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PREFACE

This book is designed as a one-semester course for students of varying
backgrounds. Those who wish to take this course with a reasonable
chance to succeed should be familiar with elementary algebraic techniques
as provided by a good high school preparation or a one-semester course
customarily called College Algebra. Chapter I introduces as much analytic
geometry as is needed in the sequel. Certain parts, e.g., the section on the
quadratic equation (Sect. 9) can be omitted if this is warranted by the
students’ background. Appendix III is devoted to an introduction to
trigonometry. This Appendix III should be taken up between Chapter 11
and Chapter III, if needed.

This book is intended for students who take the second semester of a
one-year terminal course in mathematics as well as high school teachers
of a specific category who attend refresher courses or summer institutes.
This “specific category’” embraces high school teachers who never had a
formal course in calculus, or had a standard calculus course and either
did not derive much profit from it or quickly forgot most of it, and are
now called upon to teach the calculus in high school.

Lastly, this text is designed for a calculus course as offered by many
high schools as part of an accelerated sequence for students of exceptional
ability.

Once upon a time there was a young lady who enrolled in one of the
universities in the Northwest. Because of her poor high school record in
algebra, she was put into a refresher course in this subject. She was
struggling along, just barely keeping from drowning, until suddenly,
halfway through the course, her features lit up and her eyes sparkled with
astonished enlightenment as she exclaimed: “Why didn’t they tell me
before that those letters stand for numbers ?*

When writing this book, I was thinking of this young lady’s plight and
made an effort to stay in as close contact with numbers as possible. I fre-
quently resorted to experimental methods at the expense of mathematical
rigor to provide for a practical understanding of the limit processes that are
basic for a good comprehension of the calculus.
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vi PREFACE

The calculus is developed here in a fashion as it could have happened—
and to some extent did happen—historically. Physical and geometric
applications are interwoven with the text to provide sufficient motivation
for the introduction of new mathematical concepts.

This treatment is not cluttered up with technical details and tricks.
The reader will not learn to differentiate
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Instead, it is the aim of this book to provide for a thorough understanding
of the limit of a sum process, the limit of the difference quotient, and the
possible practical applications of the calculus.

The sections on the chain rule (differentiation of a function of a function,
Chap. III, Sect. 4) and the inverted chain rule (integration by substitution,
Chap. III, Sect. 6), which deal with some more formal aspects of the
calculus, are entirely independent of the main text and may or may not
be included in the course. A bare minimum of formulas is developed,
but great emphasis is placed on such items as the trapezoidal rule and
Simpson’s rule, which promote a very practical understanding of the
limit process on which the definition of the definite integral is based.

Chapter II deals with integration. The concept of an area is developed
in a semirigorous manner. The main purpose of the introductory sections,
1 and 2, is to make students aware of the fact that area is not something
that “is” but, rather, an artificial concept which has to be defined in a
manner that will meet our intuitive demands. A thorough discussion of
the definite integral precedes the introduction of the derivative in this
book because it was felt that it is easier to convince students of the necessity
for measuring areas, rather than slopes. Another reason is a very practical
one: if the derivative is discussed first and then the indefinite integral is
introduced as the antiderivative and, subsequently, the definite integral is
defined in terms of the indefinite integral, students will hardly pay much
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attention to what might be said later about the definite integral as a limit
of a sum, being already in possession of a very simple routine for evaluating
it. This would seem very unfortunate indeed, as the concept of the limit
of a sum is really the key to most important applications of the definite
integral.

At the end of Chapter II, the integrand is characterized as the rate of
change of the definite integral with a variable upper limit. Thus a con-
tinuous transition from Chapter II to Chapter III is provided at the
expense of the fundamental theorem of the calculus which loses its
character as a theorem under such treatment.

Chapter III deals with the derivative and its geometric and physical
interpretations. The basic theme concerning the discrepancy between
physical reality and its mathematical description, which was already
introduced in Chapter I, is now carried to a crescendo in the sections on
motion and freely falling bodies. The ideas put forth here are those of
logical positivism, presented in a simplified and personalized form.

Chapter 1V finally deals with volumes as far as this is practical without
having to introduce any more essentially new ideas beyond those that
have been already developed in Chapters II and III.

There are certain sections and portions of sections that can be omitted
without seriously jeopardizing the continuity of the development. These
sections are clearly set apart from the main text by solid triangles which
are set at the beginning and the end of each such portion. This does not
mean, of course, that these sections should be omitted. On the contrary,
they ought to be studied if this is feasible under the given circumstances,
because most of these specially designated sections serve to round out the
treatment or open up new avenues of thought that should stimulate the
better students to deeper thinking and inspire them to further studies in
mathematics.

Many problems are listed at the end of every section. The answers to
most of the even-numbered problems are supplied in the back of the book.
Some of these problems complement the text and serve to help the reader
familiarize himself with the new notions and techniques that are introduced.
Some problems supplement the text in exploring certain aspects of the
material in greater depth than the main text. Still other problems lead the
reader away from the text in a pursuit of sidelines which are only loosely
connected with the material that is studied. There are many more supple-
mentary problems supplied at the end of every chapter.

It is my belief that students have to be in possession of facts before they
can make any attempt to fit them into a beautifully constructed deductive
system. It was my aim to present in this book the facts, or some facts
anyway, but I tried to give the reader occasionally a fleeting glimpse of
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the deductive system by leading him through some simple deductive
arguments.

I hope that my book will promote interest in mathematics among
noncommitted students as well as assist teachers in giving stimulating
presentations of the calculus on the elementary level.

Moscow, Idaho HANS SAGAN
August 1962
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CHAPTER 1

FUNCTIONS

1. REPRESENTATION OF FUNCTIONS BY TABLES

The so-called exact sciences engage in a quantitative analysis of nature.
There are basically two types of quantities that play a significant role in
scientific systems: those that change their value, the so-called variables,
and those that do not change their value, the so-called constants. Our
attention in this treatment will be devoted primarily to a study of variables.
In order to reach some understanding of this concept, let us discuss a few
examples.

It is an experimentally established fact that the boiling point of water,
i.e., the temperature at which water starts boiling, depends on the atmos-
pheric pressure under which the water is brought to a boil. Every traveler
knows that it takes 6 minutes to prepare a soft boiled egg in Bozeman,
Montana, while it takes only 2% minutes to accomplish the same result in
Redding, California. The realization of this phenomenon made men en-
vision the pressure cooker which is in our days a gruesome reality that
reduces the great variety of potato dishes to something which is hardly dis-
tinguishable from mashed potatoes. We are not about to introduce the
American menu as our first example of a variable. So, let us return to the
point at which we embarked on this culinary discussion: the boiling point
of water. It can be experimentally established, as we mentioned above,
that the boiling point of water changes with the atmospheric pressure.
Specifically, the entries in the left column of Table 1.1 indicate the different
values of the atmospheric pressure under which the experiment was carried
out and the entries in the right column give the corresponding temperatures
at which boiling occurs.

We recognize in this example two physical quantities as variables, i.e.,
quantities that change their value: theatmospheric pressure and the boiling
temperature of water. We observe at the same time that these two variables
play a clearly distinct role because if we choose freely any pressure we
please, the boiling point of the water is completely determined by the choice
we make. In other words: even though the boiling temperature of water is

1



2 CHAP. I. FUNCTIONS

Table I.1
Water starts boiling at
Under an atmospheric a temperature of degrees
pressure in mm mercury Celsius (centigrades)

9.209 10

17.53 20

31.824 30

55.32 40

92.51 50

149.38 60

233.7 70

355.1 80

525.8 90

760 100

a variable, its value is determined by the value of the variable that represents
the pressure. We express this situation mathematically by stating that the
boiling point of water is a function of the atmospheric pressure. The vari-
able to which we can assign values freely (to some extent) we call the
independent variable (here the atmospheric pressure). The other variable,
the value of which is determined by the value of the independent variable,
we call for obvious reasons the dependent variable (here the boiling tem-
perature).

Table 1.2
For an elevation above ~ The following atmospheric pressure
sealevel in m in mm mercury at 0°C is found
0 760
2947 525.8
6087 355.1
9433 233.7
13012 149.38

Of course, the concept of dependent and independent variable is a rather
relative one. Thus, the atmospheric pressure appears to be a dependent
variable if we venture to measure it at different elevations. Specifically, we
obtain the results in Table 1.2. Here the elevation plays the role of an
independent variable while the atmospheric pressure emerges as the depend-
ent variable: the atmospheric pressure is a function of the elevation.

Combining Tables I.1 and 1.2, we see that we may consider the boiling
point of water as a function of the elevation, as given in Table 1.3, and
eliminate the pressure entirely.
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Table 1.3
Boiling point of
Elevation in m water in °C
0 100
2947 90
6087 80
9433 70
13012 60

Of course, we could go on now to consider the elevation as a function of
the time, supposing we are sitting in a rocket that is shot straight upward.
The application of such an analysis is quite obvious if we get the idea that
we must have a boiled egg 6 minutes after launching time.

Table 1.4
Pressure in mm mercury Volume in cm?®

50 152

100 76

200 38
300 25:3
500 15.2
600 12.7
700 10.8
800 9.5
900 8.4
1000 7.6

Other examples of dependent and independent variables are easily found.
Let us consider a cylinder that contains some gas and is closed tightly by a
piston (see Fig. I.1). Clearly, if we increase the pressure on the piston, then
the volume of the enclosed gas will become smaller, and vice versa.

Using crude experimental methods, we will find a relationship for some
gas as revealed in Table 1.4.

Pressure

Fig. 1.1
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Here the volume of the enclosed gas appears as a function of the pressure
which is applied to the piston. If we are interested in knowing how much
pressure must be applied in order to compress the gas to a given volume,
we have only to interchange the two columns in Table 1.4 and consider the
pressure as a function of the volume. Again, we can see that whether a
variable is dependent or independent depends largely on the point of view.

2. REPRESENTATION OF FUNCTIONS BY GRAPHS

A common means of representing the relation between two variable
quantities, if such a relation exists, is the graph. Let us return to Table I.1
for the purpose of an introductory discussion. This table contains ten
pairs of values, one of which represents a certain atmospheric pressure, the
other one the corresponding boiling temperature of water: (9.209, 10),
(17.53, 20), (31.824, 30), (55.32, 40), (92.51, 50), (149.38, 60), (233.7, 70),
(355.1, 80), (525.8,90) and (760, 100). Our aim is to give a geometric
representation of this relationship.

However, before we can endeavor to present pairs of numbers geometri-
cally, we first have to settle a much simpler problem, namely: how do we
represent a single numerical value geometrically? The answer is simply
given by the ruler with an engraved scale or the thermometer. We consider
a line (see Fig. 1.2) and choose one point on this line quite arbitrarily. We
call this point 0 and let it represent the number 0. Next we choose one
more point which shall lie to the right of 0, but can otherwise be chosen
quite arbitrarily, and call it 1. This point shall represent the number 1.
The distance between the point 0 and the point 1 we call unit distance.
Clearly, the number 2 will now be represented by a point one unit distance
to the right of 1, etc. It is really quite clear how we have to proceed to
locate the points which are supposed to represent all the positive integers.

Negative integers, as suggested by the scale of the thermometer, will be
represented by points to the left of 0. (Historically, the concept of the /ine
of numbers preceded the scale of the thermometer; however, although few
students are acquainted with the line of numbers, it can be assumed that
everybody has seen a thermometer at least once.) Specifically, the repre-
sentative of the number —1 will be a point one unit to the left of 0, the
representative of —2 one unit to the left of —1, etc.

Thus we have attained a geometric interpretation of all positive and
negative integers. How do we now represent fractions? Clearly, the repre-
sentative of } will be a point halfway between 0 and 1, the representative

| !
3 4

-4 -3 =2 -1

N~ —
—
N
wiN—

|
0
Fig. 1.2
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Fig. .3

of 7 will be a point between 2 and 3 such that its distance from 2 is one half
of its distance from 3, and, finally, the point representing *;* will be located
between | and 2 so that its distance from 1 is # of the unit distance. These
few examples clearly indicate how we have to proceed in finding the repre-
sentatives of rational numbers* (fractions).

It is quite easy to construct those points which are supposed to represent
fractions by the following device. Let us again consider the number 3.
In the following argument we refer to Fig. 1.3. We draw a line through the
point representing | at an acute angle with the line of numbers. Then we
proceed to mark 7 points on this line at equal distances, starting with the
point | (equidistant points). We call these points Py, Py, Py, - -, P;. We
join the last point P, and the point representing the number 2 with a straight
line and then draw a line parallel to the line through 2 and P, through the
point P,. This line will intersect the line of numbers in the point which
represents the number 4}, i.e., the point % of a unit to the right of 1. This
can be seen quite easily by considering the two similar triangles (1, 2, P,)
and (1, 4, P,).

The problem of locating points that represent irrational numberst
(numbers which are not fractions) is not so simple. While it is quite easy

to construct the representative of V/2 (see Fig. 1.4), it is not so clear how
and if one can construct the representative of V7 or, to make matters

a s . . s " m

* a is a rational number if, and only if, it can be represented in the form a = —,
where m and n are positive or negative integers. (n == 0). "
t A number b is irrational if, and only if, it is nor possible to write it in the form

m i .. ,
b = — where m, n are positive or negative integers. (n #0).
n



