is given as a transition relation between states.
In our setting, values are integers, i.e. V = Z and states are triples of the form
(cs, p, s) where cs € PP* is a call string whose length is bounded by some



