Object-Oriented
Software in C+ +

Object-Oriented
Software in. C+ --

Michael A. Smith
Senior Lectarer i
. University of Brighton
boc UK e

CHAPMAN & HALL \ _
London - Glasgow - New York - Tokyo - Melbourne - Madras

Published by Chapman & Hall, 2-6 Boundary Row,
London SE1 8HN, UK

Chapmen & Hall, 2-6 Boundary Row, London SE1 8HN, UK~

Blackie. Academic & Professional, Wester Cleddens Road, -
Bishopbriggs, Glasgow G64 2NZ, UK

Chapman & Hall Inc., One Penn Plaza, 41st Floor, New York
NY 10119, USA

Chapman & Hall Japan. Thomson Publushmg Japap, Hirakawacho
Nemoto Building, 6F, 1-7-11 Huukcwa—cho Chavoda-ku, Tokyo 102,
Jspan

Chapman & Hall Australia, Thomas Nelson Austrdia. 102 Dodds
Street, South Melbourne, Victoria 3205, Australis

Chapman & Hall India, R. Seshadri, 32 Second Main Roed, CIT East,
Madras 600 035, India

First edition 1993
Reprinted 1994

© 1993 Michael A. Smith

Typeset in 10/12 pt Times by the author using Word S on a
Macintosh Quadra,
Prihteq in Great Britain by The Alden Press, Oxford

ISBN O 412 55380 5

SPARC is a registered trademafk of SPARC International, Inc.
UNIX is a‘registered trade mark of UNIX Systems Laboratories, Inc.
Sunis a trqdemark of Sun Microsystems, Inc.

Apart from any fair dealing for the purposes of research or private .
study, or criticism or review, as permitted under the UK Copyright
Designs and Patents Act, 1988, this publication may not be
reproduced, stored, or transmitted, in any form or by any means,
without the prior permission in writing of the publishers, or in the case
of reprographic reproduction only in azcordance with the terms of the
licences issued by the Copyright Licensing Agency in the UK, or in
accordance with the terms of licences issued by the appropriate
Reproduction Rights Organization outside the UK. Enquiries concerning
reproduction outside the terms stated here should be sent to the
publishers at the London address printed on this page.

The publisher makes no representation, express or implied, with
regard to the accuracy of the information contained in this book and
cannot accept any legal responsibility or liability for any errors or
omissions that may be made.

A catalogue record for this book is available from the Bi‘itish'Library
Library of Congress Catalogirig-in-Publication Data available:

N
‘oo Printed on permanent acid-free text paper, manufactured in

accordance with the proposed ANSI/NISO 4 39 48- 199X and ANSI Z
39.48-1984 *

~
B
&
I

~ Preface .. .o

This book is aimed at programmers who wish to icam the object onemcd language C++.
A knowledge of C, the ancesual language of C++,7is not a requiremcnt, as the book
assumes no previous kriowledge o this language.

The first two chapters concentrate on the basic constructs in the C++ languagc The
book then moves on to discuss the object oricnted features of the language, using
.numerous examples to illustraic the ideas of encapsulation, inheritance, and
polymorphism. In illustrating thesc ideas, the discussion is initially restricted to the high
level features of the language. Templates are introduces at an early stage to encourage
users to write re-usable classes.

Once these more fundamental points have been explained, the book then looks at the
low level features of the language, in particular address arithmetic. The intreduction of
address arithmetic and pointers is deliberately deferred until the later chapters of the
book, in order to encourage users of the language only 1o employ these features using
the class mechanism. Various classcs using pointers have been included 1o illustrate the
use of these features to build constructs that can easily and safely be used by a
programmer. There follows a chapter on descripiors, explaining how to build efficient
implementations of complex data structures.

Separate chapters are devoted to container objects and persistence of objects. The
book concludes with chapters on the attribuies of a C++ prograr, and a suinmary of the
important constructs,in the language.

Sclf assessmient questions and excreiscs are suggested for the rcader at various points
throughout the book.

The book describes version.3 of the C++ language, the programs used te illusirate
the language have been tested using a varicty of compilers, inciuding version 3.1 of the
Borland compiler. Appendix 1 lists suggested changes to some of the programs to allow
them to be run using version 3 of the AT&T compiler and version 7 of the Microsoft
C++ ccmpiler. The changes usually take the form of a ‘work round' for a language-
feature not currently supporied by these compilers.

‘Thanks to: Prof. Dan Simpson for cncouragement and the loan of a quadra on which
this book was produced, Brian Bailey, Corinna Lord, Dominic De Vitto, Franco Civello,
John English, Paui Taylor, Phil Siviter, Richard Miichell, Sara English, BA4 and B5c2
199273 for many helpful suggestions-and comments. In particular Corinna for putting up
with long hours in thc compulcr room’ .md many usjul suggestions on presenmuon
and style. ;

The source code for thc all the cxample programs used in this book, is available
using anonymaous FTP at the net address unix.brighton.ac.uk in the directory
pub/ma's. Alternatively, conict the author by email at the address given below with a
request for the source code. '

Michael A Smith
~ . Brighton, Apiil 1593

mas@unix.brighton.ac.uk

xii Preface

The example programs shown in this book foliow the conventicns:

ltem in program Example N 'C;!IH'_N!‘:G?E used 7
class meinber fenction | deposit ic o lower case '
“¢lass member var{éblc the_balance! Staris with “the " and is n lower-case
class name . - Account Staris with ai vpper-case eiter
const MAX "‘hx in upper-case’
cauineration TRUE 1s in upper-case N
MACro Nane NAME Is'in upper-case
parameier name amount 1 Isin Iowc.*;—c#’sc il]
tvpedef noﬁleuﬁ Starts wah anzllppcft;c'ase letter
variable name mine - I\ in iowcr-:cva‘se k

p_ch A pointer to an item will stari with ‘p_’

L .

Glossary of terms used

ADT

Abstract Data Type. The separation of.a data type into two
components: -
« the public vperations all')wcd on instances of the type.
< the private phyxmdl unplt.mcmanon of the type.
(Data representation and the implementation of operations
allowed on the dataitems)

3
J

A language originally designed by Derinis Ritchic used to
rewrite the Unix operating system. C++ 18 almocl a supcrset
of this language. 5

Class

The specification of data iiems and the functions that are
allowed 1o operate on these data items. A class allows the
user the ability to define a new data type;-with the functions
in the class defining the operations that are allowed on
instances of the new data type.

A class can also be used to encapsulate functions and data
iems.

Compile time
constant

An expression that the compiler can resolve to a consiant
during the compilation process. For u‘amplu, 2+3*7" is a
compile time constant, whereas “cost + 10’ is not.

Prcface xiii

anapsulatilon

The grouping of data and the operations that may be
performed on that daw inio 2 single unit that provides a
limited view of the opezations aliowed on the data items.

Informaticn Hiding

Allowing a user of an ancapsulated ilem only a limited view
of the items centained within the encapsulation.

Inheritance

The creaiion of a new class using the compoenents from an
existing class

Insiance

The creation of a physical instance {object) of & data type.
For example in the declaration;

: Account ming;) 1

mine 15 an instance of the type Account.

Iisstantiation

The creation of an object which deals with a specific type of
iiem from a template class.

[Safe_vec <int> vector,]

vector is an imstantation of the class Sate veo <int >,

i

Message

The name of an operation and any arguments required by the
operation. e :

Mecthod

The algoritiun (code) inside an object that processes a
message. ;

Object

An instance of a class.

Object Oriented

Using the concepts of objects, classes, inheritance and
polymorphism.

Polyinorphism

The ability to send a message to any object and have the
object respond using its definition of the operation requested.
For example, instances of the classes Diagram and Tex
would respond differently to the message display .

Type safe

The compiler verifying that the use of instances of a type in a
program is appropriate.

“ontents i s gt

Preface ¢
1 Introduction - part 1
' 121 A first C++ program
1.2 A larger C++ program
1.3 Repetition: while LT o
1.4 Sclection: if '
e Other repetition constructs
1.6 Other selection construets ¢

1.7 [nput and output
1.8 The , operator
1.9 Self-assessment
1.10 Exerciscs

2 Introduction - part 2 il
21 Introduction
22 Declarations of data itcms
23 Fundamental types of C+4'
24 Typedef
25 Const declarations
26 - Enumerations
2.9 Arithmetic operators
28 Relational operators in C++
29 Logical operators
2.10 Bitwisc opcrators : i TS
2.11 The sizcof operator EVETER IO HOUEINGS :
2.12 Promotion of variables ¥ %
2.13 Casts L
214 Shortcuts increment and decrement
215 Expressions
2.16 Summary of operators
2.17 - Sclf-assessment’
2.18 Excrcises)

"3 Classes) o

3.1 Introduction GHORIE DO 2% 61y
32 The class - .
33 Functions
34 ¢ Visibility of class members
35 Declaration of a class, together with an' instance of the class
36 . An clectronic bank account
3.7 Sell-asscssment
3.8 Exerciscs

36

-vi

Contents

4.1

43
44
45

Separating interface from
implementation
Encapsulation

Separate compilation of classes
Re-use

Self-assessment

Exercises

Functions

Introduction

Local variables '

Returning a result to the operating system
Function prototype

Call by value/call by reference

Const parameters (o a function

Recursion

Inline vs. out of line code

Overloading of functions

Different number of parameters

Default values to parameters

Matching a function call w a function declaration
Function templates

Order of function matching (overloaded funcuons)
Self-assessment

Arrays v o S IR

Arrays nigYoGT |
Use of arrays -
Representation of arrays .

Passing arrays as parameters to-a funcuon
Initializing arrays of obiects

Case study: a histogram

A stack buiit using an array

Templates (building generic classes)

A computerized bank system
Self-assessment

Exercises

Static variables and functions
Static variables
Sclf—assessmcnt

A case study using OOD

Four counters i wiid :
Self-assessment ’ et 220
Exercises

o,

10

1t

12

10.1
10.2
10.3
104
10.5
10.6
10.7
10.8
10.9

- i
— - s
L)' BN nie

114
1.5
116

12.1
12.2
12.3
124

25

12.6
12.7
12.8
129
12.10
12.11
12.12
12.13
12.14

Excrciscs

Contents

: lnhen(ance = = 113
A savings accoum : ; 13
Call of a constructor in lhc b.ls’e 1 SO 116
A saving account with ticred mtcrc..'l rates - 117
Visibility of classmembers -~ ' : 5y 120
Constructors and destructors . Srt 122
A class 10 describe a room : 122
A class 10 describe an office 124
Multple inheritance : 125
Static binding ; 128
Inherited functions 4 128
Inheritance of the same base cl.m 129
Sclf-assessment 131
Defining new operators 133
Defining operators in C++ 133
The class Moncy , © 133
*this the current instance of a class 135
Declaration of instances of aclass wnh an mmal valuc(s) 135
Class constants . 137
Use of friend functions - 139
Conversion operators - _ 142
lmml:zmg arrays of objecm 147
A stiing class 148
Pol_ymorphis'm e 153
Virt : functions 153
A bank account 156
An abstract class for a bank cccount’ 157
A derived interest-bearing uccount 150
A derived higher interest accoum 161
Advantages and disadvantages of poly:e./phism 167
Pointers 169
Introduction 169
Class component *this 171
Usc of pointers in C++ 171
. From arrays (o pomters 172
- Pointers s, arrays., : 174
Dynamic storage- allocauon 177
Use of dynamic storagc 179
Structs 183
Dynamic vs. static siorage allocuz.on ; 184
Overloading the operators new and delete 184
Opcrators .* and ->* 186
Pointers and polymorphism 188
Seif-asscssment 190

190

vii

_vili Contents
13 . - Declarations ; 193 -
© 13.1 . Storage declarations of denved typcs , 193 1
132 Structures allocated - 194
133 ~ Function prototypes , ’ 195
134 . Formal paramcter dcclarauons 196 |
13.5 Union- 197
13.6 ‘Bi-field - | _ . " 197
14 Safe arrays in C++ ; 199
14.1 Introduction : 199
142 . A safe vector . - ' i 200 |
143 Asalc two—d:mcnsnonal army ' 203 /4
144 Assocnauw: arrays. ~ - 207
15 ' ‘Macros. . : 213
15.1 -~ Introduction . : .. 213 9
152 Source inclusion of i Iés _ : 213- 4
15.3. Text substitution . ; 213
154 - Conditional compilation, . : 215
" 15.5 Predefined names ‘ 218
156 . Overuse of macros : ' 218
157 Inclusion of hcader fi les. ' 219
15.8 Parameter specification: variable’number of parameters 220
15.9 Fakmg parameterized types., ‘ . 221
16 C style mput/output in C+1+_ 225
161 Passingdatatoa C++ program Ky 225
16.2 Access to C functions in a C++ progmm 226
16. 3 Case swdy a text file de-archiver 221
17 : Descriptors o . - 239
17.1 Bescriptors A 239
17.2 A number class :mplemcmcd using descriptors 240
173 Set implemented by descriptor. ; 245
17. 4 Exercises - ' ,- 252§
18 Containers and lterators ' #. 253 .1
18.1 . Containers . A . 23
182 AclassforaBag 4 ' %+ 255
183 Specification and implementation : 259
18.4 A class for an ‘iterator far the bag’ A 260
18.5 Using different implementations ofabag = 266
18.6 - Self-asscssment 268
18 7 Exercises - i o . 269
19 Persnstence of objects e i 271
19.1 Inwroduction ! o . 211
_ 192 Overview of process : L 271
. 193 The process ™ ! ‘ 272
194 Making objects pcrsnsu:nc the class Float 274
19.5 Saving objects to disk 276

19.6 Exerciscs _ 278

20

Index

Attributes - TR 2719

20.1 - Introduction 279
202 Lifeiimg T I
203 . Llnkage .. ' - 281
.0 204 Scepe - , 282
205 " Visibility : - 283
= 20.6 Sterage class . 283
“TR0F 0 Modifi ers ’ S 284
. 208 = Type ' ; 285"
209 - . Run- llmc ‘exccution of 4 program 3 ; . 286
21 C++:2 summary ' \ 291
© 2L1:. Declarations in C++ ' 291
212 Array declargtion _ : < 29%
213 Enumcration declaration - 291
214 Class declaration and lmplcmcnmuon . 291
21.5 . Inheritance 292.
216 Staiement cxpressions ' 292
21.7 Compound statcment f ' 292
218 Sclection statements ' 292
219 Looping. statcments 293
21.10 Arithmetic operators) . v C293
21.11 Conditiongl cxpressions e 293
21.12 Logical operators - ‘ ; . C 294
. 2143 Short cuts) : 294
21.14 Exits from loops . 294
21.15 Skip-to wp of loop 294
21.16 = Address operations - 295
Appendlces ‘ 297
Appendix A: C-++ style mpm./outpm ' , : 297
Appendix B: C siylc input/output ’ 302
Appendix C: Uscful functions : - 306
Appendix D: Pricrity of operators , 312
Appendix E: String and character escape -;cqucnccs - 313
Appendix F: Fundamental types 3i4
Appendix G: Litcrals in C++ i 315 |
Appendix H: Keywords in C++ . 316
Appendix 1: Compatibility of code ‘ ‘ - 317
Appendix J: References) 318 ..
319

1.1

Introduction - part 1

2

. This chapter looks at-some very.simple C++ pf:)‘gréms.'lﬁ‘ introducing these
programs the basic control structures of C++ are presented.

A first C++ program R S R

Like most books on programming, this too starts off with an example program that
writes a successful greeting to the user’s terminal: e :

2

#include <iostream.h>

void main()
{ " :
cout << "Hello world": <. "Xn"u

)

which would display the following message on a user's terminal when the program was
run: ' ‘

Hello world

i

In the above example program, { and } are used to bracket the body of the function
main. This contains the expression cout << "Hello world" << "\n"; which
writes the string "Hello world" followed by a newline to the current output stream
cout. This can be thought of as sending the messages "Hello world" and kAN o
to the object cout. Normally cout would be ‘attached’ to the terminal. .Figure 1.1
shows the structure of a C++ program. ‘

N(}tve:z "\n" is simply the C++ way of expressing a string composed of the newline
" character. The \ character is used to specify that the next character has a special

meaning, in this case newline. A full list of escape sequences is given in appendix
E. = - - S - =

The line #include <iostream.h> is not part of the C++ language. It is a
directive to the pre-processor to replace this line by the contents of the file
iostream.h. This file contains definitions about the input output process. It is
usually held in one of the system directories of the computer system. This line must -
always start in column 1. ’

2

1.1.1

Introduction - part 1

&

Used to include input and

/ output definitions in the program
#include <iostream.h>

void main()

@ello worldD

Figure 1.1 The structure of a C++ program.

Defines the entry point for the
program 'The function main" .

Executed statement

- Terminates the function main

The types of the items that are to be output may be mixed as in the case below. The

C++ compiler uses the item'’s type to select the appropriate output form.

\

void main()
{ y
cout << "The Sum of 1+2+3 is " << 1+2+3 << "\n";

|

Which would produce the following output when run:

The Sum of 1+2+3 is 6

Format of a C++ Program

A C++ program can be written without regard to format provided that the individual

components that make up the program can be recognized. For example the following is
a valid C++ program:

#include <iostream.h>

void main(){cout<<"Hello world"<<"\n";}

Note: The directive # include must be on a line by itself and start in column 1.
At least one white space character, for example space is required between any

words that are alphabetic such as void and main, so that they can be individually
distinguished.

A larger C++ program 3

1.1.2 Comments

1.2

C++ has two ways of introducing a comment into a program. Firstly:

/* An example comment */

Here the comment is brackcte‘d between /* and */ although it is more usual to write this
in the form:

/*
* This program is a simple test of the C++ compiling system
* and writes out the message Hello World to the terminal
*/ ' ‘

- s -

Note: The I* *! comment delimeters.may not be nested.

Secondly:

// The rest of the line is a comment

"’He& thé comiment is introduced by // and is tcrrfninated by the newline.

Note: It is good programming practice to comnient -any code section that is not
immediately obvious to a reader of the code.

A larger C++ program

A complete program to produce a 'count dowr' is shown below. In this program various
constructs that affect the flow of control are introduced.

#include <iostream.h>

void main()

{ .
int countdown=10;
while (countdown > 0)
{ ; "
cout << countdown << "\n";
if (countdown == 3)

{ .
it cout << "Ignition" <<iM\n";
}

.. . countdowu- -,
)

cout << "Blast Off" << "\n";

4

1.3

Imtroduction - part 1

When run this would produce:

e

gnition

HFOHWBUON®DWOS

Blast Off

Repetition: while

while (countdown > 0)

{

}

The above statement repeatedly executes the code between { and } until the
condition countdown > 0 is no longer true.

Note: The ()s around the condition are mandatory

The { zad } bruckeis are only required if there is more than one statemeni to
execute repeatedly. Many people, however, would vulways put in ihe {} to show
the bounds of the loop. '

Selection: 1%

"t if (countdown == 3) By ; ¢

{

.

T viesthe o hatween {and }if the condition countdown == 3 is true.

Noie: quality is writter == _
This can lead to many mistakes, as it is easily confused with assignment , which
is writien as = '
yA conditional expression will deliver 0 if false and 1 if true. As these are integer
values, 0 may be used as false and 1 may be used as true.

Other repetition constructs 5

‘ In fact any value other than 0 is taken to be true, as in the case below:

if (countdown)
cout << "Not yet zero" << "\n";

Note: As only one statement was selected to be executed when the condition was true
the enclosing { and } were not required. - '

--IA.I if else

An elsg part may-be added to an if statement as follows:

if (countdown)
cout << "Not yet zero" << "\n" ;
else
‘cout <<''"Now zero" << "\n"';

P

i Note: - T TS0
i Must be included ‘

,4}, (_countdown) ; / A\

cout << "Not yet zero" << '\n'(::> d

else
cout << "Now zero" << "\n" ;

The ; before the else must be present as it terminates the previous statement.

- 1.5 Other repetition constructs
151 for

The for statement.in C++ is written. as:

.

for (int countdown = 10; countdown > 0; countdown--)
{ 5

Note: The variable controlling the for loop countdown’may be declared inside the

()s.

1.5.2

Introduction - part 1

which in this example steps countdown through the values 10 to 1. This is equivalent to
the following while statement:

int countdown = 10;
while (countdcwn > 0)

{

countdown--;

Note: countdown--; isthe C++ idiom for : countdown = countdown - 1;
In the for statement any of the components-between the ;5 may be omitted.

do while

In some cases it is a requirement that the loop is executed at least once, in which case
the do while statement may be used. For example, the above for statement could in
this case have been written as:

int couﬁtdown ="10;
do
{

countdown--;
} while (countdown > 0);

1.6

1.6.1

Other selection constructs
switch

The following rather inelegant series of i f statements may be combined:

“else

if (~number == 1)
cout << "One";

else if (number == 2)
cout << "Two";

else if (number == 3)
cout << "Three";

cout << "Not One,Two or Three";
cout << "\n";

