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Series Preface

Mechanical engineering, an engineering discipline forged and shaped by the
needs of the industrial revolution, is once again asked to do its substantial share
in the call for industrial renewal. The general call is urgent as we face profound
issues of productivity and competitiveness that require engineering solutions.
The Mechanical Engineering Series features graduate texts and research mono-
graphs intended to address the need for information in contemporary areas of
mechanical engineering.

The series is conceived as a comprehensive one that covers a broad range of
concentrations important to mechanical engineering graduate education and re-
search. We are fortunate to have a distinguished roster of consulting editors on
the advisory board, each an expert in one of the areas of concentration. The
names of the consulting editors are listed on the facing page of this volume. The
areas of concentration are applied mechanics, biomechanics, computational me-
chanics, dynamic systems and control, energetics, mechanics of materials, proc-
essing, production systems, thermal science, and tribology.

Professor Finnie, the consulting editor for mechanics of materials, and I are
pleased to present Introduction to Contact Mechanics by Anthony C. Fischer-
Cripps.

Austin, Texas Frederick F. Ling



Preface

This book deals with the mechanics of solid bodies in contact, a subject inti-
mately connected with such topics as fracture, hardness, and elasticity. Theoreti-
cal work is most commonly supported by the results of indentation experiments
under controlled conditions. In recent years, the indentation test has become a
popular method of determining mechanical properties of both brittle and ductile
materials, and particularly thin film systems.

The book begins with an introduction to the mechanical properties of materi-
als, general fracture mechanics, and the fracture of brittle solids. This is fol-
lowed by a detailed description of indentation stress fields for both elastic and
elastic-plastic contact. The discussion then turns to the formation of Hertzian
cone cracks in brittle materials, subsurface damage in ductile materials, and the
meaning of hardness. The book concludes with an overview of practical meth-
ods of indentation testing.

My intention is for this book to make contact mechanics accessible to those
entering the field for the first time. Experienced researchers may also benefit
from the review of the most commonly used formulas and theoretical treatments
of the past century.

In writing this book, I have been assisied and encouraged by many col-
leagues, friends, and family. I am most indebted to A. Bendeli, R.W. Cheary,
R.E. Collins, R. Dukino, 1.S. Field, A.K. Jimting, B.R. Lawn, C.A. Rubin, and
M.V. Swain. Finally, I thank Dr. Thomas von Foerster and the production team
at Springer-Verlag New York, Inc., for their very professional and helpful ap-
proach to the whole publication process.

Lindfield, Australia Anthony C. Fischer-Cripps
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History

It may surprise those who venture into the field of “contact mechanics” that the
first paper on the subject was written by Heinrich Hertz. At first glance, the na-
ture of the contact between two elastic bodies has nothing whatsoever to do with
electricity, but Hertz recognized that the mathematics was the same and so
founded the field, which has retained a small but loyal following during the past
one hundred years.

Hertz wanted to be an engineer. In 1877, at age 20, he traveled to Munich to
further his studies in engineering, but when he got there, doubts began to occupy
his thoughts. Although “there are a great many sound practical reasons in favor
of becoming an engineer” he wrote to his parents, “I still feel that this would
involve a sense of failure and disloyalty to myself.” While studying engineering
at home in Hamburg, Hertz had become interested in natural science and was
wondering whether engineering, with “surveying, building construction,
builder’s materials and the like,” was really his lifelong ambition. Hertz was
really more interested in mathematics, mechanics, and physics. Guided by his
parents’ advice, he chose the physics course and found himself in Berlin a year
later to study under Hermann von Helmholtz and Gustav Kirchhoff.

In October 1878, Hertz began attending Kirchhoff’s lectures and observed
on the notice board an advertisement for a prize for solving a problem involving
electricity. Hertz asked Helmholtz for permission to research the matter and was
assigned a room in which to carry out experiments. Hertz wrote: “every morning
I hear an interesting lecture, and then go to the laboratory, where I remain, bar-
ring a short interval, until four o’clock. After that, I work in the library or in my
rooms.” Hertz wrote his first paper, “Experiments to determine an upper limit to
the kinetic energy of an electric current,” and won the prize.

Next, Hertz worked on “The distribution of electricity over the surface of
moving conductors,” which would become his doctoral thesis. This work im-
pressed Helmholtz so much that Hertz was awarded “Acuminis et doctrine
specimen laudabile” with an added “magna cum laude.” In 1880, Hertz became
an assistant to Helmholtz—in modern-day language, he would be said to have
obtained a three-year “post-doc” position.

On becoming Helmholtz’s assistant, Hertz immediately became interested in
the phenomenon of Newton’s rings—a subject of considerable discussion at the
time in Berlin. It occurred to Hertz that, although much was known about the
optical phenomena when two lenses were placed in contact, not much was
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known about the deflection of the lenses at the point of contact. Hertz was par-
ticularly concerned with the nature of the lgcalized deformation and the distri-
bution of pressure between the two contacting surfaces. He sought to assign a
shape to the surface of contact that satisfied certain boundary conditions worth
repeating here:

1. The displacements and stresses must satisfy the differential equations of
equilibrium for elastic bodies, and the stresses must vanish at a great dis-
tance from the contact surface—that is, the stresses are localized.

2. The bodies are in frictionless contact.

3. At the surface of the bodies, the normal pressure is zero outside and equal
and opposite inside the circle of contact.

4. The distance between the surfaces of the two bodies is zero inside and
greater than zero outside the circle of contact.

5. The integral of the pressure distribution within the circle of contact with
respect to the area of the circle of contact gives the force acting between
the two bodies.

Hertz generalized his analysis by attributing a quadratic function to represent
the profile of the two opposing surfaces and gave particular attention to the case
of contacting spheres. Condition 4 above, taken together with the quadric sur-
faces of the two bodies, defines the form of the contacting surface. Condition 4
notwithstanding, the two contacting bodies are to be considered elastic, semi-
infinite, half-spaces. Subsequent elastic analysis is generally based on an appro-
priate distribution of normal pressure on a semi-infinite half-space. By analogy
with the theory of electric potential, Hertz deduced that an ellipsoidal distribu-
tion of pressure would satisfy the boundary conditions of the problem and found
that, for the case of a sphere, the required distribution of normal pressure o, is:

L N2
GZ :—-:i l—r— . r<a
Pm 2 a2

This distribution of pressure reaches a maximum (1.5 times the mean contact
pressure p, ) at the center of contact and falls to zero at the edge of the circle of
contact (r = a). Hertz did not calculate the magnitudes of the stresses at points
throughout the interior but offered a suggestion as to their character by interpo-
lating between those he calculated on the surface and along the axis of symme-
try. The full contact stress field appears to have been first calculated in detail by
Huber in 1904 and again later by Fuchs in 1913, and by Moreton and Close in
1922. More recently, the integral transform method of Sneddon has been applied
to axis-symmetric distributions of normal pressures, which correspond to a vari-
ety of indenter geometries. In brittle solids, the most important stress is not the
normal pressure but the radial tensile stress on the specimen surface, which
reaches a maximum value at the edge of the circle of contact. This is the stress
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that is responsible for the formation of the conical cracks that are familiar to all
who have had a stone impact on the windshield of their car. These cracks are
called “Hertzian cone cracks.”

Hertz published his work under the title “On the contact of elastic solids,”
and it gained him immediate notoriety in technical circles. This community in-
terest led Hertz into a further investigation of the meaning of hardness, a field in
which he found that “scientific men have as clear, i.e. as vague, a conception as
the man in the street.” It was appreciated very early on that hardness indicated a
resistance to penetration or permanent deformation. Early methods of measuring
hardness, such as the scratch method, although convenient and simple, were
found to involve too many variables to provide the means for a scientific defini-
tion of this property. Hertz postulated that an absolute value for hardness was
the least value of pressure beneath a spherical indenter necessary to produce a
permanent set at the center of the area of contact. Hardness measurements em-
bodying Hertz’s proposal formed the basis of the Brinell test (1900), Shore scle-
roscope (1904), Rockwell test (1920), Vickers hardness test (1924), and finally
the Knoop hardness test (1934).

In addition to being involved in this important practical matter, Hertz also
took up researches on evaporation and humidity in the air. After describing his
theory and experiments in a long letter to his parents, he concluded with “this
has become quite a long lecture and the postage of the letter will ruin me; but
what wouldn’t a man do to keep his dear parents and brothers and sister from
complete desiccation?”

Although Hertz spent an increasing amount of his time on electrical experi-
ments and high voltage discharges, he remained as interested as ever in various
side issues, one of which concerned the flotation of ice on water. He observed
that a disk floating on water may sink, but if a weight is placed on the disk, it
may float. This paradoxical result is explained by the weight causing the disk to
bend and form a “boat,” the displacement of which supports both the disk and
the weight. Hertz published “On the equilibrium of floating elastic plates” and
then moved more or less into full-time study of Maxwellian electromagnetics
but not without a few side excursions into hydrodynamics.

Hertz’s interest and accomplishments in this area, as a young man in his
twenties, are a continuing source of inspiration to present-day practitioners. Ad-
vances in mathematics and computational technology now allow us to plot full
details of indentation stress fields for both elastic and elastic-plastic contact.
Despite this technology, the science of hardness is still as vague as ever. Is hard-
ness a material property? Hertz thought so, and many still do. However, many
recognize that the hardness one measures often depends on how you measure i,
and the area remains as open as ever to scientific investigation.
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