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PREFACE

In recent years there has been an increased interest in the theory of orthogonal
polynomials but the number of textbooks treating orthogonal polynomials is rather
limited. Even at present the best reference is Szegd's book [175] which was first
published in 1939. Freud's book [61] is also highly recommended. The more recent
introduction by Chihara [39] does not include asymptotic results and the monographs
by Geronimus [75] and Nevai [138] are rather technical and treat a very specific
part of the theory of orthogonal polynomials on [-1,1]. This monograph concentrates
on the asymptotic theory of general orthogonal polynomials on the real line. Most
of the theorems have been proved, for some of them only a sketch of the proof is
given and tedious proofs out of the scope of this monograph have been omitted.

I would like to express my very cordial thanks to all those who, in some way
or another, have contributed to this monograph. Many thanks in particular to Jef
Teugels who made me appreciate the mathematical analysis of orthogonal polynomials.
Some theorems in this monograph are the result of working with other mathematicians.
I am very grateful to Makoto Maejima (Chapter 3), Jeffrey Geronimo (Chapter 2,
Section 4.4) and Guido Fano (Section 5.1) for a fruitful collaboration. Finally
I would 1ike to thank Daniel Bessis, Pierre Moussa, Giorgio Turchetti, Paul Nevai,
Doron Lubinsky, Ed Saff, Alphonse Magnus and many others for various interesting
discussions and Bea Peeters for an excellent job of typing the manuscript.

Walter Van Assche, March 1987.
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INTRODUCTION

0.1. Definitions and examples

Let u be a positive probability measure on the real line with distribution
function u(t) = u((-=,tl). Suppose that all the moments

©

(0.1.1) m x"dy (x)

-

are finite and that the support of the measure u
supp(u) = {x € R : Ve >0 yu((x-c,x+:)) >0}

is an infinite set. Then there exists a sequence of polynomials
{pn(x) :n=0,1,2,...} such that

©

= >
!_w Pp(x)py (%) du(x) S.n m,n >0
(0.1.2)
- . " n
pn(x) = pn(x,u) = knx oo, kn >0 .
This sequence consists of orthogonal polynomials with spectral measure uw (or

orthogonality measure) (Szegd [175], p. 23). The definition (0.1.2) actually im-
plies that the polynomials are normed so that one should speak of "orthonormal

polynomials". We denote the monic polynomials by

(0.1.3)  p,(x) = k3! py(x)

Since u is a probability measure, it follows that

It is possible to extend the notion of orthogonal polynomials by using a measure u
on some curve in the complex plane, but in this monograph we will always use
orthogonality on the real line (the only exception is § 1.4).



The measure u can always be decomposed as a linear combination of three different

types of measures, up = Mae ¥ Mgt Mgs My is an absolutely continuous measure (with
respect to Lebesgue measure), My is an atomic measure with mass on a discrete set
which is at most denumerable and K is a singular measure (with respect to Lebesgue
measure) with a continuous distribution function. If the spectral measure is

absolutely continuous, then there exists a (Radon-Nikodym) derivative w such that

p_(x)p_(x)w(x)dx = § m,n >0 .

Consider the weight function (a«,8 > -1)

-a-B-1 I'(a+3 +2 a )
2 T(%;W@):fj(lﬁ) (1+x) -l<x<l
(0.1.4) w(x) =
0 elsewhere

(this is the density of a beta-distribution on [-1,1]), then

. 1/2
_ | 2n+o+g+1 n{at842) P(a,ﬁ)(

(0.1.5) pn(x) T | n¥atBHT (a+1)n (B+1)n

x)

where {Péa’g)(x) :n=0,1,2,...1 are Jacobi polynomials with parameters o and 8.

We have used the Pochhammer notation

(a)n = a(a+l) ... (a+n-1) = Ty

The Jacobi polynomials are explicitely given by

1

(0.1.6)  pl*Bl(x) e

_ _ I(a+n+l g ) I (a+p+n+j+1) (5;1)
n!r (a+g+n+1 320 J I (atj+l) 2

They satisfy the differential equation

2§ (M (M - )"k 4 1))
j=0

J

2 n

(1-x)y" + [B-a-(a+B+2)x]y" + n(n+a+p+l)y = O

and can be found from Rodrigues' formula



n n
(1x)%(1ex)® p{8) () = 2;1{ }f77 {
n. X

(1_x)n+a(1+x)n+e} '

Special cases include the legendre polynomials

the Chebyshev polynomials of the first kind

2.4...2n -1/2,-1/2
T - T3y A 0
and the Chebyshev polynomials of the secon ’

12.4...(2042) ((1/2,1/2)
n

Un(x) = 3 T3 {7nr

|

If we set x = cos t then
T (x) = cos(nt) 3 U_(x) = sin{(n+1)t)

n n sin t

Jacobi polynomials with o = g are called ultraspherical or Gegenbauer polynomials.

Tarl) X ¢ x >0
(0.1.7) w(x) =

0 x <0
are given by

-1/2
(0.1.8)  p (x) = (-1"(MY LY
where
() B L (—x)j

(0.1.9) Ln (x) = jzo (n—j) ST

The polynomials in (0.1.9) are the Luguerre polynomiule when « = 0; for arbitrary
a > -1 these polynomials are called generalized Laguerre polynomials Or Sonin—

Laguerre polynomials. They satisfy the differential equation



xy" + (a+l-x)y' + ny =0
and can be obtained through Rodrigues' formula
) = 1 lfl (e—x n+a
Xty “nl dx" x0)
X

Notice that (0.1.7) is the density of a gamma distribution on [0,»).

Consider the density of a normal (or Gaussian) distribution

2
-X

(0.1.10) w(x) = e X € R

2=

then the orthogonal polynomials are

1/2 H(x)

(0.1.11)  p,(x) = (2"n1)” L

where {Hn(x) :n=0,1,2,...} are the #ermite polynomials. Somewhat more general
is the weight function (a > -1/2)

2
(0.1.12)  w(x) = ———l—j—r[xwzue'x
T(d‘*g)
with
-1/2
S L (R (a)
(0.1.13) pn(x) = 2 {5 (o + 1/2) pel ) H, (x)
>3
The polynomials {Hr(]a)(x) :n=0,1,2,...} are generalized Hermite polynomials Or
Markov-Sonin polynomials. They satisfy the differential equation
" 2 [l _1 _
xy" + 2(a-x")y' + (2xn- B, )y =0

with 8, =0 and ¢ = 2a. There exists a Rodrigues' formula which is (for a = 0)

2m 2m+1

There is a simple relation with the (generalized) Laguerre polynomials :

(0.1.14) 1 (x) = (-1)" 2 nr L= 2) (2

2n



(0.1.14") i)

2n+1(x) _ (_1)n 22n+1 nl x L£a+1/2)(x2) )

The polynomials of Jacobi, Laguerre and Hermite together are the classical ortho-
gonal polynomials. They can be characterized as being the only ones that satisfy
a homogeneous linear differential equation of the second order. This class also
consists of the only orthogonal polynomials for which the derivatives are again
orthogonal polynomials. A formula of Rodriques type is also possible only within
this class.
There are other important sequences of orthogonal polynomials. We might call those
semi-classical orthogonal polynomials. They are obtained by allowina a discrete
version of the notion of derivative (ordinary difference or g-difference). Some

examples are

Suppose the spectral measure is discrete and supported on the positive integers
with jumps (a > 0)

n
(0.1.15)  wu(in}) = e® 3y n=0,1,2,...
then

(0.1.16) p(x) = (a"n1y71/2 Cr(]a)(x)

where {Cga)(x) :n=0,1,2,...} are the Charlier polynomials. Sometimes these
polynomials are referred to as Poisson-Charlier polynomials because the spectral
measure corresponds to the Poisson distribution. An explicit expression for the

Charlier polynomials is

(a) _ Ny Xy sqg_yN-J
(0.1.17)  ¢}¥(x) = jzo (Hit-a)

For the discrete measure (g >0, 0 <c < 1)
g "
(0.1.18) u({nd) = (1-c)® (8), o7 n=0,1,2,...

(which is the Pascal distribution or the neaative-binomial distribution) the ortho-

gonal polynomials are



N 1/2

(0.1.19) Pn(x) = (1) mn(X;B,C)

with {mn(x;s,c) :n=20,1,2,...} the Medaener polynomials, given by

n ’ J

. - X n+5—1> 21

(0.1.20)  m (x;8,c) = n! jzo (J)(j+8—1 (1--)
Chihara [39] refers to these polynomials as the Meiwner polynomials of the first
kind. The Meixner polynomials of the second kind (in Chihara's terminology) have

the weight function
i 8
+ X

=3

(0.1.21) w(x) = ¢ |r(Z > exp(-x Arctan ¢)

with C a normalizing constant. Askey and Wilson [9] refer to these polynomials as

the Meianer-Pollaczek polynomials.

Consider the weight function (a = |b|, x» > 0)

[ 2 A-1/2
Zﬂ éZA:a)(l - XZ) exP(}Arcsin X éf,j;lz>
1- x2
2
(0= B2)  wixj = X W(x + 1 w> -l<x <1
2/ - X2
0 elsewhere

then the orthoqonal polynomials are given by

1/2

I
n!(2n+2x+a) Pz(x;a,b)

(ZA)n (2x+a)

(1051 . 23) pn(x) =(

A
where {Pn(x;a,b) :n=0,1,2,...} are the Pollaczek polynomials on [-1,11. These

can be written explicitely as

. n (A+it). .
(0.1.24)  nlP)(xza,b) = (20) e 7§ pance 210 _ 1yd
j=0 (21);

ax + b

2/1- 2

with x = cos 6 and t =



There are many more sequences of orthogonal polynomials. More examples are given
in Chihara's book [39]. In Chapter 1 (§ 1.4) there will be a short discussion about
orthogonal polynomials with a singular spectral measure supported on a Cantor set.

0.2. General properties

We will now mention some general properties of orthogonal polynomials. We will
not give proofs here but refer to the literature (Szegd [1751, Freud [61], Chihara
{391).

Lemma 0.1. (Szeg6 [175], p. 44). The zeros of orthogonal polynomials are real and
simple and belong to the interval (a,b), where a and b are respectively the
infimum and supremum of supp(u) (we take a = -= and/or b = = when these do not
exist). If we order the zeros of P, in such a way that

< sws X <b

(0.2.1) a < x TR o

< X
1,n

then Xj,n+1 < Xj,n < Xj+l,n+1

and Pral interlace.

(j = 1,...,n), which means that the zeros of Py

The zeros of orthogonal polynomials serve very well as nodes for a numerical quadra-

ture formule. They give rise to the Gruss—"7:007 Jqualrature

Lemma 0.2. (Szegd [1751, p. 47). Let

kn+1 -1 kn 1

J,n En pn+1(xj,n)pn(xj,n) kn—l pn—l(xj,n>pn(x

(0.2.2) ]

\j’n

then for every polynomial w of degree less than or equal to 2n-1

@

n
(0.2.3) m(x)da(x) = ]
. j=0

)

kj nn(x,
3 J,n

The numbers {xj A j=1,...,nt are called Chrictoffel numbers and they are all

positive.

One of the most important properties of orthogonal polynomials is the existence of a

recurrence relation for three consecutive polynomials :

Lemma 0.3. (Szegd [175], p. 42; Freud [61], p. 60). Orthogonal polynomials always
satisfy a three term recurrence relation



(0.2.%) xpn(x) = an+1pn+1(x) + bnpn(x) + anpn_l(x) n=0,1,2,...

with starting values p_l(x) =0 and po(x) = 1. The recurrence coefficients are
given by

n-1 1,2,...

(0.2.5)

b = xpﬁ(x)du(x) € R N = 0:1s2500

-

If, on the other hand, {pn(x) :n=0,1,2,...} is a sequence of polynomials that
satisfies a recurrence relation of the form (0.2.4) with a >0 and b1 € R
(n = 1,2,...), then there exists a probability measure u such that these

polynomials are orthogonal with spectral measure u.

The second part of the previous lemma is often referred to as Favard's theorem. The
recurrence relation for the monic polynomials becomes

(0.2.6) Boaq(¥) = (x = b)p (x) - a:ﬁn_l(x) n=0,1,2,...

The recurrence relation always implies the existence of a spectral measure with
respect to which the polynomials are orthogonal. This measure need not be unique.
The measure will be unique if and only if the Hamburger moment problem associated
with this measure has a unique solution. A sufficient condition has been given by
Carleman, namely

= ®

(0.2.7)

no~18

1
n=1 %n

(Shohat-Tamarkin [1701, p. 59).

The recurrence relation and the Gauss-Jacobi quadrature have some consequences.
Define the associated polynomials {pr(]l)(x) :n=20,1,2,...} by means of the
recurrence formula

1 1 1 1
(92,8 ng )(x) B an+2p£+%(x) * bn+1pr(1 )<X) * an+1p£_%(x)
with pf%)( 0 and pél)(x) = 1, then the decomposition into partial fractions of

X) =
the ratio pé}%(x)/pn(x) is given by



(X) -, '\j,n
X) 1 1 %7 %5

1
a )
p( 4

(1)
(0.2.9) p?‘l(x)
P,

He~13

n . X) J

(1)

which means that the Christoffel numbers are the residues of the ratio 5n_1(x)/ﬁn(x).

Another important rational function is

(x)

p _ n .
(8.8.19) o §

b () 31 % Xjn
with

E)n—l(x' ) 2
_ JLn" _
(0.2.11)  a; - T A Py (X ) > O
n‘“j,n

If the recurrence relation (0.2.4) is known, then one can introduce the Jacob?

matriz (of order n) for the orthogonal polynomials :

bO 2, 0 0
a1 b1 a2 0
0 a, b2 a3
(0.2.12) Jn =
L
0 an-1 bn-l
. -

The eigenvalues of this matrix are equal to the zeros of P’ this follows immediately
by expanding the determinant of Jn - xI along the last row. A normalized eigenvector

for the eigenvalue xj " is given by
A5 (Po(X5 ) Pr(Xg )aee sy (x5 )

where {xj n G jJ=1,...,n} are the Christoffel numbers (0.2.2). The monic orthogonal

polynomials therefore can be written as
(0.2.13)  p (x) = det(xI - J)

Another matrix representation for the orthogonal polynomials is given in terms of
the moments (0.1.1) :



Mo ™ M2 i
my Mo M3 M+l
(0.2.14)  p(x) = e
VYD D
nn-1
-1 ™ M M2n-1
1 X x2 X"
where Dn is the determinant of the Hankel matrix Hn with elements {(Hn)i,j = Miys t

Tsd = 05152565 50}

Ne can obtain some more interesting formulas from the recurrence formula :

Lemma 0.4. (Szego [1751, p. 43). The following formulas always hold for orthogonal
polynomials :

I ko p 1 (x)p (y) = p (x)p, ., 1(¥)
0.2.15 ) . __n n+1 n n n+1
( ) jZO p;(x)p5(y) - B
0 2 kn
(0.2.16) 'ZO () = T [Py (X0 (x) = P (0P, (X)T
J= n+

The first equality is called the Christoffel-Darboux formila, the second formula is
a confluent form of the Christoffel-Darboux formula.

We finally mention the following minimal property :

Lemma 0.5. (Szegs [175], p. 39). Let " be the set of all polynomials with Teading
_— n

term xn, then
(0.2.17)
k
n

and the infimum is attained by the monic orthogonal polynomial ﬁn with spectral

measure u.



