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Preface

The papers in this volume are an outgrowth of invited talks at a
workshop entitled COMPUTER ALGEBRA AND DIFFERENTIAL EQUA-
TIONS (CADE-90) held at the Mathematical Sciences Institute at
Cornell University from May 6 to May 9, 1990. Approximately 50
people attended from Europe, North America and the Soviet Union.

This is the second in what we hope will be a biennial series of
workshops devoted to this topic. The first such workshop was held
in Grenoble from May 24 to May 27 1988 and papers from that con-
ference were collected in a volume entitled “Computer Algebra and
Differential Equations”, E. Tournier, ed., Academic Press, 1989. The
aim of these workshops was twofold: to allow computer algebra users
to learn about recent theoretical developments concerning differential
equations and to make researchers in theoretical areas aware of ques-
tions arising in the design of computer algebra systems.

We would like to thank the Mathematical Sciences Institute for its
financial support of this workshop. We would also like to thank the
staff of this institute for their untiring assistance.

Michael F. SINGER



En Memoire de Jean Martinet

Lors du premier “Workshop” sur le calcul formel et les équations
différentielles “CADI 88” I'un des cours avait été fait par Jean Mar-
tinet. Tout le monde se souvient de son enthousiasme communicatif:
il savait rendre clairs et vivants les concepts les plus délicats. Jusque
tard dans la soirée il écoutait les questions de tous, revenant sur les
legons de la journée avec son inépuisable gentillesse, sachant se met-
tre a ’écoute de chacun quelle que soit sa spécialité ou sa forma-
tion. Depuis CADE 88 les choses avaient beaucoup évolué et de notre
c6té nous avions pas mal progressé dans notre “Théorie de Cauchy
sauvage”. Jean aurait beaucoup aimé participer a CADE 90 et dis-
cuter de tout cela. Hélas la maladie I’en a empéché. Cette maladie
devait 'emporter le 3 juillet 1990. Je suis certain que les participants
de CADE 88 se souviendront de Jean, de son regard clair et de ses
¢merveillements d’enfant devant les beautés des mathématiques. Nous
aurions tellement aimé I’avoir avec nous dans les prochaines rencon-
tres...

Jean-Pierre RAMIS
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Internal Symmetries of Differential Equations

Peter J. Olver®

School of Mathematics
University of Minnesota
Minneapolis, MN

USA 55455

Abstract

A new Bicklund Theorem for internal symmetries of systems
of differential equations is discussed. Every internal symmetry of
any “reasonable” system of differential equations comes from a first
order generalized symmetry and, conversely, every first order
generalized symmetry satisfying certain explicit contact conditions
determines an internal symmetry. Applications to a remarkable
differential equation due to Hilbert and Cartan whose internal

symmetry group is the exceptional simple Lie group G, are given.

In this paper I will survey some very recent work done in
collaboration with Ian Anderson, of Utah State University, and Niky
Kamran, of McGill University. A preprint containing detailed proofs and
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2 Internal Symmetries of Differential Equations

many more examples is available, [1]. The work had its genesis in a
series of lectures on the variational bicomplex given by Ian Anderson
while visiting the University of North Carolina at Chapel Hill. Robert
Bryant, who was in the audience, asked Ian to compute the symmetry
group of the innocent looking underdetermined ordinary differential
equation u’ = (v")%. Robert knew well the history of this equation,
which we have decided to call the Hilbert-Cartan equation; in particular,
Elie Cartan had proved that the “symmetry group” of this equation is a
realization of the non-compact real form of the exceptional simple Lie
group G,! Robert was suitably impressed when Ian came back with a
fourteen dimensional symmetry algebra for the equation. There matters
rested until, during a Conference on Symbolic Manipulation hosted by the
Institute for Mathematics and Its Applications, Robby Gardner asked Fritz
Schwarz to answer the same question using his fancy computer algebra
package for computing symmetry groups in SCRATCHPAD. Fritz only
found a six dimensional symmetry group. After Ian sent the results of his
earlier (hand!) computations, we realized that the discrepancy was due to
the fact that Ian had computed the first order generalized symmetries of
the equation, whereas Fritz’ program was designed to compute classical
point symmetries; this is why he failed to detect the eight remaining vector
fields. However, upon reflection, it occurred to us that much more was at
stake than the difference between point symmetries and generalized
symmetries. Cartan was not aware of the concept of a generalized
symmetry, and all his symmetries were realized as geometrical
transformations of some finite-dimensional space, which the generalized
symmetries are not. Contact transformations fit into Cartan’s framework,
but these were not the objects Cartan had computed for this particular
equation since, according to Bidcklund’s Theorem, there are no contact

transformations (beyond prolonged point transformations) if the number
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of dependent variables is greater than one. What Cartan had computed
were what we will call “internal symmetries”, which are transformations
which preserve the contact ideal only when restricted to the equation
submanifold. (These are also known as “dynamical symmetries” in the
mathematical physics literature, and have also received mention in the
rather abstruse work of Vinogradov and his collaborators, cf. [9].) The
restrictions of Bécklund’s Theorem no longer apply, and there are internal
symmetries which depend explicitly on higher order derivatives. Thus, a
new question arose: for the Hilbert-Cartan equation, why did Ian’s
computed Lie algebra of generalized symmetries coincide with Cartan's
Lie algebra of internal symmetries? Answering this question was the

motivation for our work.

The main results of our investigations can now be summarized by
the following, all of which hold for any “reasonable” = “nondegenerate”
(see below) system of differential equations. 1. It is easy to see that
every external symmetry of a system of differential equations gives rise to
an internal symmetry by restricting to the equation manifold. Indeed, in
many cases, including normal systems of partial (not ordinary) differential
equations of order at least two, all internal symmetries arise this way. 2.
Every internal symmetry comes from a first order generalized symmetry.
This is essentially a generalization of Bicklund’s Theorem for internal
symmetries of differential equations. (In particular, contact trans-
formations are “internal symmetries” of the entire jet bundle.)
3. Every first order generalized symmetry which satisfies additional
explicit contact conditions gives an internal symmetry. A detailed analysis
of the contact conditions leads to results on the existence of genuine

internal symmetries.



4 Internal Symmetries of Differential Equations

In order to keep the exposition as brief as possible, I will assume
that the reader is reasonably familiar with the standard theory of symmetry
groups of differential equations as presented, for instance, in my book,
[10]. We will work with local coordinates throughout, although all of
these results have analogous, more general, statements for arbitrary fiber
bundles over smooth manifolds. Consider a system of differential

equations

R: A (x, u("))=0, KkK=1,..r1, (D)

in p independent variables x = (xl,...,xp), and q dependent variables
= (ul,. .,u?). The derivatives of the dependent variables are denoted by
u}l = aJu“/axJ, where J = (jl, e Ji)s 1 £, €p, 1s a symmetric multi-
index, of order k = #J. We let u™ denote the collection of all such
derivatives of orders k <n, which provide coordinates on the associated
jet space J". We will assume that the system (1) satisfies the
nondegeneracy conditions of being both maximal rank and locally
solvable, cf. [10; §2.6], and can identify it with the corresponding
implicitly defined submanifold R < J". (These nondegeneracy
conditions are quite mild and are satisfied by virtually every system of
differential equations arising in applications.)

In general, by a symmetry of the system of differential equations
(1) we mean a transformation which maps solutions to solutions. The
most basic type of symmetry is a point transformation, meaning a local
diffeomeorphism of the space of independent and dependent variables:

D: (x,u) —— X 10).

Such transformations act on solutions u = f(x) by pointwise
transforming their graphs. Let G denote a local group of point
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transformations. We will always assume that our transformation group
G is connected, thereby consciously omitting discrete symmetry groups,
which, while also of great interest for differential equations, are
unfortunately not amenable to Lie’s techniques. Connectivity implies that
it is sufficient to work with the associated infinitesimal generators, which,
in the case of groups of point transformations, form a Lie algebra of
vector fields of the form

p

\ Z g(xu)——+ Z(pa(xu) 2

i=1

on the space of independent and dependent variables. The group
transformations in G are recovered from the infinitesimal generators by
the usual process of exponentiation.

Since the transformations in G act on functions u = f(x), they
also act on their derivatives, and so induce so-called prolonged
transformations

o (x,u™) —— &, 1),

which is defined on an appropriate open subset of J". The explicit
formula for the prolonged group transformations is very complicated;
however the corresponding prolonged infinitesimal generators have a
rather simple “prolongation formula”. Explicitly, the n" prolongation of
the vector field (2), which is the infinitesimal generator of its prolonged
action of the associated one-parameter group, is the vector field

3)

M'c
M.o

g2y
SPx



6 Internal Symmetries of Differential Equations

on J". The coefficients (p? are determined recursively via the well-

known formula

P
k
0% = Dyof — Y D ufy. @
k=1

Here D; denotes the total derivative with respect to x'.

Theorem 1.  Assume that the system of partial differential
equations (1) is nondegenerate. Then the vector field v in (2) will
generate a one-parameter symmetry group of the system (1) if and only if

the classical infinitesimal symmetry criterion

pr(") v(A) =0, v=1,..,1, whenever A=0. 5)
holds.

The “determining equations” (5) form a large over-determined
linear system of partial differential equations for the coefficients E,i, Oy
of v, and can, in practice, be explicitly solved to determine the complete
(connected) symmetry group of the system (1). There are now a wide
variety of computer algebra packages available which will automate most
of the routine steps in the calculation of the symmetry group of a given
system of partial differential equations. See [5], [8], [12] for examples in
MACSYMA, REDUCE and SCRATCHPAD. Reference [5] gives a good
survey of the different packages available at present, and a discussion of
their strengths and weaknesses. (Conspicuously lacking are packages in
MAPLE or MATHEMATICA.) More recent approaches based on the
application of Grobner basis techniques to the theory of overdetermined

system of partial differential equations are also implemented, cf. [11].



P.J. Olver 7

The theory of point symmetries of differential equations is
classical, and, in more or less the same form, dates back to the original
work of Sophus Lie. After this theory is well understood, a number of
possible generalizations come to mind. In one direction, we define a
generalized vector field by allowing the coefficients of the original vector
field (2) to also depend on derivatives of u:

v = 21 Eix, u(k))— " z e u“‘))auiOl . (6)

The condition that v be a generalized symmetry of the system of
differential equations (1) is the same as before, (5), although now one
must also take into account the derivatives (prolongations) of the system:

prO R DA U™ =0, x=1,.,r, #J<k, @

with Dy = Djl Dj[ denoting a total derivative of order [ =#J. Every

generalized symmetry is equivalent to one in evolutionary form

Z Quxu®) —% 2 ®)

where the g-tuple Q=(Q1,...,Qq), known as the characteristic of v, is
given by

P
: a
Qulx, u®) = g0, u®) = Y gy, u“‘))%‘;—i, a=1.,q. ©)

i=1

Replacing the generalized vector field v by its evolutionary form Vo

leads to a simpler set of determining equations in that they only involve
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the q unknown functions Qg rather than the p+ q unknown
coefficients éi, ¢y of v. (This technique even works for point
symmetries, where the associated characteristic depends linearly on first
order derivatives.) An evolutionary vector field v is a trivial symmetry
of the system (1) if the characteristic Q(x,u(“)) vanishes on all solutions.
Two generalized symmetries v and w are equivalent if their respective
evolutionary forms differ by a trivial evolutionary symmetry.

A k% order generalized vector field is will not usually prolong to
a well-defined vector field on any jet bundle J" since its nth
prolongation will involve derivatives of orders up to k + n. Beyond
point transformations, the only exceptions to this are the infinitesimal
contact transformations, which correspond to first order generalized
symmetries in the case of just one dependent variable. In general, recall
that a contact transformation is a (locally defined) map on J" which
preserves the contact ideal [ ™ In local coordinates, 1™ is generated
by the contact forms

p
6}1 = du})l - Z u?fi dxi, a=1,...,q, 0<#J<n. (10)

Therefore a (locally defined) transformation
. P — "

on the jet space will determine a contact transformation provided its pull-

back maps every contact form to a linear combination of contact forms:

(M) « 1, (11)
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A contact transformation acts on a function u = f(x) by pointwise
transforming the graph of its n-jet u® = j" f(x); the contact condition
(11) ensures that the transformed graph is (locally) the n-jet of some

function. The infinitesimal version of this criterion is that a vector field

Z Eicx, ) - 4 Z D oo u®) l (12)

i=1 oa=1#J<n

on J" generates a one-parameter group of contact transformations
provided the Lie derivative of any contact form is contained in the contact
ideal, i.e. for each o, K,

X[G%]=Zug:f36?, oa=1..,q, #K<n, (13)
B,J

for some functions ug‘é on J". These conditions are quite restrictive,
and Bicklund’s Theorem, [2], [7], implies that any contact transformation
on J" is the prolongation of either a point transformation or, if there is

only one dependent variable, of a first order contact transformation on J 1

Note that the projection

n(X) = me i) 2 4 2 patx o) 25 a9

i=1

of any contact vector field gives a first order generalized vector field, or,
if q>1, of a point vector field, as in (2). Conversely, the contact
conditions (13) show that X will coincide with the nth prolongation of
its projection m(X). The next lemma is utilized to provide a
characterization of which generalized vector fields produce contact trans-
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formations. As such, it plays a key role in the standard infinitesimal
proof of Bicklund’s Theorem, cf. [7].

Lemma 2. An evolutionary vector field vq is equivalent to an
infinitesimal contact transformation if and only if its characteristic
Q(x, u(l)) depends on at most first order derivatives, and there exist
functions E,i(x, u(l)), i=1,...,p, such that the contact conditions

aQa o gl _
auﬁ + 6B é = O, (15)

1

hold.

Indeed, in this case, the E_,i’s will be the coefficients of the
0 /0x' and the coefficients of the o /ou® will be defined by

P

The contact vector field X is then just the nth prolongation of

p
2 Elx, U(l))— + 2 P (X, u(l)) — (16)

i=1

Note that left hand sides of the contact conditions (15) appear in the
prolongation formula as the coefficients of the terms in pr(“) v which
depend on derivatives of order n + 1, hence their vanishing is a
necessary and sufficient condition that the prolongation pr(") v of the
first order generalized vector field (16) define a genuine vector field on the
jet space J™.



