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Editorial Policy

§ I. Lecture Notes aim to report new developments - quickly, informally, and at
a high level. The texts should be reasonably self-contained and rounded off. Thus
they may, and often will, present not only results of the author but also related
work by other people. Furthermore, the manuscripts should provide sufficient
motivation, examples and applications. This clearly distinguishes Lecture Notes
manuscripts from journal articles which normally are very concise. Articles
intended for a journal but too long to be accepted by most journals, usually do not
have this “lecture notes™ character. For similar reasons it is unusual for Ph. D.
theses to be accepted for the Lecture Notes series.

§ 2. Manuscripts or plans for Lecture Notes volumes should be submitted
(preferably in duplicate) either to one of the series editors or to Springer- Verlag,
Heidelberg . These proposals are then refereed. A final decision concerning
publication can only be made on the basis of the complete manuscript, but a
preliminary decision can often be based on partial information: a fairly detailed
outline describing the planned contents of each chapter, and an indication of the
estimated length, a bibliography, and one or two sample chapters - or a first draft
of the manuscript. The editors will try to make the preliminary decision as definite
as they can on the basis of the available information.

§ 3. Final manuscripts should preferably be in English. They should contain at

least 100 pages of scientific text and should include

- a table of contents:

- an informative introduction, perhaps with some historical remarks: it should be
accessible to a reader not particularly familiar with the topic treated;

- a subject index: as a rule this is genuinely helpful for the reader.

Further remarks and relevant addresses at the back of this book.
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INTRODUCTION

This volume contains the notes of the courses held at a C.I.M.E. school in Montecatini
in July 1993. This was intended as an introduction to physical, analytical and numerical
aspects of two classes of phenomena of high applicative interest: phase transitions and
hysteresis effects.

About one century ago the macroscopic description of solid-liquid transitions led to
the formulation of the (by now classical) Stefan problem. This is a boundary value problem
for a parabolic partial differential equation. Here the thermal field and the evolution of
the interface between the two phases are coupled and unknown: this is a typical example
of free boundary problemn. This model and its many generalizations have then been applied
to a multitude of physical phenomena. Mathematical aspects have also been intensively
studied in the last thirty years or so; see the monographs of Rubinstein [5] and Meirmanov
[4], e.g., and the proceedings of the conferences on free boundary problems which have
regularly been held for almost two decades. Relevant results on generalizations of the
Stefan problem are dealt with in Kenmochi’s and Rodrigues’s contributions.

The status of hysteresis modelling is quite different.

Hysteresis can be defined as a rate independent memory effect. This 1s a property of
some constitutive laws, which relate an input variable u and an output variable w. Memory
means that at any instant ¢, w(¢) is determined by the previous evolution of u, and not
just by u(t). Rate independence means that the curves described in R? by the couple
(u,w) (loops, typically) are invariant for changes of the input rate, such as changes of the
frequence, e.g..

Plasticity, ferromagnetism, ferroelectricity are among the most typical examples of
hysteresis phenomena. More recently, also so called pseudo-elastic alloys were discovered.
where hysteresis appears also as shape memory; see Miller’s report. Several models have
been devised by physicists and engineers to describe hysteresis; in particular, plasticity has
a long tradition of mathematical studies. However, no systematic analysis of hysteresis
appeared, until in 1970 a group of Russian mathematicians introduced the concept of
hysteresis operator, and started a detailed investigation of its properties. Krasnosel’skil
and Pokrovskil were the most active pioneers in this field, and their research is presented
in the monograph [2]. Hysteresis operators are dealt with in Brokate’s notes.

In the early 1980’s other mathematicians began to study hysteresis phenomena, espe-
cially in connection with applications. A monograph of Mayergoyz 3] and the proceedings
volume [7] appeared; at this moment the books [1] and [8] are in preparation.

There is a strict relation between phase transitions and hysteresis. For instance, in
single-phase systems supercooling and superheating effects prior to phase nucleation are
rate independent, and accordingly can be labelled as hysteresis phenomena. Here surface
tension also plays an important role.

Here is a more mathematical example, which illustrates how hysteresis and free bound-
ary problems can be related. The weak formulation of the classical Stefan problem problem
involves the Heaviside graph. A hysteresis relation is easily obtained by replacing the crit-
ical value 0 by two thresholds a,b (with a < 0 < b), for downward and upward jumps,
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respectively. Results have been obtained for this problem, see [6]. This model applies to
ferromagnetism more properly than to solid-liquid phase transitions.

Connections between phase transitions and hysteresis appear also by Verdi’s contri-
bution, which addresses the numerical treatment of both phenomena.

The school was and this volume is an attempt to cast a bridge between hysteresis and
free boundary problems. The reasons for such an interaction are in the phenomena we
deal with; but sometimes the mathematical world is moved by different dynamics.

Augusto Visintin
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Hysteresis Operators

Martin Brokate *
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1. Introduction

Hysteresis phenomena appear in many branches of science. They usually arise because
the underlying process admits more than one stable equilibrium state for certain (or for
all) values of the process parameters. For example, let

F(z,v) =0 (1.1)

describe the equilibria x of a process in dependence of the parameter v . If the solution set
of (1.1) forms a curve like the one in Figure 1, and if the part connecting the points A and
B consists of unstable equilibria while the others are stable, then a variation v = »(t) of
the parameter in time leads to a relay-type hysteresis relationship « = z(v) as indicated
by the arrows in the figure. Nonconvex potentials and nonlinear dynamical systems give
rise to numerous variants of this situation, and the tools of nonlinear PDE analysis,
bifurcation and singularity (catastrophe) theory provide a lot of structural results. While
hysteresis occurs regularly here, it does so rather as an accessory than as an organizing
concept, and consequently its role is not emphasized (see e.g. [47], [39]).

Much more complicated hysteresis effects occur in continuum mechanics. Let us con-
sider longitudinal vibrations of a (one-dimensional) rod. Newton’s law coupled with the
constitutive stress-strain relation, i.e.

Oyu = 0,0, o=Wle|, &=du, (1.2)

*Institut fiir Informatik und Praktische Mathematik, Universitat Kiel, D — 24098 Kiel, Germany




Figure 1: Hysteresis in parameter dependent processes.

together with certain initial and boundary conditions determine the displacement w , the
stress o and the strain € as functions of time ¢ and space z. Within the elastic range,
Hooke's law

Wle] = Ee (1.3)
holds, where E denotes the modulus of elasticity. Beyond the elastic limit, many mate-
rials exhibit plastic behaviour. Even its simplest description, namely the elastic-perfectly
plastic model of Figure 2 with a fixed yield stress |o| = r and pure plastic flow, admits a
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Figure 2: The elastic-perfectly plastic element.

continuum of possible stable states {(a,&) : 0 € [=r,7]} for every value of e. It will be
explained in detail below how Figure 2 gives rise to a hysteresis operator &, acting on a
space of functions; accordingly, the constitutive equation

o= &e] (1.4)

represents an equation between functions rather than between certain values of stress
and strain. In 1928, Prandtl [34] constructed a more elaborate model as the continuous



parallel combination of elastic-perfectly plastic elements; in operator notation, it has the
form

Wie] = [’ p(r)E,[€] dr. (1.5)

For certain types of steel at least, Prandtl’s model (1.5)" yields a reasonable approximation
in cyclic plasticity, where one investigates the so-called stabilized elastic-plastic behaviour,
namely the behaviour after a large number of load cycles. We will see below how the
density function p is related to the stabilized o —e—curve for initial loading (i.e. starting
from o =¢=0), as well as to the shape of the hysteresis loops.

Prandtl’s model allows smaller hysteresis loops embedded into larger ones with an
arbitrary depth of nesting; moreover, all outer loops which have not yet been closed may
affect the future behaviour. In this manner, the possible stable states of the material
not only form a continuum like the interval [—r,r] in the case of the elastic-perfectly
plastic element &, , but require a potentially infinite dimensional memory representation.
The same is true for the model developed by Preisach [35] in 1935 in order to describe
the hysteresis loops traced out by magnetic field and magnetization in ferromagnetic
materials. The operator form of the Preisach model reads

+ 00 +o00
W] = A /_w w(r,s) Ry—y, s4r[v] dsdr. (1.6)

Here, w denotes some density function like p does in Prandtl’s model, and R, , denotes
the relay with thresholds = < y, switching to the value +1 when the input attains the
value y from below, and to —1 when it attains z from above. In addition, an initial

value has to be prescribed for each relay.

All models mentioned so far have one aspect in common: They are rate independent.
This means that the input-output behaviour does not depend on the speed (or frequency)
of the input in the sense that, if the input frequency is doubled while its form is retained,
the same is true for the output. This excludes from consideration relaxation effects like
viscosity, creep or diffusion, which typically depend on the time scale. We will not enter a
discussion of the relative significance of rate independent versus relaxation effects except
for the remark that it varies greatly with the application. In the present notes, we will
deal exclusively with rate independent models.

Continuum mechanics is not scalar, but takes place in R*. Although in many special
situations a reduction of dimension is possible, the material laws usually are inherently
multidimensional. Consequently, one expects that the memory structure has to take into
account that the inputs are vectors (or tensors). However, on a level of memory complexity
comparable to Prandtl’s or Preisach’s model, only very few mathematical investigations
have been carried out so far — one has to admit, on the other hand, that the experimental
basis, which could guide the selection of models, too is much less developed in the true
vector case than for situations where one scalar quantity dominates the situation (for
example, the tangential stress at the boundary of an interior hole of a two dimensional
body). Since it fits well here, we will discuss one particular model which emphasizes
memory structure, namely the continuous version of the model due to Mréz [33].

'Tt is also often named after Ishlinskii [16].



The field of partial differential equations presents a particularly challenging area, be-
cause of both its difficulty and its importance for the continuum mechanics applications.
We will present some results due Hilpert, Krejéi and Visintin; according to the spirit of
these notes, we concentrate on the relevant properties of the hysteresis operators.

The approach to hysteresis described in these notes constitutes a mathematical tech-
nique whose goal is to analyze systems with hysteresis. A hysteresis operator results from
atranslation of a hysteresis diagram into a mathematical object, but it does not contribute
to an explanation why the hysteresis is there at all. For that reason, hysteresis operators
are said to be part of a phenomenological approach to hysteresis, and they offer themselves
as a natural mathematical tool for a lot of problems in engineering. Nevertheless, there
are also connections to the foundation of mechanics, since a hysteresis operator represents
a mechanism for the dissipation of energy, if it satisfies an appropriate inequality. We
will not explicitly discuss this aspect; it is, however, implicitly present in the analysis of
PDE’s with hysteresis in the last two sections.

These notes are lecture notes. We will not attempt to review, or even cite, all the
relevant literature on the subject. For some time, the basic references have been the
monograph of Krasnosel'skii and Pokrovskii [17] and the survey of Visintin [45]; now
there is also the survey of Macki, Nistri and Zecca [27]. There will probably soon arrive
the monograph of Visintin [46]. Concerning the special topic of optimal control of ODE
systems with hysteresis, we also refer to [1]. We also will omit or abridge proofs on several
occasions. They are to be found either in the references given or in the forthcoming
monograph of Sprekels and the author.

2. Scalar Hysteresis Operators

Given a hysteresis diagram in the v — w—plane and an input function » : [0,7] — R,
T > 0, we want to choose an output function w : [0,7] — R such that (v(t),w(t))
moves along the curves in the diagram. For such a procedure it is natural to require that
the function v is piecewise monotone. Let us denote by Map[0,T] the set of all real-
valued functions on [0,7], and by M,,,[0.T] and C,,,[0,T] the subset of all (respectively,
continuous) piecewise monotone functions on [0,77].

Definition 2.1~ We say that an operator W : (,,,,[0, 1] — Map[0,T] is a hysteresis
operator, if it is rate independent and has the Volterra property. Rate independence
means that

Witlop = Wivey] (2.1)
holds for all v € (,,,[0,T] and all continuous monotone time transformations ¢ : [0,7] —
[0, 7] satisfying ©(0) =0 and (7)) =1T. u]

The rate independence implies that only the local extremal values of the input function
v can have an influence on the memory of the process; consequently, we may replace input
functions v € ,,[0, 7] by input strings (vo,..., vy) with v; € R. Let us denote by S
the set of all finite strings of real numbers,

A,q:{(l)o,1I)N)NEN[),'IHER,()SISN}, NU:NU{O}, (22)



and by Sy the set of alternating strings
S =A{(vo,....on) ;v F vy if N2>1, (vig —vi)(vi —vi1) <0,0<:< N}. (2.3)
For any hysteresis operator W, we define its final value mapping Wy : Sy — R by
Wy(vo,. .. ox) = WI(T) (2.4)

where v € (,,,[0,7] is any input function having a monotonicity partition 0 = ¢, <
... <ty =T such that v(t;) = v;, 0 <i < N. Conversely, any mapping Wy : Sy —» R
yields a hysteresis operator W if we set

WI](t) = Wi(v(to), - .. o(te)) (2.5)

where 0 =ty < ... < {x =t is a monotonicity partition of vy such that the string
(v(tg),...,v(tg)) is alternating. One may check from the definitions that the formulas
(2.4) and (2.5) establish a bijective correspondence between the set of all hysteresis op-
erators and the set of all real-valued mappings on Sy . Since we can use (2.4) to define
W on all of S, we can interpret any hysteresis operator W as a mapping W : S — §
if we set

Wi(vgy ..., on) = (Wy(ve) Wylvo, o)y ... s Welvo, ... o)) (2.6)
To make a clear formal distinction, we will write W[v| for functions and W(s) for strings
s = (vo,..., vny). We note also that (2.5) makes sense for inputs v € M,,,[0,77]. In this

manner, we obtain a canonical extension for any hysteresis operator from (C},,[0,7] to
M,.[0,T].

All scalar hysteresis operators mentioned during the introduction have a common
memory structure. Its description involves the hysteresis operator which describes the

mechanical play and is called the play operator, see Figure 3.

/
/

Figure 3: The play operator.
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Definition 2.2  Let r > 0 be given. We define the play operator F.[-; w_;] for the
initial value? w_; € R,

w(t) = Folv; wy](t), (2.7)
by its corresponding final value mapping F,: Sy — R given recursively by

Frp(vo) = fr(vo,w_y),
Frg(vo,...yon) = folon, Frplvo, ... on-1)), (2.8)

where
fr(v,w) = max {v—r, min{v+r,w}}. (2.9)

If we do not state the choice of the initial value explicitly, we assume it to be zero.
Accordingly, we write F,[v] instead of F.[v; 0]. o

The final value mapping R, , ; of the relay R, , with thresholds = < y and initial value
w_;(z,y) has the form

1 b 1'1\' 2 y

-1, vy < T .
Reyf(vo,...,on) = Raos(Vor - o) 2 Euw Sy N21, (2.10)

w_y(z,y), r<wvny <y, N=0.

If we do not state the choice of the initial value explicitly, we assume w_;(z,y) = 1 if
z+y <0 and w_,(x,y) = —1 otherwise.

The play operator F, incorporates the memory of all relays R, , with |z —y|=2r
Lemma 2.3  For each r >0 and each s € R there holds

‘ 1, Fog(ve,...,ow) > s, ’
Rs—-r,s+1‘,]’(”07""vN)_ { —‘l, fr,f(”Uy--'v‘”N)<57 (211)

for every N > 0 and every string (vy,...,vn) € 5.

Proof. We set wn = Fr ;(vo,...,0N), pN = Ryersirs(vo,...,vn) and use induction on
N . For N =0, the assertion follows from the definitions. We provide the induction step
N —1 — N. Assume that vy > vy_;. By (2.8) and (2.9) we have that

wy = max {wy_;, vy — T} . (2.12)
According to the right hand side of (2.11), we distinguish two cases:

o If s < wy, then we have either wy = wy_; and py_y =1, 0r wy = vy — 7 and
s+ 1 <wvy. In both cases, py =1 follows from (2.10).

e Assume that s > wy. Then we have s > wy_; and hence py_; = —1; on the
other hand, s +r > vx. Together, this implies that py = —1.

2w_, represents the internal state before v(0) is applied at time ¢t = 0.
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If we insert (2.11) into the defining formula (1.6) of the Preisach operator W, we get

+oo  pFr(v)(t) 400 ptoo
W[v](t):/U /_w w(r,s)dsdr—/ﬂ /r[u](t)w(r,s)dsdr (2.13)

for any input v € Cp,[0,T]. Therefore, the Preisach operator can be expressed in terms
of the play operator as

WEI) = [ a(r, FL)(0) dr + oo, (2.14)

where

q(r,s) = Z/OSw(r,o)da, (2.15)

P /U+oc (/_(;u,'(r,(r)(la - /Uﬂw(,-.a)dn) dr . (2.16)

Note that ggo = 0 if w(r,s) =w(r,—s) forall r and s.

Next on the list is the elastic-plastic element &, . The following definition formalizes
the picture in Figure 2.

Definition 2.4  Let r» > 0 be given. We define the hysteresis operator &[-; w_,] for
the initial value w_; € R by its final value mapping &, ;: Sy — R given recursively by

gr.f(”()) = e (vo—w_y),
Er.i(vos o545 vn) = e (on —ono1 + & p(vos -y vN-1)), (2.17)
where
e,(v) = min {r,max {—r,v} }. (2.18)

Again, we assume w_; = 0 if not stated otherwise, and write &, [v] instead of & [v; 0].
o

Lemma 2.5 We have
Fe + & =1d. (2.19)

More precisely, for every v € C,,,[0,T] and every w_; € R there holds
Folvo;w_y] + Efv;wq]=v. (2.20)

Proof. From the identity
v— fi(v,w) =e.(v—w), (2.21)

which holds for all v,w € R, one easily computes that

Frs(vo,..yon) + Es(vo,... o) = VN . (2.22)



As an immediate consequence, the Prandtl operator W from (1.5) becomes (note that

Fo=1id)
Wl = [7pr) &) dr
[T prrar - mplw) = [T pe) Flol@ydr (2.23)

The representations (2.11), (2.14), (2.20) and (2.23) show that the values (F.[v](t)),>0
play a crucial role in determining the output W[v](¢) for all hysteresis operators consid-
ered so far in this section. In fact, these values contain the whole memory information at
time t needed to determine the future, i.e. to determine W[’U][L’T] from v 7. In order
to see this and to understand the memory evolution, let us consider an arbitrary input
string (vo,...,on) € 5. It successively generates the memory curves 1 : Ry — R,

Yr(r) = Frgp(voy... ), 0ZESN, (2.24)
through the update

be(r) = fe(vr, Yre=1(r))
= max {vg —r, min{vx +r,p_1(r)}}, 0<k<N. (2.25)

Here, the function ¥_; : Ry — R represents the initial memory values for the whole
family (F.);>0. Formula (2.25) shows that, as long as |[)j_;||« < 1, the graph of the
new memory curve . consists of a straight line segment with slope sign(vi_; — vx)
originating at the point (0,v), and of a portion of the old memory curve ._;, joined
at their meeting point. Consequently, if we start with a suitable initial curve ¥ _;, the
curve ¥, continuous and consists of at most & straight pieces of finite length with slope
alternating between +1 and —1, and of a portion of the initial curve extending to infinity
to the right. More precisely, we take 1»_; from the set

Yo={p: Ry =R | |o(r) — (@) <|r -7, foralrsr>0,
Pllpe) =0, forsome p >0}, (2.26)

which we call the set of Preisach memory curves. It is easy to check that v € Wy for all
koif o) € Wy,

In Preisach’s original paper [35] we already find a picture of the memory curve and
a brief informal description of its evolution. We therefore call operator of Preisach type
any operator whose memory. structure is governed by that memory curve.

Definition 2.6  Let W : (,,,[0,t5] — Map([0,tg]) be a hysteresis operator. We say
that W is of Preisach type if its final value map Wy : S — R has the form

Wi(vo, .o on) = Qs (vos- - on)) s (Vs(V0s- ooy vn))(F) = Frpl(vos-ryon),  (2:27)

for some mapping @) : V¥, — R, called the output mapping of ), and some initial
condition 1_; € Wy. Equivalently, we may write (2.27) as

WJ(t) = Q(t)), b(t)(r) = Flosd(r)](t), te[0,T], r>0. (2.28)

If oy =0, wecall W a Py—operator.



To illustrate Definition 2.6, we specify the mapping @ for the Prandtl model (1.5)
and the Preisach model (1.6). For the Prandtl model we have

Q) = pog(0) = [~ p()pr)dr, po= [ p(r)dr, (2.29)
0 0
whereas for the Preisach model we get
Qo) = [T ol dr 4, glrs) =2 [ w(r,0)ds, (2:30)

where qqp is given in (2.16).

Note that the definition of the class of all Prandtl respectively Preisach operators is
not quite unique, since one has to specify the class of allowed density functions (or, more
generally, measures). No such element of arbitrariness is present in the definition of a
‘Po-operator.

In the hysteresis diagrams considered so far, all curves are monotone, so the output
W(v] will be monotone on any time interval where the input » is monotone. In that
case, W maps M, [0,7T] into itself.

Definition 2.7 A hysteresis operator W is called piecewise (strictly) monotone, if its
level functions [y : R — R defined by

In(v) = Wy(vo, ..., vn=1,v) (2.31)
are (strictly) increasing functions for any N € Ny and any (vg,...,vn_1) € Sg . o

The operators F,, & and R,, are obviously piecewise monotone. The Prandtl
and the Preisach operator are piecewise monotone, if their densities p respectively w
are nonnegative functions - in both cases, however, the nonnegativity is not necessary
and can be relaxed, see Proposition 4.8 for the Prandtl operator and Proposition 4.9 for
the Preisach operator. A general hysteresis operator of Preisach type W is piecewise
monotone, if its output mapping @ is order preserving, i.e. if p; < ¢, , to be understood
pointwise, implies that (¢1) < Q(g2). Again, this condition is not necessary, as (2.29)
immediately demonstrates.

3. Continuity and Regularity

We start with a general remark. In connection with hysteresis operators, estimates of the
sup norm and of the total variation are very natural, because both are compatible with
the rate independence property in the sense that

Wl o @l = IWlo] 0 @l = IW[0]] (3.1)
as well as
Var (W[v o ¢]) = Var (W|[v] 0 ¢) = Var (W[v]) (3.2)
hold for the time transformations ¢ considered in the definition of rate independence.

Since the play operator appears here as the basic scalar hysteresis operator, it is
natural to study its continuity and regularity properties first.



