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~ Preface .. .o

This book is aimed at programmers who wish to icam the object onemcd language C++.
A knowledge of C, the ancesual language of C++,7is not a requiremcnt, as the book
assumes no previous kriowledge o this language.

The first two chapters concentrate on the basic constructs in the C++ languagc The
book then moves on to discuss the object oricnted features of the language, using
.numerous examples to illustraic the ideas of encapsulation, inheritance, and
polymorphism. In illustrating thesc ideas, the discussion is initially restricted to the high
level features of the language. Templates are introduces at an early stage to encourage
users to write re-usable classes.

Once these more fundamental points have been explained, the book then looks at the
low level features of the language, in particular address arithmetic. The intreduction of
address arithmetic and pointers is deliberately deferred until the later chapters of the
book, in order to encourage users of the language only 1o employ these features using
the class mechanism. Various classcs using pointers have been included 1o illustrate the
use of these features to build constructs that can easily and safely be used by a
programmer. There follows a chapter on descripiors, explaining how to build efficient
implementations of complex data structures.

Separate chapters are devoted to container objects and persistence of objects. The
book concludes with chapters on the attribuies of a C++ prograr, and a suinmary of the
important constructs,in the language.

Sclf assessmient questions and excreiscs are suggested for the rcader at various points
throughout the book.

The book describes version.3 of the C++ language, the programs used te illusirate
the language have been tested using a varicty of compilers, inciuding version 3.1 of the
Borland compiler. Appendix 1 lists suggested changes to some of the programs to allow
them to be run using version 3 of the AT&T compiler and version 7 of the Microsoft
C++ ccmpiler. The changes usually take the form of a ‘work round' for a language-
feature not currently supporied by these compilers.

‘Thanks to: Prof. Dan Simpson for cncouragement and the loan of a quadra on which
this book was produced, Brian Bailey, Corinna Lord, Dominic De Vitto, Franco Civello,
John English, Paui Taylor, Phil Siviter, Richard Miichell, Sara English, BA4 and B5c2
199273 for many helpful suggestions-and comments. In particular Corinna for putting up
with long hours in thc compulcr room’ .md many usjul suggestions on presenmuon
and style. ;

The source code for thc all the cxample programs used in this book, is available
using anonymaous FTP at the net address unix.brighton.ac.uk in the directory
pub/ma's. Alternatively, conict the author by email at the address given below with a
request for the source code. '

Michael A Smith
~ . Brighton, Apiil 1593

mas@unix.brighton.ac.uk



xii  Preface

The example programs shown in this book foliow the conventicns:

ltem in program Example N 'C;!IH'_N!‘:G?E used 7
class meinber fenction | deposit ic o lower case '
“¢lass member var{éblc the_balance! Staris with “the " and is n lower-case
class name . - Account Staris with ai vpper-case eiter
const MAX "‘hx in upper-case’
cauineration TRUE 1s in upper-case N
MACro Nane NAME Is'in upper-case
parameier name amount 1 Isin Iowc.*;—c#’sc il ]
tvpedef noﬁleuﬁ Starts wah anzllppcft;c'ase letter
variable name mine - I\ in iowcr-:cva‘se k

p_ch A pointer to an item will stari with ‘p_’

L .

Glossary of terms used

ADT

Abstract Data Type. The separation of.a data type into two
components: -
« the public vperations all')wcd on instances of the type.
< the private phyxmdl unplt.mcmanon of the type.
(Data representation and the implementation of operations
allowed on the dataitems)

3
J

A language originally designed by Derinis Ritchic used to
rewrite the Unix operating system. C++ 18 almocl a supcrset
of this language. 5

Class

The specification of data iiems and the functions that are
allowed 1o operate on these data items. A class allows the
user the ability to define a new data type;-with the functions
in the class defining the operations that are allowed on
instances of the new data type.

A class can also be used to encapsulate functions and data
iems.

Compile time
constant

An expression that the compiler can resolve to a consiant
during the compilation process. For u‘amplu, 2+3*7" is a
compile time constant, whereas “cost + 10’ is not.
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anapsulatilon

The grouping of data and the operations that may be
performed on that daw inio 2 single unit that provides a
limited view of the opezations aliowed on the data items.

Informaticn Hiding

Allowing a user of an ancapsulated ilem only a limited view
of the items centained within the encapsulation.

Inheritance

The creaiion of a new class using the compoenents from an
existing class

Insiance

The creation of a physical instance {object) of & data type.
For example in the declaration;

: Account ming; ) 1

mine 15 an instance of the type Account.

Iisstantiation

The creation of an object which deals with a specific type of
iiem from a template class.

[ Safe_vec <int> vector, ]

vector is an imstantation of the class Sate veo <int >,

i

Message

The name of an operation and any arguments required by the
operation. e :

Mecthod

The algoritiun (code) inside an object that processes a
message. ;

Object

An instance of a class.

Object Oriented

Using the concepts of objects, classes, inheritance and
polymorphism.

Polyinorphism

The ability to send a message to any object and have the
object respond using its definition of the operation requested.
For example, instances of the classes Diagram and Tex
would respond differently to the message display .

Type safe

The compiler verifying that the use of instances of a type in a
program is appropriate.
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1.1

Introduction - part 1

2

. This chapter looks at-some very.simple C++ pf:)‘gréms.'lﬁ‘ introducing these
programs the basic control structures of C++ are presented.

A first C++ program R S R

Like most books on programming, this too starts off with an example program that
writes a successful greeting to the user’s terminal: e :

2

#include <iostream.h>

void main()
{ " :
cout << "Hello world": <. "Xn"u

)

which would display the following message on a user's terminal when the program was
run: ' ‘

Hello world

i

In the above example program, { and } are used to bracket the body of the function
main. This contains the expression cout << "Hello world" << "\n"; which
writes the string "Hello world" followed by a newline to the current output stream
cout. This can be thought of as sending the messages "Hello world" and kAN o
to the object cout. Normally cout would be ‘attached’ to the terminal. .Figure 1.1
shows the structure of a C++ program. ‘

N(}tve:z "\n" is simply the C++ way of expressing a string composed of the newline
" character. The \ character is used to specify that the next character has a special

meaning, in this case newline. A full list of escape sequences is given in appendix
E. = - - S - =

The line #include <iostream.h> is not part of the C++ language. It is a
directive to the pre-processor to replace this line by the contents of the file
iostream.h. This file contains definitions about the input output process. It is
usually held in one of the system directories of the computer system. This line must -
always start in column 1. ’
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1.1.1

Introduction - part 1

&

Used to include input and

/ output definitions in the program
#include <iostream.h>

void main()

@ello worldD

Figure 1.1 The structure of a C++ program.

Defines the entry point for the
program 'The function main" .

Executed statement

- Terminates the function main

The types of the items that are to be output may be mixed as in the case below. The

C++ compiler uses the item'’s type to select the appropriate output form.

\

void main()
{ y
cout << "The Sum of 1+2+3 is " << 1+2+3 << "\n";

|

Which would produce the following output when run:

The Sum of 1+2+3 is 6

Format of a C++ Program

A C++ program can be written without regard to format provided that the individual

components that make up the program can be recognized. For example the following is
a valid C++ program:

#include <iostream.h>

void main(){cout<<"Hello world"<<"\n";}

Note: The directive # include must be on a line by itself and start in column 1.
At least one white space character, for example space is required between any

words that are alphabetic such as void and main, so that they can be individually
distinguished.



A larger C++ program 3

1.1.2 Comments

1.2

C++ has two ways of introducing a comment into a program. Firstly:

/* An example comment */

Here the comment is brackcte‘d between /* and */ although it is more usual to write this
in the form:

/*
* This program is a simple test of the C++ compiling system
* and writes out the message Hello World to the terminal
*/ ' ‘

- s -

Note: The I* *! comment delimeters.may not be nested.

Secondly:

// The rest of the line is a comment

"’He& thé comiment is introduced by // and is tcrrfninated by the newline.

Note: It is good programming practice to comnient -any code section that is not
immediately obvious to a reader of the code.

A larger C++ program

A complete program to produce a 'count dowr' is shown below. In this program various
constructs that affect the flow of control are introduced.

#include <iostream.h>

void main()

{ .
int countdown=10;
while ( countdown > 0 )
{ ; "
cout << countdown << "\n";
if ( countdown == 3 )

{ .
it cout << "Ignition" <<iM\n";
}

.. . countdowu- -,
)

cout << "Blast Off" << "\n";
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1.3

Imtroduction - part 1

When run this would produce:

e

gnition

HFOHWBUON®DWOS

Blast Off

Repetition: while

while ( countdown > 0 )

{

}

The above statement repeatedly executes the code between { and } until the
condition countdown > 0 is no longer true.

Note: The ( )s around the condition are mandatory

The { zad } bruckeis are only required if there is more than one statemeni to
execute repeatedly. Many people, however, would vulways put in ihe {} to show
the bounds of the loop. '

Selection: 1%

"t if ( countdown == 3 ) By ; ¢

{

.

T viesthe o hatween {and }if the condition countdown == 3 is true.

Noie: quality is writter == _
This can lead to many mistakes, as it is easily confused with assignment , which
is writien as = '
yA conditional expression will deliver 0 if false and 1 if true. As these are integer
values, 0 may be used as false and 1 may be used as true.
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‘ In fact any value other than 0 is taken to be true, as in the case below:

if ( countdown )
cout << "Not yet zero" << "\n";

Note: As only one statement was selected to be executed when the condition was true
the enclosing { and } were not required. - '

--IA.I if else

An elsg part may-be added to an if statement as follows:

if ( countdown )
cout << "Not yet zero" << "\n" ;
else
‘cout <<''"Now zero" << "\n"';

P

i Note: - T TS0
i Must be included ‘

,4}, (_countdown ) ; / A\

cout << "Not yet zero" << '\n'(::> d

else
cout << "Now zero" << "\n" ;

The ; before the else must be present as it terminates the previous statement.

- 1.5 Other repetition constructs
151 for

The for statement.in C++ is written. as:

.

for ( int countdown = 10; countdown > 0; countdown-- )
{ 5

Note: The variable controlling the for loop countdown’may be declared inside the

()s.



1.5.2

Introduction - part 1

which in this example steps countdown through the values 10 to 1. This is equivalent to
the following while statement:

int countdown = 10;
while ( countdcwn > 0 )

{

countdown--;

Note: countdown--; isthe C++ idiom for : countdown = countdown - 1;
In the for statement any of the components-between the ;5 may be omitted.

do while

In some cases it is a requirement that the loop is executed at least once, in which case
the do while statement may be used. For example, the above for statement could in
this case have been written as:

int couﬁtdown ="10;
do
{

countdown--;
} while ( countdown > 0 );

1.6

1.6.1

Other selection constructs
switch

The following rather inelegant series of i f statements may be combined:

“else

if (~number == 1 )
cout << "One";

else if ( number == 2 )
cout << "Two";

else if ( number == 3 )
cout << "Three";

cout << "Not One,Two or Three";
cout << "\n";




