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Preface

A year-long symposium on Singnlarity Theory and its Applications was held at the
University of Warwick in the academic year 1988-89. Two workshops were held during
the Symposium, the first primarily geometrical and the second concentrating on the ap-
plications of Singularity Theory to the study of bifurcations and dynamics. Accordingly,
we have produced two volumes of proceedings. One of the notable features of Singularity
Theory is the close development of the theory and its applications, and we tried to keep
this as part of the philosophy of the Symposium. We believe that we had some success.

It should perhaps be pointed out that not all the papers included in these two volumes
were presented at the workshops; these are not Proceedings of the workshops, but of the
Symposium as a whole. In fact a considerable amount of the material contained in these
pages was developed during the Symposium.

For the record, the Symposium was organized by the four editors of the two volumes:
David Mond, James Montaldi, Mark Roberts and Ian Stewart. There were over 100 visitors
and 120 seminars. The Symposium was funded by the S.E.R.C., and could not have been
such a success without the hard work of Elaine Shiels, to whom we are all very grateful.

Every paper published here is in final form and has been refereed.

David Mond
James Montaldi

University of Warwick,
August 1990
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Symmetric Lagrangian singularities and Gauss maps of theta divisors

Malcolm R. Adams, Clint McCrory, Theodore Shifrin and Robert Varley

Recently three of the authors studied the Thom-Boardman singularities and the local
Z /2-stability of the Gauss map of the theta divisor of a smooth algebraic curve of genus
three [12]. In this paper we develop a theory of Z/2-symmetric Lagrangian maps
appropriate to the study of theta divisors of curves of arbitrary genus, and we apply this
theory to the genus three case, obtaining Lagrangian analogues of the results of [12). We
find that the local classification of Z/2-Lagrangian-stable Gauss maps coincides with
our previous local classification of Z/2-stable Gauss maps in genus three. The
corresponding classifications in higher genus are expected to diverge, as in the
nonsymmetric case (cf. [3)).

Let C be acurve of genus g, J(C) its Jacobian variety, and © < J(C) the theta divisor. Torelli's
theorem states that the curve C is determined by the pair (J(C), ©). More precisely, C is determined
by the Gauss map Yy which assigns to a point of © its tangent hyperplane, translated to the origin of
J(C). Andreotti proved that the branch locus of 7y is the dual hypersurface of the canonical embedding
of C, provided C is nonhyperelliptic. Thus the singularities of the Gauss map are directly related to the
extrinsic geometry of the canonical embedding, and hence to the intrinsic geometry of the curve C.

Locally © can be given as the graph of a function f:* €8 ! 5 €, and the Gauss map
¥: © » P8-1* is given locally as the gradient of f. Since the gradient df has a canonical Lagrangian
structure, namely the factorization through the Lagrangian submanifold’ graph(df) ¢ T*C81, y is
locally Lagrangian. However, this local Lagrangian structure depends on the choice of local coordinates
used to define f; moreover, the Z/2-symmetry of T*C8! is antisymplectic. To obtain a global
symmetric Lagrangian structure, we consider the conormal bundle Cgc T*J(C) of the theta divisor.
The Gauss map_ 7y lifts to the homogeneous Gauss map T, which is the restriction of the projection to
thefiber:

T .
Co — THIO)
{ l

Y
® — PTHEC)

If we remove the zero-section of T*J(C), T is a conic Lagrangian map, with Z/2-symmetry induced
by the (-1)-map of J(C). (If @ is singular, then T is defined over the Nash blowup of the Gauss



map.) The homogeneous Gauss map is defined in the same way for a complex affine hypersurface
M c €". In contrast to the real case, the Gauss map of a complex affine hypersurface does not seem to
have a natural global Lagrangian structure.

For conic Lagrangian submanifolds A < T*X, projection to the base X has been studied by
several authors (cf. [8], [15]), but projection to the fiber has not been previously considered. For
example, in the work of Janeczko and Kowalczyk [9] [10), the symmetry of T*X is also induced from a
symmetry of the base X, but A is projected to the base.

The homogeneous Gauss map T: Cg- T*J(C)» TEI(C) is equivariant with respect to
commuting actions of €* and Z/2, and Z/2 acts trivially on the C*-orbit space of the target. If
L M- E- B is any such conic Z/2-Lagrangian map-germ, there are two cases to consider: Z/2
acts either trivially or non-trivially on the €*-orbit space of the total space E. In the latter case we say
that [ is odd. In both cases we prove that stable conic Z/2-Lagrangian germs are classified by versal
generating families of functions; if [ is odd, its generating family is a family of odd functions. Our
method of proof is to pass from a conic Lagrangian map to a Legendrian map by dehomogenization, and
then to use the work of Zakalyukin on the classification of Legendrian maps (cf. [16], [3]). (The Gauss
map of a complex projective hypersurface M < [P" has a natural Legendrian structure; the case n = 4
is studied in [11).) Our main result for the homogeneous Gauss map I" of a theta divisor is the
following.

Theorem. For a nonhyperelliptic curve of genus three, I' is a locally infinitesimally stable conic Z/2-
Lagrangian map if and only if the canonical curve C < P2 has no higher flexes. For a hyperelliptic
curve of genus three, I is a locally infinitesimally stable conic Z/2-Lagrangian map.

In section 1 we show that dehomogenization gives a bijection from isomorphism classes of conic
G-Lagrangian germs to isomorphism classes of G-Legendrian germs (1.5), and we construct
symmetric Darboux coordinates for an odd conic Lagrangian fibration germ (1.12). In the second
section, we show that isomorphism classes of odd conic Lagrangian germs are” in one-to-one
correspondence with stable isomorphism classes of generating families (2.2), and that infinitesimally
stable germs correspond to versal families (2.11). We then derive normal forms for odd versal families
with two parameters (2.16). Section three contains the application of our results to genus 3 theta
divisors. As in [12], we use the extrinsic geometry of the canonical curve C < [P2 “to describe the
singularities of the homogeneous Gauss map I.

All manifolds, maps and group actions are assumed to be complex analytic. (The results in
sections 1 and 2 are also valid in the real C™ category, with C* replaced by R*, the multiplicative group

of positive real numbers.)

The last author expresses his gratitude to the NSF for support under grant #DMS-8803487.
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1. Conic G-Lagrangian maps

Let G be a finite group. A conic G-manifold is a manifold together with a proper, free C*
action and a G action such that the two actions commute. It follows that the orbit map of the C* action
isa G-equivariant principal C*-bundle. A conic G-map is a map of conic G-manifolds which is
equivariant with respect to the actions of €* and G. A conic symplectic G-manifold is a conic G-
manifold with a (holomorphic) symplectic structure such that the symplectic form Q is homogeneous
and G-invariant. In other words, if K, is the action of t€ €* then (x)*Q = tQ, and if Vg is the
action of g € G then (Vg)*Q = Q.

A conic G-Lagrangian map is a conic G-map L: M- B of manifolds, together with a
factorization L = Toi,
. E
Irym
T Mo B
L

where E is a conic symplectic G-manifold, i: M~ E is a Lagrangian conic G-immersion, and
n: E- B is a Lagrangian conic G-fibration (cf. [3, ch. 18]). If € has dimension 2n, then M and
the fibers of m have dimension n.

We will be primarily concerned with two special types of conic G-Lagrangian maps L: either G
is the trivial group, or G = Z/2 and the symmetry of L is odd. An odd conic Lagrangian fibration is
aconic Lagrangian Z/2-fibration E- ‘B such that

(1) Z/2 acts nontrivially on the €*-orbit space of ‘E, and

(2) Z/2 acts trivially on the C*-orbit space of B.

An odd conic Lagrangian map ‘is a conic Z/2-Lagrangian map L = moi: M - E-» B such that
n: E- B is an odd conic Lagrangian fibration.

(1.1) Example. Let 1: C"- €" be the involution 1(x) = -x, and let M be a smooth hypersurface in
€™ such that (M) = M. Let E = (T*C")-2Z, the cotangent bundle of C" minus the zero-section,
with standard Darboux coordinates (x,£) = (X{,..-,Xp.51,--.En) and involution i(x,E) = (-x,-E), and let
i: M c E be the conormal variety of M,



M= {(x,a)| x € M, ae T3C"-{0}, a(TxM) = O}.

Let m: E- ‘B be the projection to the fiber of the cotangent bundle, m: (T*C")-2Z -+ ( TEC™)-{0},
n(x,E) = E. Then the homogeneous Gauss map T = mei: M- E- B is an odd conic Lagrangian map.
The map on C*-orbits induced by I" is the Gauss map

¥: M PT$C = G(n-1,C7),
whichis Z/2-invariant (cf. [13, p. 720]).

An isomorphism of conic G-Lagrangian maps L, = myei; and L, = m,ei, is a commutative
diagram
Mi-> E1- B
e

M- B2 B
where the vertical maps are conic G-isomorphisms, and the isomorphism £t~ E2 is symplectic.

Given a conic G-manifold M of dimension n and a conic Lagrangian fibration n: E- B with
‘E of dimension 2n, a topology on the set of conic G-Lagrangian maps L = Ttei: M» £ B is
induced from the topology of uniform convergence on compact subsets (or the Whitney topology in the
real C™ category) on the set of conic G-Lagrangian immersions i: M- E.

Let M be a conic G-manifold, and let O be a C*-orbit of M such that GO = 0. A conic
G-Lagrangian map-germ [ M- E- B at O is an equivalence class of conic G-Lagrangian maps
L=mei: U> V- B, suchthat Uc M and Vc E are open sets invariant under the actions of C* and
G, with 0cU and i(0) © V. Two such maps {; = m;ei; and I, = m,oi, are equivalentif i; and i,
agree on a neighborhood of O and m; and =, agree on a neighborhood of iy(0) = iy(0).
Isomorphism of map-germs is defined in the same way as for maps. Given M and O as above, and
n: £+ B aconic G-Lagrangian fibration, let £(M,0,1) be the space of conic G-Lagrangian germs
[= noi: M> E- B at 0. ‘

A conic G-Lagrangian germ £ M- E- B at 0 c M is stable if it has a representative
foi: U= V= B with the following property. For every open set U'c U suchthat ®cU’ and U’ is
C*- and G-invariant, there is a neighborhood N of il in the space of conic G-Lagrangian
immersions U’ V such thatif j€ N there exists an orbit 0'c U’ with GO' = 0' and [ isbmorphic
to the germ of 7oj at O'.

We will be primarily interested in infinitesimal stability of Lagrangian germs (cf. [5, p. 271]).



Let i: M > £ be a conic G-Lagrangian immersion. An infinitesimal (first order) Lagrangian
deformation of i isa €*- and G-equivariant section 'u of i*TE such that i*£,Q =0, i.e., the
pullback to M of the Lie derivative of the symplectic form Q with respect to (an extension of) u is
zero. An infinitesimal isomorphism of M isa C*- and G-equivariant vector field v on M. An
infinitesimal symplectomorphism of E isa C*- and G-equivariant vector field w on E such that
LyQ=0. If m:E-B is a conic G-Lagrangian fibration, the vector field w on E is
(infinitesimally) fiber-permuting if m,v =0 implies ®.w,v]=0. A conic G-Lagrangian germ
LM Es B at O0c M is infinitesimally stable if, for every representative mei: U— V- B and
every infinitesimal Lagrangian deformation u of i, there exist a C*- and G-invariant open set
U'cU, an infinitesimal isomorphism v of U’ and an infinitesimal fiber-permuting
symplectomorphism w of a neighborhood of i(U") in V such that u = i,v +w.

Now we reformulate infinitesimal Lagrangian stability of the germ £ M- E- B in terms of
Hamiltonian functions, using the method of Amold [1, §10l. Given an infinitesimal Lagrangian
deformation u of i as above, we define a 1-form T locally on M as follows. Let & be a local
extension of u toa €*- and G-equivariant vector field on E. Define T on E by ¥ = Q(ii,-), and
let T=i*%. The form t is independent of the choice of extension @, and T is G-invariant.and
homogeneous, ie., (x)*t=tt. The deformation u is Lagrangian if and only if dt=0. Two
infinitesimal deformations u and u’ determine the same 1-form T if and only if u - u" istangent to
M. We conclude that, up to infinitesimal isomorphisms of M, an infinitesimal Lagrangian deformation
of i isthe same as a G-equivariant homogeneous closed 1-form © on M (cf. [5)).

Let w be an infinitesimal symplectomorphism of ‘E, and let H be a local Hamiltonian function
for w,i.e., H: E- C and dH = Q(w,"). Then dH is G-invariant and H can be chosen so that it is
homogeneous, i.c., H(xe) = tH(e). (Infact H = Q(w, t) is a homogeneous Hamiltonian for w,
where t is the infinitesimal generator of the C*-action.) The vector field w is fiber-permuting if and
only if H is linear with respect to the canonical affine linear structure on each fiber of the Lagrangian
fibration E- B.

(1.2) Proposition. The conic G-Lagrangian germ [= moi: M- E- B is infinitesimally stable if and
only if every homogeneous germ ®: M- € such that d® is G-invariant can be written as @ = Hoi
for some homogeneous germ H: £- € such that dH is G-invariant and H is affine linear on the
fibers of m: £ B.

Proof. Such a germ @ corresponds to a closed 1-form T = d®. If u is an infinitesimal deformation
of i corresponding to T, and w is the Hamiltonian vector field of H, then u=w (modulo
infinitesimal isomorphisms of M) if and only if ® = Hei. O

Let L: M- E- B be aconic G-Lagrangian map, let @ be a C*-orbit of M, and let



Gg=1{g€ G:g0 = 0}. Thenthe germof L at O is aconic Go-Lagrangian germ. We will use the
following abbreviated terminology. We say that the conic G-Lagrangian map L is Jocally infinit-
esimally stable if the germof L at @ is an infinitesimally stable conic Gg-Lagrangian germ for all
C*-orbits O of M

A G-Legendrian map is a G-map L: M- B of manifolds, together with a factorization
L = moi: M5 E-> B, where E is a contact G-manifold (the action of G on E preserves the contact
structure), i: M- E is a Legendrian G-immersion, and n: E-» B is a Legendrian G-fibration (cf. [3,
ch. 20)). If E has dimension 2n-1, then M and the fibers of & have dimension n-1. G-
Legendrian germs and isomorphism of G-Legendrian maps and germs are defined in the same way as
for conic G-Lagrangian maps. Given a G-manifold M, a fixed point x of G, and a G-Legendrian
fibration n: E- B, let L(M,x, ) be the space of G-Legendrian germs & M- E- B at x.

_ Stability and infinitesimal stability of a G-Legendrian germ are defined in the same way as for
conic G-Legendrian germs, replacing the symplectic form Q with a contact form «. A G-
chéndrian germ LMo E-B at x€ M is infinitesimally stable if, for every representative
woi: U- V- B and every infinitesimal Legendrian deformation u of i, there exist a G-invariant
open set U’ c U, an infinitesimal isomorphism v of U’ and an infinitesimal fiber-permuting contact
transfermation w of a ncighborhood of i(U") in V such that u = i,v+ w.

(1.3) Example. Let M c €™ be as in example (1.1), let E = PT*C" = G(n-1,TC"), with involution
induced by the map x+ -x on €M, and let i M- E be defined by i'(x) = TxM. Let B be the total
space of the tautological quotient line bundle on T§C" = G(n-1,C"), and define ©': E-» B as follows.
If xe C" and H is a hyperplane of TxC", then w'(H,x) is the coset of x in €"/Hy, where Hy is
the translate of H to 0. Then I'" = n'ei" M+ E~ B isa Z/2-Legendrian map. The composition of
I with the projection B - G(n-1,C") is the Gauss map y of M. .

Let : £ B be aconic G-Lagrangian fibration, with ‘£ of dimension 2n, andlet ®c E bea
C* orbit with GO = 0. The dehomogenization of m at O is a G-Legendrian fibration germ
n: E- B which we now proceed to define. Let E be the orbit space of the C* action, and let ¢ € E
correspond to @. There is a unique 1-form B on ‘E such that,

1) dp=Q,

(2) B is homogeneous ((x,)*B = tB), and

(3) B(v) = 0 for all vectors v tangent to an orbit of C*.
Furthermore B is G-invariant. (In fact, B(w) = Q(t,w), where t is the infinitesimal generator of the
€* action.) Since the field of hyperplanes B = {B = 0} contains the tangent spaces to the orbits of C*,
B projects to a field of hyperplanes A on the orbit space E. This field of hyperplanes A defines a
G-invariant contact structure on E.



The Legendre fibration germ n”: E— B is defined as follows. Let B* be the C*-orbit space of
B. Note that the quotient fibration o: E- B* is not Legendrian, since the dimension of the fibers of ¢
is n, not n-1. Butif F is a fiber of o, the field of hyperplanes A is transverse to F, and the
intersection of A with the tangent bundle of F defines an integrable field A of hyperplanes on F.

(The quotient map E- E takes each fibre ¥ of the Lagrangian fibration m isomorphically onto a fibre
F of o, and the field of hyperplanes Ag corresponds to B, the intersection of B with the tangent
bundle of . The distribution B, satisfies the integrability condition dBAf = 0, since df = Q is zero
on 7F.) We define a Legendrian foliation of E with leaves contained in the fibers of o: the leaves
contained in F are the integral manifolds of Ap. On a sufficiently small G-invariant neighborhood U
of e in E, these leaves are the fibers of amap n': U~ B which represents the desired G-Legendrian
fibration germ at e.

Let M be a conic G-manifold, let @ bea C*-orbitof M such that GO = 0, and let ©: T B
be a conic G-Lagrangian fibration with dehomogenization w': E- B. Let M be the C*-orbit space

of M, andlet x € M correspond to the orbit ¢. We define a function
T: LM,0,%) > L(M,x,1t)

as follows. Given a conic G-Lagrangian germ [= moi: M5 E> B, let T(L)= woi"M>E-s B,
where i’ is the map on C*-orbits induced by i. We will call T(/) the dehomogenization of L[

(1.4) Example. Let M be a smooth hypersurface through the origin in €", and let
= {ae T§C"-{0} | a(ToM) = 0}. Let I': M > E—- B be the conic Z/2-Lagrangian map of
cxamplc(l 1). The dehomogenization of the germat @ of T isthe germat O of the Z/2- chendnan

map I'" of example (1.3).

(1.5) Proposition. Dehomogenization T: L(M,0,r) » L(M,x,n") induces a bijection of isomorphism
classes. A conic G-Lagrangian germ is stable (resp. infinitesimally stable) if and only if its
dehomogenization is stable (resp. infinitesimally stable).

(1.6) Remark. Presumably stability is equivalent to infinitesimal stability for conic G- Lagrangxan maps
and for G-Legendrian maps. We have not checked these assertions.

The proof of the proposition relies on a homogenization function. Let m:E-B be a G-
Legendrian fibration, let e be a pointof E, and let a be a 1-form on a neighborhood of e whichisa
contact form on each tangent space. The a-homogenization of m is the conic G-Lagrangian
fibration germ it: E- ‘B defined as follows. Let E be the symplectization of E, i.e., the set of all
contact forms on the contact manifold germ E (2, p.356], with €* action given by x(a) = ta and G
action given by Vg(a) = (Vg")*a. Let 0 c E be the set of contact forms on TcE. The symplectic form
Q on E is homogeneous and G-invariant. (Recall that Q = dB, where B is the tautological 1-form



on ‘E) The composition of the given G-Legendrian fibration n: E-» B with the projection p: £- E
is a Lagrangian fibration n*: E- B; if F isafiberof = then p”(F) isa fiberof n*. But €* acts
trivially on B, and we want C* to act freely on B, so we must define the Lagrangian fibration
fi: E- B differently.

The choice of 1-form o on E defining the given contact structure determines an isomorphism
ExC* - £ which sends the pair (x,t) to the contact form to, on the tangent space to E at x. Thus
we obtain a local coordinate function t: £- €C*. Let X, be the Hamiltonian vector field associated to
the function t; thatis, dt(€) = -Q(X,, £) [3, §18.2). Using X, we define the fibers of the Lagrangian
fibration #:E- B as follows. Let C, Cc T,E be the span of the vector field X, and the
(n-1)-plane (ker(r*),) N (ker dt). Then C is a Lagrangian, and hence integrable, field of n-planes
on E, invariant under €* and G. Thus thereisa C*- and G-invariant neighborhood ¥ of @ such
thaton 7 the integral manifolds of C are the fibers of a map #: V- B which represents the desired
conic G-Lagrangian fibration germ.

Let M be a G-manifold, let x be a fixed pointof G, and let m: E+ B be a G-Legendrian
fibration with a-homogenization #: £- B. We define a function

Sg: LM x,m) » L(MxC*,{x}xC*,%t)

as follows, Given a G-Legendrian germ £ = moi: M» E o B, let @j(x) be the restriction of @ to the
tangent space of E at i(x). Define TMxC*->E by  i(x!)=ta, and let
Sg(?) = fei: MxC* » £~ B. We call Sq(2) the a-homogenization of L.

Proof of (1.5). The proposition is a consequence of the following properties of the functions T and
Sq. the proofs of which are straightforward:

T: L(M,0,%) » L(M,x,T)
Se: LIM,x, ') » LIMxC*,{x}xC*, T,

@ f= b T(G)=T(h).

(b) &y =Ly Sy(ly) = Sy (Ly).
(1.7) © TSq() =1L

d) SeT(fy=L

(¢) T and S, are continuous.

To prove the stability part of Proposition (1.5), one actually uses (1.7)(c) and (d) for germ
representatives. If V is a G-invariant open subset 6f E such that o is defined on E and the
corresponding Lagrangian foliation on the preimage 9 of V isa fibration, then (c) holds for any



representative meoi: U~ E- B such that i(Uyc V. Similarly, if Y isa C*- and G-invariant open
subset of E such that the Legendrian foliation defined on its image V in E is a fibration, then (d)
holds for any representative mei: U- £- B such that i(U)c V. The proof of the infinitesimal
stability part of (1.5) is easy. O

Proposition (1.5) reduces the classification of stable conic G-Lagrangian germs to the
classification of stable G-Legendrian germs. To carry out this classification for odd conic Lagrangian
germs in section 2, it will be convenient to have a Darboux coordinate description of a conic Lagrangian
fibration germ. ’ B

(1.8) Proposition. Let n: £- B be a conic Lagrangian fibration germ at O < E. Let Q be the
symplectic form of E. There are local coordinates (p,y,qit) on £ near O such that
Q = dpad(-tq) + dyAdt, the action of €* is s-(p,y,q.t) = (p.y.q.st), and 7(p,y.q.t) = (q,t).

Proof, Let w': E2"-1. B" be the dehomogenization of & at 0. Given a 1-form o defining the
contact structure near n'(0) on E, there are local coordinates -(p,q,2z) = (Py;....Pp-1:Q1s-+dn=1,2) On E
such that n(p,q,2) = (q,z), and o = dz-pdq [3; §20). In these coordinates, the 0.~homogenization of
=’ hasithe following form. The symplectization € of the contact manifold E has coordinates *(p,q,z,t),
with Q= d(t) = dtadz + d(-tp)Aa(dq), so that- (-tp,t,q,z) are Darboux ¢coordinates for E. The action
of €* is s(-tp,t,q,z) = (-stp,s,q,z). The composition of x' - with the projection. p: E« E is the
Lagrangian fibration n*: £- B given by n®(-tp,t,q;z) = (q,2). Thus (ker(n*),) N (ker.dt) is parallel
to the p-coordinate plane. To give coordinates for the Lagrangian fibration w:E- B, we let
Y = pq-z, the Legendre transform of z. Then & = -(dy-qdp), and Q = d(ta) = dyadt + dpAad(-tq),
so that (p,y,-tq,t) are Darboux coordinates on E, and X;= -9/dy. Therefore the distribution C is
parallel to the (p,y)-coordinate plane, and the homogenization n: E- B of m:E-B is given by
n(P.y,~tq,t) = (-tq,t). O

Before adding Z/2 symmetry to the.picture, some discussion of the Darboux coordinates
(p.y.-tq,t) is in order. To see why the Legendre transform enters into homogenization, consider the
reverse process of dehomogenization. If the conic Lagrangian fibration £- ‘B is given in coordinates
by (@y.-tq.8) p (-tq,t), with s:(p,y,~1q.t) = (p,y,-stq,st), then the quotient fibration is (p,q,y)+ q.
The restriction of the contact form & = -(dy-qdp) to a fiber F= {q=qq} is exact: op=dz,
z = pqg-y. Thus the dehomogenization of £+ B is given by (p,q,2) b (q,z), with a = dz-pdq.

It is instructive to work out examples (1.1) and (1.3) using the coordinates (p,y,-tq,t) - (~tqt)
for the conic Lagrangian bundle (T*C")-Z- (T§C")-{0}. To avoid confusing p and gq, let
(P.9) = (x£). Thus (xy,...Xp_1,y) are the standard coordinates on €0, and (%y,...6,_1) are the
coordinates on T*C"-! dual 1o (xj,....Xp-1); Suppose that M < €" is the graph of the function y =
f(x). Using (x1,....x,_1) ascoordinateson M, the Gauss map Y has a Lagrangian factorization
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(1.9) ¥: €0-15 ToEn-15 (Cn-1)%,

of of s .
| (x) = (x, 5—;)!-» (5-—)-

The conic Lagrangian map I" of example (1.1) takes the following form in the coordinates (x,y,-t&,t):
(1.10) Ir:(x,He (x, f(x), t t) P ( )

The Legendrian map I of exampic (1.3) takes the foilowing form in the coordinates (x.§,z). with
z = xE-y:

(1.11) Ir': x)p (x, af, X . -f(x)) b ( =— = f(x)).

It can be shown that the Lagrangian structure (1.9) on the Gauss map Yy depends (even up to
isomorphism) on the choice of coordinates, whereas the conic Lagrangian structure (1.10)on T and the
Legendrian structure (1.11) on I are independent of coordinates, by definition. The Lagrangian
structure (1.9)'on v is obtained from the conic Lagrangian structure (1.10) on T by reduction. More
precisely, the symplectic manifold T*C"-1-~with symplectic form © = dxad&: is obtained from
T*C"-Z by reduction, or symplectic section and projection (cf..(15, p. 11, (3, p. 289]). For T*€n-1 is
the orbit space of the flow of the Hamiltonian field' X, = -9/dy on the hypersurface {t= 1}. This
reduction depends on the choice of the Hamiltonian function t,. that is, on the choice of contact form o
on PT*C" = (T‘C"-Z)/C‘

Next we consider Z/2-symmetry. Let 1 be the generator of Z/2; if v isa Z/2 action we
abbreviate v, to 1. . :

(1.12) Proposition. Let n: £- B be an odd conic Lagrangian fibration germ at the C*-orbit O c E.
There are local coordinates (p,y,q,t) as in (1.8) such that the action of Z/2 is l(py,q.t) =

('P: "y'q‘ "t)

Proof. First we show:there is an equivariant'1-form .. which defines the canonical contact structure
on the .C*-orbit space of E. By hypothesis, @ isa C*-orbitof E with 10 = 0. Since 1(fx) = t-1(x)
for t € C*, there is a character X: Z/2 - €* such that 1(x) = y(1)-x forall x € 0. Let € = %() = +1.
Consider the orbitmap p: E- E, and let ¢ = p(0). Define a function y from @ to the set of contact
forms on T.E as follows. Let B be the homogeneous t-invariant 1-form on E such that df = Q
and P(u) =0 for u tangenttoa C*-orbit. If x€ 0, v€ T,E, and w=p,v, then <Y(x),wd =
By(v). The function y is well-defined, and  is a bijection equivariant with respect to the actions of
€* and ‘Z/2. Therefore if a is a contact 1-formon T.E, then 1*a=€a. Let n be a 1-formon E
defining the contact structure, and.set o = $(m+€1*n). Then .= a# 0, so. o also defines the
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contact structure in a neighborhood of e, and 1*a = €a.

Now let n':E- B be the dehomogenization of m: E- B. By averaging, we define local
coordinates (p,q,z) in which 1 acts linearly and such that o = dz-pdq. Namely, let (A,11,{) be local
coordinates on E centered at ¢ such that o =d{-Adp and wQAp,L) = W,L). *Identify a
neighborhood of e with the tangent space T.E using the coordinates (A.j1,[), andlet 1, be the linear
involution of T.E induced by 1. Then set

(#.a:2) = H{MRD +1.aRL)).

Finally we use the fact that the conic Lagrangian fibration germ E - B is odd. Since U acts
linearly in the coordinates (p,q,z), and 1*a = e with o = dz-pdq, the hypersurface V = {z = 0} of
E is i-invariant, and 1 acts on the coordinate z by multiplication by €. Consider the symploctic form
®=dpadq on V. We have 1*0 =€®, since o =d(aly). If €=+1, the actionof 1 on V is
symplectic. On the other hand, if we introduce Darboux coordinates (p,y,-tq,t)- (-tg,t) on E- B
as in (1.8), then q gives coordinates for the C*-orbit space of ‘B, so 1 acts trivially on q. Thus 1
must act trivially on V, which implies that 1 acts trivially on E, the' C*-orbit space of E, contrary to
hypothesis. Therefore € = -1, and 1*0 = -@, i.e., the action of 1 on V is antisymplectic. Since 1
acts trivially on q, by a linear symplectic change of coordinates on (V,w) we obtain Darboux
coordinates (p,q) such that 1(p,q) = (-p,q). Thus we have coordinates (p,y,-tq,t)+ (-tq,t) as in
(1.8) for the germ E- B, with Z/2 action 1(p,y,-tq,t) = (-p,-y,!iq,~t). O

2. Generating families

In this section we carry out the classification of infinitesimally stable conic G-Lagrangian germs
[ in case either G is trivialor G = 2/2 and [ is odd. For simplicity we will state and prove results in
the odd case only. Statements (2.1) thi'ough (2.12) below are also true for G triviai; the proofs are
simplifications of those given for the odd case.

Let Vv be an action of the finite group G on the germ (€",0), and let V, be the action induced on
TC" by V. Let Hc TyC" be a hyperplane such that V,H = H. The projection #: (PT*C"H) -
(€"0) is a G-Legendrian fibration germ. The action induced by V. on the quotient ToC"/H -is
multiplication by a character ¥,,. In the following discussion, we fix vV and H, and we let = Xy

A (G,v)-family is a pair (F,n), where F: (Ck*n,0) C isagermand m isa G-action on
(Ck+n,0), such that .
(1) The projection p: (Ck+n,0) - (C",0), p(x,X) = A, isa G-map, and



