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PREFACE

It often happens in physics that @ field grows with such rapidity that
it becomes impossible to collect and organize the developments into a
book before they are superseded by newer results. The present volume
is an attempt to fill the need for an introduction to such a field: that
of the axiomatic approach to field theory and its application to proving -

on relations, The basfc papers as well as the more recent advances
. have been included here in an attempt to present a coherent picture of
the development of a field which at first sight seems chaotic. It is hoped
that the reader will be able to find here the fundamental material to
enable him to acquire a sufficiently broad knowledge of this new ap-
proach ‘to elementary particle physics to read the new matenal which
is now appearing in almost every issue of the journals.

It is, moreover, often easier to understand a new theory if one reads
the original papers written when there was considerable confusion as
to which path to follow in arriving at the correct formulation. After the
theory reaches a more advanced stage of development, the literature
tends to become less detailed in the treatment of the foundations and
hence difficult to follow in the development of the physical content even
though the logic becomes more powerful. It is hoped, therefore, that this
volume—apart from any historical value it may have~will serve to illus-
trate the difficulties which exist during the formation of a new physical -
theory, and that it will Pomt up more sharply the problems and com-
plexities involved in the growth of physics.

Field Theory in recent years has tended to follow two mdependent
lines in the approach to Elementary Particle Physics.

One approach has been to treat the strong interactions as, though
pathological, fundamentally akin to the weak interactions. Quantum
Electrodynamics, with its perturbation expansions and renormalization
procedure, has been the model for further developments. The hope of
this approach is that new physical ideas, developing from the mass of
data being delivered by the huge new accelerators with their bubble
chambers and related apparatus, will eriable one to modify the existing
field theories, and thus ultimately lead to the successful description of
elementary particles. However, although Quantum Electrodynamics is
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able to attain a fantastic degree of accuracy in describing experiments
involving weak interactions, the strong interactions have thus far failed
to yield to this type of analysis.

The other, newer approach to the interpretation of the elementary
particles utilizes a few general principles drawn from the experience with
previous field theories and attempts a systematic study of the mathe-
matical implications of these assumptions. The view here is that there
is perhaps already enough experimental data to construct a field theoretic
description if one were clever enough. This is the Abstract Approach
to Field Theory, or Asymptotic Mechanics as it is sometimes called.
Here, one attempts to avoid all the divergencies which arise from split-
ting a Hamiltonian into an unperturbed part plus a perturbation. In
fact, no Hamiltonian is introduced at all. In addition, all fields introduced
are already renormalized, and all particles are “dressed.” No infinities
should arise in this theory. This is a pure S-matrix type of theory, where
one does not consider the details of the interaction at all, but merely the
consequences of certain restrictions on the transformation from initial
to final states.

This volume, contains the original papers which developed this latter
approach. In particular, the axiomatic approaches of Lehmann, Syman-
zik, and Zimmermann, and A. S. Wightman have been included here
since they are considered to be the formulations which are most fruitful.

It is important to keep in mind, however, that as yet no one has been
able to calculate any physical processes with any of these formalisms.
Only general theorems about field theory have been proved and it is
not yet known whether or not these sets of axiomatics are empty. The
principal use of these approaches has been in the proofs of the dispersion
relations, i.e.,, in providing spectral representations and establishing the
analyticity properties of matrix elements of the S-matrix. In this way,
statements can be made about the scattering amplitudes for certain
processes. The articles included in this volume besides developing the
axiomatic formalism provide an excellent introduction to its principle
application, the proofs of the dispersion relations.

The first paper in this volume, by H. Lehmann, introduces the general
methods of proof used in Abstract Field Theory. With the technique
of spectral representations developed here, Lehmann is able to prove
that the propagators of the interacting fields are at least as singular as
those of -the free fields. The only assumptions needed to prove this sur-
prising theorem were, aside from relativistic invariance, the completeness
of the set of positive energy states and the absence of negative energy
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states. This result meant that there is no hope of removing the singu-
larities in the calculation of observable quantities by writing down the
correct interacting fields, and hence, no hope of eliminating the diff-
culties in perturbation expansions. '
" 'The two’papers which follow by Lehmann, Symanzik and Zimmer-
mann comprise-one of the first completely abstract formulations of
field theory. Here one attempts to circumvent all the difficulties involved
in the writing down of intetacting fields by assuming a completely re-
normalized, dressed particle with a complete set of states which form
the elements of a Hilbert space and is described by an ordinary field
operator, A (x). This operator must be Lorentz invariant and must
~ satisfy two important conditions. First is the so-called micro-causality
condition which requires that the commutator, [A(x), A(y)] must
vanish on spacelike surfaces, that is, when (x—y)*>0. This means that
two points cannot affect each other with an interaction which propagates
faster than the speed of light no matter how close the points may be.
This requirement insures that the resulting field theory will be causal

since the field operators which determine the observables of the theory

must themselves be causal.

The second condition introduces the physics into the mathematical

framework. This is the asymptotic condition which, qualitatively, says
that earlier in the infinite past and later in the infinite future, the particles
involved in a scattering process do not interact. That is, at £ = — oo and
t =+ oo the fields, A (z), are free fields. The precise mathematical
formulation of this condition is far from simple, and this problem has
been the basis for extensive discussion in the literature. e

‘These postulates form the foundation for a theory which represents
the first real extension of the S-matrix theory proposed by Heisenberg in
1943, With these axioms it is possible to derive a reduction formula which
enables one to write the S-matrix entirely in terms of vacuum expecta-
tion values of time-ordered products of the field operators (the 7 func-
tions). Furthermore, a relation is found with which one can write
down one of these * functions in terms of all the other v functions of the
theory. Thus, an infinite set of equations which determine completely
the 7 functions is found. If these equations could be solved, a test of
the formalism could be found. Unfortunately, this set of equations re-
mains unsolved at the present time and it is entirely an open question
whether they are merely an idgntity or whether they contain physical
restrictions on the theory.

The paper following, by A. S. Wightman, outlines the “Wightman
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Program in Abstract Field Theory, the most ambmous attempt in
axiomatics to date. In an extremely precise mathematical manner the -
postulates which were outlined above are formulated. The vacuum ex-
pectation values. of products of field operators (the Wightman functions)
are expressed by the powerful apparatus of distribution theory so as-to
avoid the difficulties associated with singular functions. The field oper-
ators, themselves, are expressed by the classifications of representations
of the Lorentz Group. The result proved in this paper is that a local
relativistic field theory is completely characterized by the set of Wxght~
man functions. The equation for the v functions and the expression for
the S-matrix found in the previous papers by Lehmann, Symanzik, and
Zimmermann are clearly a special case of this more general result.

One of the most remarkable theorems in axiomatics is proved in the
next paper, by R. Haag. He shows here that any field related at one
time to a free field by a unitary transformation must be equivalent to
a free field throughout the space-time continuum. This does not preclude
the existence of an S-matrix theory, but forces one to be extremely subtle
in the definitions in this type of theory. The paper by Hall and Wightman
puts much of the work in the previous reference into a ngorous mathe- -
matical framework.

In all the preceding work the bound states of theparhcles have been
neglected. The paper by Zimmermann discusses the modifications neces-
sary for these considerations. :

The next group of papers is concemed with the application of this
abstract formulation to the problem of proving dispersion relations. The
axiomatic method permits one to prove certain spectral representations
of matrix elements of the S-matrix. These representations, called dis-
persion relations, describe, of course, the amplitudes of arbltra.ry transi-
tions in scattering processes. The reduction formula given in the second
Lehmann, Symanzik, and Zimmermann paper can be used to write
essentially these matrix elements in terms of the commutator of two field
operators. This- method transcribes automatically all of the axioms from
the abstract formulations directly into properties of the scattering am-
plitudes. The fact that these commutators vanish outside the light cone
enables one to continue analytically the amplitudes into the complex
plane. This extension is not simple and must be doné in a very subtle
manner. Bremmermahn, Oehme, and Taylor have been able to develop
proofs founded on the theory of many complex variables for dispersion
relations obtained in this way.
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R. Jost and H. Lehmann earlier found a spectral representation for
the special case of equal mass scattering, which represented an important
advance in the method of proof of dispersion relations, A similar repre-
sentation was found for the more general case by F. J. Dyson, thus
permitting the proofs of dispersion relations to be done by more familiar
mathematical methods. The paper following by Lehmann makes use of
the Dyson representation for proving analytic continuation and also gives
a proof of the convergence of the Legendre polynomial expansion of the
imaginary part of the amplitudes when the range of the argument is
unphysical. This. enables one to show that the imaginary parts of the
amplitudes retain their meaning in the extension into the non-physical
region. The three papers mentioned before along with this  paper by
Lehmann constitute an excellent introduction to all essential steps. for
the proofs of dispersion relations. -

Beyond the problem of proving the dispersion relations lies the ques-
tion of how to predict experimental phenomena from them. The method
of extracting this information is based on the presence of singularities
in the scattering amplitudes, since these poles govern the behavior of
the amplitudes in their neighborhood. The search for the location and
classification of these poles is known as polology. _

Perturbation theory has been extremely useful in polology because
poles that have not been derived on a more rigorous basis are suggested
by Feynman diagrams of the scattering process: Asimple pole, for ex-

. ample, will occur in a scattering amplitude when the conservation laws
permit a single particle intermediate state. A branch point occurs at the
point where production amplitudes compete with scattering amplitudes
and real particles can occur in the intermedate states, The case of scatter-
ing with fixed momentum transfer has been exhaustively studied, but
only recently has the more general case become amenable to any kind
of analysis and this, due to the spectacular success of a conjecture by
S. Mandelstam. The representation for arbitrary energy-momentum
transfer which Mandelstam wrote down enables one to extend both
complex variables simultaneously into the complex plane. The calcula-
tions based on the Mandelstam representation, done with the perturba-
tion series approach, enable one to write a complete dynamical descrip-
tion of strong interaction scattering.

The paper by R. J. Eden discusses the problem of finding a ‘proof of
the Mandelstam representation. Eden has recently been investigating the
proof of the conjecture within the framework of perturbation theory and
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encountered certain difficulties in the sixth-order diagram. In any case,
the general proof of this representation is extremely difficult and remains
to be given. -

As an illustration-of the seattering theorems that may be proved usmg
dispersion relations, the paper by I. Pomeranchuk contains the proof
oftheranarhbletheomthatmthehlgh energy limit if the o+ and
7~ cross sections appmach a constant, they will become equal..

This volume concludes with a rather long review article by S. Gasioro-
wicz in which the methods of proof and application of the dispersion
relations is treated at length. This final article, rounding out the entire
group, provides & summary and presents the outlook for the future of
this new branch of field theory.

Tt is not to be expected, of course, that all of the important work in
Abstract Field Theory should be included here. This is only a selection
of those papers which seem to contain the most fruitful approaches or
results, a selection inevitably reflecting the personal bias of the editor.
The method of selection employed, however, and the emphasis through-
" out the volume, has been on those papers which would present a survey
of the fundamental physical ideas and mathematical techniques ade-
quate to permit the reader to become conversant with this new and
rapidly changing field of physics.

I wish to express my appreciation to James Siagas and Paula Siagas
for their translation of the papers from the German.

April, 1961 . . Lews KLEIN
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- PROPERTIES OF PROPAGATION FUNCTIONS AND
RENORMALIZATION CONSTANTS OF QUANTIZED FIELDS

H. Lehmaun :
Max Planck Ins&tute fiir Physik, Gottmen

Summary. It is attemptod to derive some general properties
of the propagation functions for coupled flelds (A¥, SF) with-

" out the use of power series expansions, and to show their
connection with the renormalization constants for field oper-

~ ators and masses. Assuming that the coupled functions exist,
it appears possible to discuss their behavior near the light
cone (or for large momenta) and to obtain some information
about the singularities of these functions when continued ana-
lytically. Attempts at the treatment of renormalizable the-
ories are criticized on the basis of these resuits. Formulas -
are given for the mentioned renormalization constants which
contain inequalities for the constants Z, and Zy. Finally, ‘it
is pointed out that the methods introduced are advantageous
for computatlons ‘by means of power series expansions. As an
example. the lowest order correction to the SF-function in -
pseudoscalar meson theory is calculated without the appear-
ance of infinite terms during the calculation.

INTRODUCTION

In reoent work which treats the interaction problem in the utrnctura of
qunntum field theory, the values AF and S¥ ‘designated as propagation func—
tions (or as Greens functions) play a significant role. These values should
in prineciple be calculated from the fundamental equations of the theory. As
yet however, only pertubation theoretical approximatmns are known, which
probably with the exception ef Quantum Electrodyhamics are completely insuf-
ficient. It appears therefore suitable to obtain statements about these functions
without assuming the possibility of their appucation with a coupling parameter
or-sé using them.

Thé main results are therefore the derivation of formulas. which make
possible the representation of thgse functions as the superposition of propaga-
tion funct;ens of free fields with' different masges and ooncluslou reaulﬂng
from abd ve. These concern especially the behavior of AF(x) and SF(x) func-
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tions for small values of x2, for example the behavlor of their Fourier trans-
form for large momentum.

In the second part it will be shown that the constants appearing by the re-
normalization of field opérators and masses can be expressed in a simple way
through the values introduced for representing the propagation functions. One

"obtains in this way equations that are independent of pertubatlon computations
and to a few expressions about these constants.

In contrast to other representations, in this fashion the use of incoming fields
is avoided. In conclusion for illustration of methods used we will take up an
analys{s of pertubation theory. Two things should be pointed out: One, so far,
it is not known if the basic equations of some quantized field theories (with the
exception of free fields) possess solutions. We do not pursue this question but
we strive for expressions of the propagation functions under the assumption
that these exist. The other point is that to derive general results it is indis-
pensable to operate with functions that are not explicitly kiown. Some of the
considered mathematical operations (especially interchange of order of inte-
gration) have therefore formal character; their correctness could be shown
only through performance of detailed calculations.

1. PROPERTIES OF PROPAGATION FUNCTIONS

a) Scalar nelds

In order to mveatignts the properties of propagation functions it appears use-
ful to introduce other functions besides A¥ all of which can be defined as Vacuum
Expectation values of the Heisenberg operators. The situation here is very simi-
lar as in a free field, where in a customary way ons can derive A as well as AN
functions and from them easily change into Ay function.

Next, a Hermitian scalar field A(x) will be treated, that can be coupled with
itself in a non-linear way or may be in a position of interacting with other (Bose
or Fermion) fields. No special assumptions shall be made about the mauner of

~coupling, it ean be loca) of non-local. It is assymed that the treated theory is
Lorentz mvarlang. Aga reeult all energy—momentum four vectors Py should
exist with the- prbperty

a‘“” =i[4),B,); [P,,P,]-; 0. ‘ (1)

Furthermore it is assumed that it is possible to define a vacuum state: that
is the energy operatnr should possess a smallest eigenvalue which we normalize
to zero. The knowledge of commutation relations for fleld operators is almost

not necessary. Equation (1) is sufficient.

Now we want t6 examine the vacuum expectation values of quadratic field
magnitudes. Ag the orthogonal system in Hilbert space we shall use in this
case, the eigenvectors of the P, operators, which should form a complete set.

2



PROPERTIES OF PROPAGATION FUNCTIONS

It follows then
P& =kD, (ke > 0). (2)

The eigenvalues k" can naturally be degenerate.
In complete analogy to free fields we have the following:

(Pyy 4(2)4(2")By) = (A(2)A(T))e = $4H (@ — z’)
(A@)A@) = i4V(g— 2') 7
qAE, A@Ds =il e —2) = — Ne(z— 7) T (¢ — )
HA), Al ) = AV'(g — )

(TA@AE) = YAia—2).

From these deﬂning equations of vacuum functions it follows that the same
relations exist among them as in a free field. For example one can express all
functions through A™Y. For the propagation functions one can state: [ &(xq) =
(L +xo/1 2510} '

Bi4e) = 24 B4 23— 0 a.w*"t-)] =4V — %L, L@

- The famctions A®Y or A contain only positive or negative frequencies
(see below) so shat A% can be interpreted as a causal function in the same
mamner as in a free field. To oblainanexphmtionofthe structare ofthon
funections we consider the A®Y finction.

(“'MM.\ = g (‘o; “')‘i)“h “(").o)

(3)

)

= Sdutsluin) = 3 aual explibz— )}
Here we set (#o, Al = Ag(x) = ag = '
The poulbility of this conversion follows in the known way !rbm
= o (Al 2160) = Syt
~ The summation in (5) 1a to extend over all states.
We mtrodum now a function
ol— k) = (21)* T aual . ‘ (8)
- Here we gum over all states that belong to eigenvalue k. '
R bllowu now from eqmtions (3)y, (5) and (8)? - _
A )= f Odel- 1 exp[ibe— % . ™

By this the summation over. the eigenvalues is replmed by an mtenadon .
with the condition that for all eigenvalnea. ke = 0 is true.
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We place in (T)
ol— i) = fe(wmi- + e,
and obtgtp - | . :
A0 (z) = f Aw»(?% *%)p() d(x*) | (®)

Amlopul formula apply for all vacuum functions (in the following denoted
as A' ”) sinoe they can be formed in a linear way from A according to (3).

Az) = f 43 x')e(";) daie") . | . ®
*

The primed functions allow themselves to be represented through a mass
density by means of a linear transformation of the corresponding free functions?

We have in the derivation of formula (9) already used that p is only dependent
on argument k}, and for &} > 0 is identically zero. Both properties follow
from the Lorents inmhnoe. Otherwise the vacuum fupctions (especially the
commutation function A’) will not be invariast quantities. Furthermore it fol-
lows from the defining equation (6) that pis a poaitive function. It is true

e >0. ' (10) -

')For the special case of a free field of mass m, it is naturally p(#?) = 5(x? —
ml).

In gananl the discrete eigenvalues of the operators P}, will give rise to &
functions in p(x?) inasmuch as the matrix element of the operatora A(x) be-
tween the vacuum and the corresponding state (i.e. on the basis of selection
rules) do not disappear. The discrete eigenvalues of P}, comply with the stable
particles that were dsveloped from ‘the theory. From a physically meaningful
theory one would expect that it at léast describes a stable particle, namely p

will contain at least one § function. If no other stable particles appear, then
it is true

o) = S0 —m*) + o(x*); o(1) =0 for © < < (2m)%
where o (k%) is free of ¢ functions.

This structure describes the ciroumstance that in one such case the operator
P' possesses g discrete eigenvalue, to which a continuum fixes {tself, when at
least two particles are present.! From equation (9) and from the just given
property of function p we can draw several conclusions. First of all it is clear

that (9) is true also in Fourier space. p is therefore up to a certain factor
equal to the transform of A®" functions. -



PROPERTIES OF PROPAGATION FUNCTIONS

ol— ) = o 4 (RY). (11)
Furthermore it is true for example:

Ap(k®) == — 3i B oo—ie
H

(12)

With the given relations we can now disregard the behavior of A'Y finc-
tions in the neighborhood of the light cone, or for their Fourier transforms
having large values of k? because the behavior of “free’’ functions is known
and does not depend on mass. So one obtains for example:

a'@) = 411 f {8(=*) + ..}o(x*)d (*) == & &%) f pl)d(xt) + ... (13)
[] [ ]
and in momentum space
— 1) d (s N
Ak = f Lf:l_'_(”{,—)—— f elx*)d(»®) +- .. (14)
[]

if the separated integrals converge.
The primed functions ha:e either the same behavior as the corresponding

free functions or in case f p(x*)d(x?) is not convergent—they are more strongly

singular at the light cone (1{ they fall off more woakly for large momenta) than
the free functions.
But it is not possible that the prm functions are less singuhr than the

free functions because, from (10), f pd{cd) > 0. .
It will be shown that the question of convergence of f o) for theories

capable of being renormalized is the same as the question whether the renor-
malization constants for the fleld operators are finite.

That the function AF should exist at all, it is, according to (12). clearly
necessary, that the integral

o) .
JER a,

should converge at the upper limit. A further conclusion concerns the proper-
ties of the function AF(k? by analytical continuation in k;‘ plane.
It is for real k?

AR = Ay — i34 (k).
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Furthermore it is true

4V a—) ’ "o a8
24" (k1) = . f-——k,—-* ; Aw(h') nr S ). | (15)
The functions A/Y@?) and 2A’(k? are conjugates in the sense of Hilbert
transformation.’ From this (under certain assumptions) the function AF (k‘)
can be analytically continued and is regular in the lower half plane. This resuilt
is gratifying because of the behavior of the pole in this region could lead to new
(nonrenormalizable) divergence (i.e. of S matrix elements).®
_Our analysis shows that by using the exact AF function,-such difficulties
should not arise. This is true also for the similarly discussed S functions.
We want now to draw a conclusion for the commutation relations at equal
times and use for this purpose the presentation (9) for the A’ function.

A'(x) =fA(z; x*)p(xt)d (x?) .
L[]
1t follows directly:

l {[Alm 1), A, )] D0 = {[A(x, 1), (=, )] De = 0,

- - (16)
l LA, 1), Al 8] Yo = — ib(x— =) [ g) Aot .
L ]

The commutation relations at equal times between operators A and A for the
vacuum state can be therefore derived (up to a factor) from equation (1).

The operators commute for spacelike points, and the Dirac & function nec-
essarily occurs. This is true, according to their derivation also for theories
with non-local interactions.” The same state of affairs w111 occur for spinor
fields.

We remark for equation (16) that accord;ng to the usual assumption for the
commutation relation [A(x), A(x")] = ~i6(x — X'), the following will be true:

fpd(xz) =1.

The vacuum functions that were here considered should however relate to
renormalized operators, to which, as is known, one must transform.

b) Spinor fields

We now consider a spinor field under the same assumptions as were made
for the already treated scalar field. Besides this we require the invariance of
the theory toward the particle-antiparticle conjugation. The procedure and the
results are accordingly similar as in a scalar field.

Again we begin with the definition of vacuum functions:
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(D)@ e = — i85 @), (Fple W2 = — 85" (@ —2)
o), Pl Dy == 8 4le—2);  {wla), §la Do = — 85 @) (17)
- (TPLDNE e = — Y B ple— ).
From the invariance about particle-antiparticle conjugation it follows:;
P )Pul@De = <T@ )puf2)de = — C5/w (@ )1Ps@)e 00 -
Therefore: |
85 (@ — ') = — C)8 3" (@ —x)C,, . . (1Ta)
Thus one can express all functions with S®¥, Now there is:

(P (@)Pa)De = z (B, P(DDY B, Fple )Y = 2 ad expliklz—a)).  (18)

Next we should aga.ln perform the summation over those states that belong
to eigenvalue k; . Accordingly we introduce two functions p; and p,.

(7ugk— V=12 8, ) or(— #) + 8, p00(— k%) = — (27)* T o, 7, - (19)

Because of the relativistic invariance of the theory the expression (19) can de-
pend on the y-matrices only in the specified way. The division of the y-free
portion into p; and p, is of course arbitrary.

Exactly as in the scalar case it follows now

B (g) = — (2:‘7 f (kY (iyk— V—F)g,(—k*) + gy(— k*)} exp[ikz] dk=

3 S (20)
= f {8(z; x)pu(x%) + A(x; x)alx)} dix?) . ,
A corresponding representation is true according to (17) and (17&) for all
primed functions:
80 (x) = f {80(z; %)ou(%®) + 4 m; x*)os(x*)} d(x?) . : (21)

[ ]
For py and p, it follows directly from (19) that both functions are real. Fur-
thermore we want to prove the following inequalities.

oa(x%) > 0; 0 < gy(x?) < 2mpy(x*) - . - (22)

We mult!ply in (19) on the left with (iyk + o), on the right with (iyk + a)y, and
we obtain (fo = (vk + a)c.k) .

Zlf.f.. ==l-[(n—-l)'e; +300]>0; (e =—W).
Thls mequality is true for arbitrary real a. Booause k¢ > 0 we have:



