TABLE OF CONTENTS

View Implementation of Deductive Axioms with Negation
— Y. Uckan

The Enumeration of (r + 2)-paths in a Boolean Cube
- S Latifi

Planning Monotone Watchman Paths
- L.P.Gewali

A New Raster to Vector Algorithm
- Y.P.Chu, M.H. Tasi, and C.C. Yu

Effective Buffering Schemes for Gaussian Eliminations
on Large Sparse Matrices

- C.Kim

Parallel Vector Slant Transform
- M. El-Sharkawy, W. Tsang, and Maurice Aburdene

A New Scheme of Automatic Finite Element Mesh Generation
- X. Yu, J.A. Goldak, and L. Dong

Hadamard Domain NTSC Composite Coding for Bandwidth
Compression
- M. Colef, J. Barba, and J.B. Bai

Building Maintenance Life-Cycle Simulation Models
- E.S. Neely, Jr. and R. Neathammer

Computer Aided Design of Power Distribution Systems:
Multiobjective Mathematical Simulations
- IJ. Ramirez-Rosado, R.N. Adams, and T. Génen

Simulation Models for Automated Storage/Retrieval Systems
- A. Houshyar and I. Chung

Parameter Adjustment of Motor Driven Swing using TUTSIM
- D.E. Knoop and B.K. Lee

Biomechanical Modeling of a Thumb
- H.Chuang

A Performance Model of Processor-Memory Interconnections for
Multiprocessors
- J.WangandS.-S. Chen

An Object-Oriented Entity-Relationship Model
- C.S.Ku, C. Youn and H.~J. Kim

A Generalized Discrete Multidimensional Canonical State-Space
Model for the Heat Diffusion Processes
- A. Moshfegh and R.L. Carroll

Use of Software to Evaluate Explosion Resistant Reinforced
Concrete Structures
- R. Johnson and J.A. Blanchard

10

13

17

21

25

28

32

39

47

51

59

Throughput Enhancement by Multiple Concurrent Instantiations

in the ATAMM Data Flow Architecture

- 8. Som, R. Mielke, R. Obando, J. Stoughton, P.J. Hayes,
and R.L. Jones

Predicting Human-Computer Interface Performance:
A Modification to the Power Law of Practice
- H.A. Sholl, R.A. Ammar, and W.S. Weiss

Concrete Construction of Structured Charts in Yourdon Method
- J.-L. Wang and J.-C. Lin

A Multi-Operand Data Flow Architecture
— D.R. Smith and G.W. Champigny

Loop Optimization Based on Strength Reduction and Code
Motion of Exponential Functions
- E.A. Yfantis and J.M. Lombardo

LEVER: A Logic Extraction and Verification Program for MOS
Circuits
- P.-H.P. Wang and L. McNamee

TAG: A Table-Automation Generator for Recognizing Regular
Languages
- L.D. Gowen and T.E. Lindquist

On Test Elements Reduction Problem and Table Reduction
Method
- J.-C. Linand W.-C. Chen

Robust Multivariable Controller for a Multi-Machine Plant
- P. Xia, A.T. Alouani, and O. Ojo

Tuning Fuzzy Controllers with the Best Covering Method
- G. Abdelnour, C.-H. Chang, and J.Y. Cheung

A Microprocessor Oriented Adaptive Controller for Telerobots
- Y. Stepanenko and J. Yuan

A Testbed for Attitude Control of Walking Robots
- P. Nagy, B.X. Wu, and K. Dowling

A Pipeline Algorithm for Real-Time Robot Control
- W. Mun, J.H. Herzog, C.-S. Kang, and E.K. Park

Computer Aided-Control Validation for a Flexible Link
Manipulator using ANSYS
- N. Mahmood and B.L. Walcott

Automation of an Industrial Machine Through a Low Cost
Stand Alone Controller
- F. Abbas, D. Batistig, and M. Baum

A Two-Beam Flexible Testbed for Non-Collocated Control Studies
- GKF. Lee. S. Strand, and W. Bird

71

75

79

89

97

101

107

111

115

120

124

128

132

134

Interactive Environment for Digital Control System Development
- Y.Y.Tzou

Performance of Microprocessor Based Time Delayed Speed
Control System
- S.A. Deghedie, M.A.M. Abdalla, M. El-Sharkawy

Reliability Analysis of Dynamic Redundant Systems with Imperfect
Coverage
- H. Pham and M. Pham

Neural Networks Applied to Data Analysis
D.L. Hudson, M.E. Cohen, M.F. Anderson, and D.F. Altman

Identification of Submil-defects on Crystal Blanks
- S.T. Bow, P. Chen, and T. Chen

A Case Study in Object-Oriented Systems Analysis and Design
- E.K. Park, A. Tritten, and C.S. Kang

Issues in Design Databases
- M. Kumar and J. Wong

Incorporating Maybe Algebra into the Intensional Database
- L.L. Miller and L. Chu

Towards a Standard Relational Database for an Integrated Ship
Hullform Design, Analysis and Evaluation System
- N. Glinos, N. Anderson, and B. Johnson

An Improved Multi-Branch Tree Structure for Region Queries
- S.J.SuandY.S. Kuo

Load Distribution Parallelism in Finite Element Solution
- S.-H.Jao

A CAD Based Dielectric Resonator Feedback Oscillator Design
- B.Johnson and M. Pan

On Processing Recursive (Transitive Closure) Queries in Indefinite
Deductive Database
- H.D.Kim

Design of an Expert System for the HMA Process
- M. Rao, P. Enteles, and J.A. Epps

A New Approach to Evidential Reasoning by a Potential Model
- C.-C. Wang and H.-S. Don

Expert Control System for Computer Integrated Manufacturing
- S.G. Ramand S.C. Bose

A Modified Perceptron Network and Learning Algorithm
- C.M. Hsiehand Y.P. Chu

An Intensional Query Processor in Prolog
- L-Y. Song and D. Dubin

Learning and Navigation in Unknown Environment
- Shao Shihuang and Xiong Ning

The DSP 56000 for Real-Time Audio Band FIR Filter Implem-
entations
- A.O. Richardson and T.D. Blake

Echo Cancelling in Digital Data Communications using Motorola’s
DSP56000 Family
- J. Yavis and M. El-Sharkawy

The Application of Computer Workstations in Seismic Signal
Processing
- X.Zhao, L. Yang, and Y. Li

138

142

146

150

154

158

162

166

170

174

178

182

185

189

192

196

200

204

208

212

216

A Large-scale Mechanical Filter - The Application of Turbogenerator
Flywheel Coupling
-~ T.P. Tsao, C. Chyn, and H.H. Nien 224

Transaction Processing of a Distributed System Testbed and
its Toolbox
- R.R.Janota, B.J. Desai, J.R. Kenevan, and C.R. Carlson 229

An Adaptive Method to Increase the Throughput in Computer
Networks
- T.S. Tsui, Y.P.Chu, and C.C. Lin 234

The Implicit Recognition of Parallelism by Compiler Optimization
- J.M. Lombardo 238

Plugable Parallel Processing Modules in a Distributed Processing

Environment
- M. Fukushima, M. Ukigai, K. Sugawara, and Y. Miida 242

Performance Study of the Influence of Naming Schemes on Name
Management Service in an Internet Environment
- J.A. Molka and T.F. Znati 246

A Performance Measurement Study for Distributed Systems
- K. Makki and T. Arndt 250

A Test-Bed for Distributed Processing Architectures for Computer
Vision Algorithms
- A.M. Darwish 254

Design of a Ring Type Ethernet Bridge Network
— M. Xu, J.H. Herzog, and C.-S. Kang 261

Secure Communications on a Public Packet Network
- D.R. Smith and D.J. Bristow 265

Partition Control Scheme for Hierarchical MSIMD/MIMD Hypercube
Computers
— M.S. Baig and N.A. Alexandridis 269

A Clustering Control Process for Load Sharing in a Distributed
System
- J.B. Liu 273

Transforming Nested Loops Algorithms for Programming Distri-

buted Memory Multiprocessors

- A. Fernéndez, J.M. Llaberia, J.J. Navarro and M. 277
Valero-Garcia

Economic Load Dispatch Multiobjective Optimization Procedures
using Linear Programming Techniques on Personal Computers
- A Farag 281

Industrial Power System Analysis using Personal Computers
- A Farag 286

Microcomputer Aided Mine Exploitation Planning
- 8. Wang, S. Deng, B. Chen, X. Zhou, R. Zi, G. Zhu,

Q. Zhou, and J. Cui 290

A Decision Support System for International Maritime Law
- G. Quirchmayr and J.-C. Posselt 294

Another Distributed Artificial Intelligence Framework
- 8. Vranes 297

Features Automatically Extracted from Visual Fields as an Aid in
Neuro-Ophthalmology
- G.C. Filligoi, L. Capitanio, N. Accornero, and P. Sagnelli 301

VIEW IMPLEMENTATION OF DEDUCTIVE AXIOMS WITH NEGATION

Dr. Yuksel UCKAN
Dept. of Systems Analysis
Miami University
Oxford, OH /505§

ABSTRACT

A logic-based data base system combines data manipulation
capabilities of traditional data base management systems
(DBMS) and theorem-proving capabilities of logic systems.
If only one programming system is used for both data base
access operations and inferential functions in a logic-
based system, it is called a deductive data base system.
This study investigates capabilities of traditional rela-
tional DBMSs as deductive DBMSs. It is shown that views
in relational systems can be used to represent and imple-
ment deductive axioms that are Horn clauses. Also, pro-
vided they are correctly interpreted, deductive axioms
involving negated nonground formulas can be translated to
views. Proper interpretation of such axioms entails the
use of set difference in the corresponding views instead
of complementation. In this study, we also describe an
automatic Datalog-to-SQL translator that can te used as a
user interface in converting axioms represent:d in Data-
log, a logic programming language for data base systems,
to views expressed in SQL, a standard relationil data base
language.

KEY WORDS: Logic system, deductive data base, relational
view, negated axiom, Datalog, SQL.

1. INTRODUCTION

Logic-based systems are becoming increasingly important in
data base research. A logic-based data base system exhib-
its some form of intelligence and, through reasoning, can
generate additional knowledge that is not explicitly
stored in the data base. A traditional relational data
base management system provides efficient access to large
volumes of data. On the other hand, a logic s:’stem can be
used to express and process deductive axioms t'.at generate
knowledge from facts stored in a data base. A logic-based
system should have at least the efficiency of the pres-
ent-day relational DBMSs such as SQL or INGRES, and the
theorem-proving capabilities of artificial intelligence
(AI) tools, such as Prolog or Lisp. In addition to these
AI tools, other rule definition languages mcre suitable
for data base systems are currently being investigated.
These include LDL1 [1] and Datalog [2].

Presently, there is no commercially available logic-
based DBMS. There are, however, a number of =xperimental
systems that may evolve into commercial products. For
design of logic-based DBMSs, two basic approaches are
being considered: heterogeneous and homogeneous. 1In the
heterogeneous approach, two distinct systems, a conven-
tional DBMS, and a theorem-proving system, are coupled
through an interface. In the homogeneous approach, data
manipulation and theorem-proving functions ar. integrated
into a single system, with only one programming language
for both data manipulation operations and inferential
functions. A homogeneous logic-based system is also known
as a deductive data base system. There have been some
studies aiming to use Prolog as a deductive data base
system [3]. Although Prolog is suitable for representing
data base facts and deductive rules, and therefore is
capable of deductive reasoning, it requires facts and
deductive rules to reside within the virtual memory. For

178-014

a very large data base, duplicating facts in Prolog nota-
tion in the virtual memory may be impossible, or at least
impractical. Also, unlike a DBMS, Prolog does not support
query optimization, concurrent data base access, and se-
curity and recovery features. To alleviate these short-
comings, several extensions of Prolog have been proposed
[4]. The major problem with such extensions is that they
all entail development of new DBMSs.

On the other extreme of the spectrum, there is on-
going research aiming to extend a traditional DBMS by
including among its capabilities deductive axiom represen-
tation and processing. These are also homogeneous sys-
tems. One such system is POSTGRES [5, 6], under develop-
ment at the University of California, Berkeley. Its lan-
guage, POSTQUEL, is an extension of the QUEL language of
the INGRES data base management system. The objective of
the POSTQUEL project is to render INGRES a deductive DBMS.

In Section 2 of this paper, we introduce the funda-
mental concepts for deductive data bases. In Section 3,
we discuss the semantics of Datalog as a logic language
for data base systems. In Section 4, we concider an ex-
tension of Datalog that can be used to express deductive
axioms involving negation. In Section 5, we take the view
that a traditional DBMS has substantial deductive capabil-
ities, and investigate the expressive power of SQL, a
major data base language, as a rule-based system. Since
deductive axioms in a logic system display soie similari-
ties to virtual relations (views) in a relational DBMS, we
propose to represent deductive axioms using SQL views [7].
In Section 6, we give a set of templates that can be used
to translate Datalog axioms to SQL views, &nd describe
briefly an automatic translator from Datalog to SQL. 1In
Section 7, we discuss the strengths and weaknesses of the
idea of using a traditional DBMS as a deductive DBMS, and
point out the necessary extensions to render : DBMS fully
and efficiently deductive.

2. FUNDAMENTAL CONCEPTS OF DEDUCTIVE DATA BASES

A traditional relational data base consists of relations.
Each relation contains tuples that represent data. Gener-
ally, relations are stored as files in the physical data
base. Such relations are called base relations. All base
relations in a data base constitute the extensional data
base (EDB).

Knowledge is information that can be derived from
data. Through the use of formal logic, it may be possible
to derive knowledge from extensional data base relations.
The most commonly used form of reasoning for knowledge
derivation is deductive reasoning. In deductive reason-
ing, new facts are inferred from a given set of facts
using the rules of inference. Compared to physically
recording derivable facts in a data base, it is definitely
preferable to represent them in an implicit fashion, and
generate them whenever needed. For this, we need an ap-
propriate knowledge representation scheme such as predi-
cate logic, semantic networks, and production rules.

A production rule for deduction has the form

IF P THEN Q

where P and Q are formulas of the propositional logic.
Production rules are also called axioms. Using the Data-
log notation, a rule can be written as

Q :- P.

In a production rule, if P and Q involve variables,

they are called nonground formulas. For example, in
parent(x, y) :- father(x, y).

parent(x, y) and father(x, y) are nonground formulas. If,

on the other hand, variables in formulas are replaced by

constants, the resulting formulas are called ground formu-

las. For example, the formulas parent(Paul, Mary) and

father(Paul, Mary) in
parent(Paul, Mary) :- father(Paul, Mary).

which is an instantiation of the above production rule,
are ground formulas.

In a production rule, P is also referred to as the
antecedent, and Q as the consequent. Antecedents can be
facts represented in an EDB. Deduced consequents become
part of virtual relations. Virtual relations that can be
derived from the EDB using production rules form the in-
tensional data base (IDB), also called the knowledge base.

A deductive data base is composed of an EDB and an
IDB that can be derived from the EDB using a set of logi-
cal rules. Rules can be generalized to the form below:

QLvaQv .VQn :- P1L & P2 & ... & Pm.

where V denotes disjunction, & denotes conjunction, and Pi
and Qj are atomic nonground formulas. An antecedent in
this form is said to be in conjunctive normal form. 1If
there is at most one atomic formula in the consequent, the
rule is referred to as a Horn clause. The fcllowing are
Horn clauses:

PL & P2 & ...
Q :- P1 & P2 &

& Pm.
& Pm.

A collection of Horn clauses is called a logic pro-
gram, In a deductive data base, the IDB can be defined
using a logic program. A logic program is expressed in a
logic language. Datalog is an example of a logic-based
data model and a logic language for relational data bases.
It is a version of Prolog with some differences.

A deductive DBMS (also called an expert DBMS,) is a
DBMS that can deduce IDB facts from an EDB by applying
deductive rules in a logic program.

3. STRATIFIED DATALOG PROGRAMS

A Datalog program is a set of facts corresponding to an
EDB, and a set of deductive axioms forming an IDB. Facts
can be represented as ground formulas, and axioms are Horn
clauses. As an example, consider the relational data base
of Figure 1. This data base has three relations, the
relation "people"”, and the two unary relations "peop", and
"rich". The relation "people" corresponds to a genealogi-
cal pedigree chart as shown in Figure 2.

ALICE o = F ALICE ALICE
BILL TOM ELLEN M BILL BILL
BRIAN BILL JEANNE M BRIAN GEORGE
ELLEN - - F ELLEN JASON
BILL JEANNE M GEORGE JEANNE
IRA BILL JEANNE M IRA
J JOANNE M JASON
- - F JEANNE
JIM - = M JIM
JOQANNE JIM ALICE) JOANNE
= - M JOHN
KATHY ALICE F KATHY
KIM BILL JEANNE F KIM
LINDA RATHY F LINDA
SALLY BRIAN KATHY F SALLY
TOM - M TOM

Figure 1. Sample Extensional Data Base

Figure 2. Pedigree Genealogical Chart Carresponding to the Relation "people"

It is possible to represent the facts in the rela-
tional data base of Figure 1 in Datalog. In this case,
the ground formulas

father(Bill, Tom).
mother(Bill, Ellen).
sex(Bill, 'M').
rich(Bill).

form a Datalog program corresponding to the EDB. However,
in this paper, we will avoid using this representation for
extensional data bases, and instead use the conventional
relational representation as in Figure 1.

Based on an EDB, deductive axioms can be expressed in
Datalog to define intensional data bases. Figure 3 shows
nine deductive axioms that define family relationships as
a stratified Datalog program of two strata. A stratified
Datalog program is an ordered set of strata such that each
stratum enriched with the least model of the previous
stratum, if any, has a unique least model. The least
model of a Datalog program is the set of all occurrences
of the IDB relations defined by it. In each stratum of a
Datalog program, the order of deductive axioms is irrele-
vant. In Figure 3, deductive axioms 1 through 4 define a
stratum. Each axiom in Stratum S1 is based on only the
EDB relations. Thus, they can be executed in any order.
The least model of Stratum S1 includes all instances of
the relations parent, brother, sister, and sibling in
addition to the EDB of Figure 1. On the other hand, de-
ductive axioms 5 through 9 for spouse, grandparent, uncle,
aunt, and cousin form Stratum S2. They are defined in
terms of the relations in Stratum S1.

(1) parent(x, y) :- father(x, y

parent(x, y) :- mother(x, ¥).
2) brother(x, :- father(x, zl) & father(z1) & mother(x, z2) &
@ s) mother{y, zZ; & sex(y, ¥ﬁ') & X < Y.

i i~ fi , z1) & father 1) & mother(x, z2) &
(3) sisterlx, 1) ugﬂmthe.rg. :2; & s:x(y,wf"? i X <y, xy 2)

:- sister(x, y).

(4) sibling(x, yg i~ falsl %15

sibling(x, ¥

STRATUM S1

(5) spouse(x, y) :- parent(z, x) & parent(z, y).

(6) grandparent(x, y) :- parent(x, z) & parent(z, y).

:— parent(x, z) & brother(z, y).

:- parent(x, z) & sister(z, y).

(9) cousin(x, y) :- parent(x, zl) & parent(y, z2) & sibling(zl, z2).

(7) uncle(x, y)
(8) aunt(x, y)

STRATUM S2

Figure 3. A Stratified Datalog Program for an Intensional Data Base

4. DEDUCTIVE AXIOMS INVOLVING NEGATION

Datalog can be extended to include negated nonground for-
mulas in axioms [8]. Such an extension is desirable to
improve the expressive power of the language. Figure 4
shows a Datalog program of nine axioms involving negation.
These axioms constitute Stratum S3 with respect to Strata
S1 and S2 of Figure 3. For example, since one's mother is
one's parent but not one’s father, the relation mother can
be defined alternatively as Axiom 3 of Figure &4:
mother(x, y) :- parent(x, y) & —father(x, y).

Although this rule is not a Horn clause, it can be
used in deriving the mother relation. The tuples of the
mother relation are those of the parent relation provided
they are not also tuples of the father relation. This

(1) notfather(y) :- sex(y, 'M') & —father(x, y).
(2) haveNoFather(x) :- name(x) & —father(x, y).
(3) mother(x, y) :- parent(x, y) & —father(x, y).
(4) notParent(y) :- name(y) & —parent(x, y).
(5) haveNoParent(x) :- name(x) & —parent(x, y).
(6) bachelor(x) :- name(x) & sex(x, 'M') & — spouse(x, y).
(7) poorUncle(x, y) :- uncle(x, y) & —rich(y).
(8) brother(x, y) :- sibling(x, y) & —sister(x, y).
(9) poorBrother(x, y) :- sibling(x, y) & —sister(x, y) & —yrich(y).
STRATUM S3
Figure 4. A Datalog Program for Deductive Axioms Involving Negation

interpretation is equivalent to the set difference opera-
tion in relational algebra, and can easily be handled by a
logic language processor.

The major difficulty with negation in deductive rules
is due to the interpretation of negation in data base
terms. With regular Horn clauses, we do not have a prob-
lem of interpretation. This is because any Horn clause
can be expressed in terms of the relational algebra opera-
tions. For example, the IDB relation uncle defined as:

uncle(x, y) :- parent(x, z) & brother(z,
is a natural join of the relations parent and brother over
the common domain z. However, if a deductive axiom in-
volves negation, since a negated nonground formula is
intuitively equivalent to the set complement operation,
and complementation is not one of the operators in rela-
tional algebra, we must be especially careful in inter-
preting such an axiom in relational algebra. Let us con-
sider an example, and define the relation bachelor as:

bachelor(x) :- sex(x, 'M’') & —spouse(x, y).

This is equivalent to saying that "a bachelor is an
unmarried male." If we propose to interpret the negated
formula —spouse(x, y) as the complement of spouse(x, y),
we come across two problems. First, in view of such an
interpretation, —spouse(x, y) defines an infinite set of
combinations of all possible males and females who are not
married to each other. This problem can be resolved by
using the closed world assumption (CWA) [9, 10]. The CWA
says that if a ground formula cannot be deduced from the
EDB or IDB relations, we can assume that it is false. 1In
other words, stated in data base terms, we can assume that
the relation does not contain the tuple that corresponds
to that ground formula. For example, for the data base of
Figure 1, the ground formula spouse(Dick, Anne) is false,
because neither Dick nor Anne belongs to the pedigree
chart of Figure 2. Consequently, the complement of
spouse(x, y) is the set of all ground formulas obtained by
combining male and female names from the instance of the
relation "people" (or the relation "peop", assuming that
it is the relation that defines all persons represented in
the data base,) provided such males and females are not
married to each other. Thus, the relation bachelor can be
rewritten as in Axiom 6 of Figure 4:

bachelor(x)

:- name(x) & sex(x, 'M') & —spouse(x, y).

The second problem is due to the interpretation of

negation as complementation. The CWA has rendered the
relation —spouse(x, y) finite. Despite this, we get
incorrect results if we use complementation. This is

because the complement of spouse will include tuples such
as (Jim, Joanne), since Jim is married to Alice and not to
Joanne. A subsequent selection for male will inaccurately
return Jim as a bachelor. To get around this problem, we
propose to consider the projection of the negated relation
over the variable that also appears in another formula,
and compute the difference instead of the complement. For
example, for the relation bachelor, it is possible to use
the interpretation "the set of bachelors is the difference
of the set of all males and the set of all x values ob-
tained by projecting spouse(x, y) over the attribute x."
As we will see in the ensuing discussion, this approach
can easily be implemented in data base languages such as
SQL or QUEL, and it eliminates the need for defining ex-
traneous intermediate relationms.

5. USE OF VIEWS AS DEDUCTIVE AXIOMS

In a relational data base, a view is a virtual relation,
since it is a definition of a relation that can be derived
from the existing base relations and other views. A view
definition can be supplied by the user, and is stored in
the system catalog. Once a view is defined, it can be
used as if it were a data base relation. Whenever a view
is referenced in a query, the DBMS accesses its defini-
tion, substitutes it in the user query, generates the
canonical form for the query, and processes it. Many
relational DBMSs support views, and offer facilities for
declaring, using, and deleting them.

Clearly, the concept of views is similar to that of
IDB relations. Like views, an IDB relation is also virtu-
al, and its definition is based on existing EDB relations.
Therefore, it is easy to see that deductive axioms can be
declared and implemented as views using traditional data
base languages. In the present section, we will take this
approach, and express Datalog axioms as SQL views. Figure
5 shows SQL view definitions for the Datalog program of
Figure 3. These views have been tested using a SQL-based
DBMS running on a mainframe, and it has been demonstrated
that queries based on them are, in general, as efficient
as queries that are based directly on EDB relations.

- (1) paxent; x, y} - fat.herﬁx, y;.
parent

:= mother(x, y

create view parent (name, parentname)
as select X.name, .

Vhere’x-Fathet Eyon

name or x.mother = y.name
- (2) brother(x, y) :- fat:heri , } & fathe::(y, zli & mother(x, z2) &
& sex(y, 'M') & x <> y.

create view brother (name, brothername)
as select x.name, y.name £1,

Pecp X, peo people peopl peopl
where 'f1.naie = . BAmE and £1. tochar P°B'S aThe 8 p2
and name = y. and ml. = x.

ol 0! Z name m. .nane X name ~
and M and x.name = y.name

-- (3) sister(x, y) :- father(x, z1 & father 1) & moth ., 22) &
- ¥ t:heriy, z2) & sex(y, (Yﬂ‘ 5 3‘ X < yt‘u:(x 22)

create view sister (name, sistername)

asselectxname y.name
whereflnane: Xz'sme eandfl.fet’.k'ner: ggeml SR
and fznams-y and ml.name = x

and X.name "= y.name

::(4)snnpn{m Y :-simxrhg y).

brother (x," y) .

create view sibl name, siblingname
as?%ﬁ?;é; Z:@(ter, hnmh;
, Sis
whex:e smtar name Z x.name ‘and sister.sistername = y.name
brother.name = x.name and brother.hrothername = y.name
-- (5) spouse(x, y) :- parent(z, x) & parent(z, y).

create view (name,)

as gelect X.name, y.name © i, % B2
where plpnan'\e = pzyx'aame pard pl purgutmme = X.name
and p2.parentname = ynameandxname = y.name

-- (6) grandparent(x, y) :- parent(x, z) & parent(z, y).

create view grandparent (name, gparentname)
as select X.name, y.name t pl,
rom pecp x, peop y, parent pl, parent
where pl.name=x.name and pl.parent -EZnameandeparenmam—yname

== (7) uncle(x, y) :- parent(x, z) & hrother(z, y).
create view uncle (name, unclename)
as select x.name, y.name
rom peop X, peopy, paxentp, hbrother b
p-parentname =

where p.name = x.name b.name and b.brothername=y.name

-- (8) aunt(x, y) :- parent(x, z) & sister(z, y).
create view aunt (name, auntname)
as select x.name, y.name
from peop x, peop y, parent p, sister s
p.parentname

where p.name = x.name and p = s.name and s.sistername = y.name

-- (9) cousin(x, y) :- parent(x, zl1) & parent(y, z2) & sibling(zl, 2z2).

create view cousin (name, cousinname)
as gelect X.name, y.name

X, ’ t pl, t ibl.
peop peop. ¥, parent pl, parent prs ing s
and s.name = pl.parentname and s. s:.blmgname P2.parentname

Figure 5. SQL View Implementations of the Intensional Data Base of Figure 3

Provided they are correctly interpreted, Datalog
axioms with negation can also be translated to SQL views.
Figure 6 shows the view definitions for the Datalog pro-
gram of Figure 4. 1In obtaining these views certain tem-
plates that ensure correct interpretation for negation
have been used. We will discuss them in the next section.

As is seen, all kinds of deductive axioms that are
expressible in Datalog are also expressible as SQL views.

-- (1) notfather(y) :- sex(y, 'M') & —father(x, y).

create view notFather (name)
as select y. name
PeOP Y' e pe

and no¥ exists ﬁelect * pe.sex = 'M!

from peo ghx, le father
where father.fa = y.name and father.name = x.name)

-- (2) haveNoFather(x) :- name(x) & —father(x, y).

create view haveNoFather (name)
as select X.name

whax:e nog exists (select X ie :fathe:
people father
wharefogharnmm=xnamandfatherfn\:her=y.name)
-- (3) mother(x, y) :- parent(x, y) & —father(x, y).
create view mother (name, mothername)
o foom teop X, pebp v, parent
where x.name = ? m py name = p.parentname
and not exists (gelect '
from e father
where father.name = x.name and father.father
-- (4) notParent(y) :- name(y) & —parent(x, y).

create view notParent (name)
as select y.name
mpeog exists (select *
wharem e l—:’axx:e“mta;mg and p.parentname = y.name)
-=- (5) haveNoParent(x)

.name)

"
<

:- name(x) & —parent(x, y).

create view haveNoParent (name)
as gelect X.name

where gexista (select * &
p?:OP % DR nans il p.parentname = y.name)
-- (6) bachelor(x) :- name(x) & sex(x, 'M') & —spouse(x, y).

create view bachelor (name)

as gelect 1

rom X e
peop , Peopl

nama
and not exista (gelect *
rom peop y, spouse s
where sp.n)a(n-e = x.namg and sp.spousename = y.name)
-- (7) poorUncle(x, y) :- uncle(x, y) & —rich(y).

create view pooruncle (name, unclename)
as select x.name, y.name
£ pecp X, peop _y, uncle
X.name = uncle.name and y.name = uncle.unclename
and not exists (select)
from rich
where rich.name = y.name)

-- (8) brother(x, y) :- sibling(x, y) & —sister(x, y).

create view brother a (name, brothername)
as select x.name,

and sex.sex = 'M'

y-name

from peop x, peoz , sibl sib

where x = Yname ingy name = sib.siblingname
and not exists (sslect *

rom sister sis
x.name = gis.name and y.name = sis.sistername)

-~ (9) poorBrother(x, y) :- sibling(x, y) & —sister(x, y) & —rich(y).

create view poorBrother (name, brothername)
as %elect X.name, y.name ibling sib
rom peop x 8 8!
where x nané-sgbyr'mmeandy. = sib.siblingname
and not exists (select x
from sister sis
where x.name = sis.name and y.name = sis.sistername)

and not exists
(select *
from rich
where y.name = rich.name)

Figure 6. SQL View Implementations of Axioms Involving Negation

The only shortcoming of this approach, that of using SQL
as a logic programming language, is with respect to recur-
sive axioms. Let us consider the following example.

ancestor(x, y)
ancestor(x, y)

;- parent(x, y).
;- parent(x, z) & ancestor(z, y).

This says, one's ancestors include one’s parents and
the ancestors of each parent. Stated somewhat differently
in set-theoretic terms, the set of ancestors for a person
is the union of the set of that person’s parents, the set
of the parents’ parents, the set of the parents’ grandpar-
ents, and so on. Because the relation ancestor is transi-
tive, the set of ancestors for a given person can be com-
puted using a special operator, known as the transitive
closure operator. The transitive closure operator for the
relation ancestor generates the set of ancestors by adding
to a known set of ancestors all the tuples successively
deduced by transitivity, until such additions do not re-
sult in a new tuple in the relation. The relation thus
obtained is the transitive closure set for ancestor. The
transitive closure operation is a succession of the combi-
nation of join, projection, and union operations in rela-
tional algebra. However, as repetition cannot be repre-
sented in relational algebra, in the current versions of
SQL there is no operator corresponding to tramsitive clo-
sure. This is the most important weakness of SQL as a
logic programming language for data bases.

It is certainly possible to extend SQL such that
recursive rules can be expressed as views. There is some
ongoing research to modify relational DBMSs such that they
can handle recursion. The POSTGRES project at Berkeley
[6] is an example. 1Its aim is to extend INGRES for deduc-
tive data base applications.

6. TRANSILATION OF DATALOG AXIOMS TO SQL VIEWS

As can be seen, Datalog is a convenient language to ex-
press deductive axioms. In transforming a relational data
base to a deductive one, it is easier to express deductive
axioms in Datalog than in SQL as a corresponding view. We
have proposed a Datalog-to-SQL translator [ll] as a user
interface to a SQL-based DBMS. This translator uses a
total of eight templates to convert Horn clauses and axi-
oms involving negation into corresponding SQL views.

Let us suppose that the extensional data base con-
sists of relations of the type

R1 (K1, Al, A2, A3, ...)

where K1 is the primary key of Rl. At this point, we
limit our scope to data bases in which all implied rela-
tionships are binary. Clearly, the relation Rl is equiva-
lent to the following set of predicates:

K1 (K1)

Al (K1, Al)
A2 (K1, A2)
A3 (K1, A3)

Such predicates are all of the form U(C) or W(D, E).
Also, we assume that the IDB contains some previously
defined unary and binary relations, conforming to the same
forms, U (C), and W (D, E). Consider, for example, the
relation

PEOPLE (NAME, FATHER, MOTHER, SEX).
This can be expressed as the set of predicates

NAME (NAME)

FATHER (NAME, FATHER)
MOTHER (NAME, MOTHER)
SEX (NAME, SEX).

Additionally, we may have implemented some IDB rela-
tions such as

PARENT (NAME, PARENTNAME)
BROTHER (NAME, BROTHERNAME) .

In a Horn clause involving unary and binary predi-
cates, we have to deal with nonground formulas of the
types U(x), W(x, y), W(x, y rho cy), and x rho y, where cy
is an admissible constant value for the variable y, and
rho is a comparison operator. The translation templates
corresponding to these cases are given in Figure 7.

TEMPLATE 1: V(x) :- U(x).
CREATE VIEW V (X, Y)
SELECT KI

RiX, U
U.C £ X.K1
TEMPLATE 2: V(x, y) :- W(x, y).
CREATE VIE.W V (B
AS smmr
% R2 W
WHE:RE W.D = X, Kl
AND W.E = Y.R2

TEMPLATE 3: V(x) :- W(x, y rho cy).
where cy is a constant value for the attribute W.E.
CREATE VIEW V (X)
AS SELECT X.K1
FROM Rl X, R2 Y, W
WHERE W.D = X.K1

AND W.E = Y.K2
AND ‘IKZrhocy

|TEMPLATE 4: V(x, y) :- xrhoy.
CREATE VIEW V (X K.%
AS SELECT X
Ri X, R2 Y

WHERE X.Kl1 rho Y.R2
Figure 7. Translation Templates for Axioms Without Negation

In deductive axioms with negated unary or binary
nonground formulas, there are four distinct cases:

V() - qUx).
V() - WX, ¥).
V(y) - =W(x, y).
V(x, y) - qW(x, y).

PN

In translating each to a
should be interpreted correctly, as discussed previously
in this paper. In Figure 8, the proper interpretation for
negation in each case is given. In all cases, negation is
reflected in the corresponding SQL view as set difference
(the SQL clause NOT EXISTS).

SQL view, the mnegation

TEMPLATE 5: V(x) :- —U(x).
Interpreted as: V(x) :- K1(x) & —U(x).
CREATE VIEW V(Y)
AS SELECT X.Kl
WHERE mmI‘XECIS'I‘S (SEL)EX."!.‘['J
WHERE U.C = X.K1)
TEMPLATE 6: V(x) :- —W(x, y).
Interpreted as: V(x) :~ Kl(x) & 4 W(x, y).

i
mod

w
X.K1
Y.K2)

TEMPLATE 7: V(y)
Interpreted as: Viy)

CREATE VIEW V (Y)
AS SELECT Y.K2

= —W(x, ¥).
- R2(y) & —W(x, y).

TEMPLATE 8: V(x, y) :— —W(x, y).
Interpreted as: V(x, y) :- K1(x) & R2(y) & —qW(x, y).
CREATE VIEW V (X lYa
AS SELECT X.K1, ¥
RlX RY
NOT' EXTSTS (SELECT *
FROM W
WHERE W.D = X.K1
AND W.E = Y.R2)
Figure 8. Translation Templates for Axioms Involving Negation

Algorithms based on the eight translation templates
of Figures 7 and 8 have been designed to translate deduc-
tive axioms to SQL views. All SQL views in Figures 5 and
6 have been obtained by applying these algorithms to Data-
log axioms. In some cases, the translation algorithms
produce SQL view definitions with extraneous relations.
Such views can be further simplified to improve the effi-
ciency of deductive queries based on them. We have de-
signed SQL view simplification algorithms to simplify the
outcome of view translation algorithms [11]. Currently,
the translator is being implemented as a user interface.
The scope of the translator will be enhanced to include
IDB relations of degree higher than two.

7. CONCLUSIONS

In this paper, we investigated deductive capabilities of
traditional relational DBMSs as homogeneous logic-based
systems. We proposed to use view definition languages of
relational systems such as SQL as intensional data base
definition languages for deductive axioms. We concluded
that deductive axioms that are Horn clauses can be formu-
lated as SQL views without difficulty.

Next, we investigated deductive axioms involving
negated nonground formulas. We demonstrated that provided
the set difference operator is used instead of complemen-
tation for negated formulas, such axioms can also be im-
plemented as SQL views. Clearly, from a data base user's
point of view, relational DBMSs with view processing faci-
lities can be regarded as reasonably powerful deductive
systems. Presently, the main weakness in this approach is
with respect to their inability to compute transitive
closure of relations, and hence implement recursive axi-
oms. Traditional relational DBMSs should, and can, be
enhanced to process recursive axioms. Also, efficient
view processing is all the more important in deductive
systems based on relational DBMSs. Better view processing

algorithms are needed. This way, the performance of rela-
tional DBMSs that are intended for use as deductive sys-
tems can be improved substantially.

Finally, we outlined the components of a Datalog-to-
SQL translator, designed as a user interface for SQL-based
DBMSs. Datalog, a logic programming language for data
base systems, is suitable for formulating deductive axi-
oms. The proposed translator transforms Datalog axioms to
equivalent SQL views using a minimal set of translation
templates. From a practical point of view, such a trans-
lator would be helpful for data base users who are well-
versed in Datalog (or Prolog) but not in SQL. In its
current version, the scope of the translator is limited to
binary predicates, and in addition to translation algo-
rithms, it includes SQL view simplification algorithms
that change the output of the translation algorithms to
more efficient SQL views.

8. REFERENCES
[1] S. A. Nagvi and S. Tsur, A Logic Language for Data
and Knowledge Bases, Computer Science Press, Rock-

ville, Maryland, 1988.

[2

J. D. Ullman, Principles of Database and Knowledge-
Base Systems, Vol. I, Computer Science Press, Rock-
ville, Maryland, 1988.

[3] M. Missikoff and G. Wiederhold, "Toward a Unified
Approach for Expert and Database Systems", Proc. of
the Int. Conf. on Expert Database Systems, 1984.

[4] L. Naish and J. Thom, "The MU-PROLOG Deductive Data-
base", Technical Report 83/10, Department of Computer
Science, University of Melbourne, 1983.

[5] J. D. Ullman, Principles of Database and Knowledge-
Base Systems, Volume II, Computer Science Press,

Rockville, Maryland, 1989.

[6

M. Stonebraker and L. A. Rowe, "The Design of Post-
gres", Proc. of the ACM SIGMOD International Confer-
ence on Management of Data, 1986,

[7] Y. Uckan, "Knowledge Representation Using Views in
Relational Deductive Data Bases", submitted for pub-
lication to The Journal of Systems and Software.

[8] G. Gardarin and P.
and Knowledge Bases,
1989.

Valduriez, Relational Databases
Addison Wesley, Reading, MA,

[9] R. Reiter, "On Closed World Data Bases", Readings in
Artificial Intelligence & Databases, (J. Mylopoulos

and M. L. Brodie, eds.), Morgan Kaufmann Publishers,
San Mateo, California, 1989.

[10] J. Minker, "On Indefinite Databases and the Closed
World Assumption", Proc. Sixth Conf. on Automated

Deduction, (D. Loveland, ed.), Springer-Verlag, New
York, 1982.

[11] Y. Uckan,
paration.

"A Datalog to SQL Translator", under pre-

The enumeration of (r + 2)—paths in a
Boolean Cube

Shahram Latifi
Electrical and Computer Engineering Department
University of Nevada, Las Vegas
Las Vegas, NV 89154
(702)597-4183
latifi@unlv.edu

ABSTRACT

The n-dimensional Boolean Cube (n-cube) is an attractive
network for a large class of parallel processing applications.
In an n-cube, between two nodes of Hamming distance r,
there exist r disjoint paths of length r and (n — r) disjoint
paths of length (r+2). In this paper, we enumerate the total
number of paths (disjoint or non-disjoint) of length (r + 2)
between two nodes of Hamming distance r contained in an
n-cube. The result can be used in two-terminal reliability
studies of the n-cube while the derivation of the result gives
a better understanding of the topological properties of this
network.

Key Words- Disjoint Paths, Hamming distance, n-cube.

1. INTRODUCTION

Hypercube multiprocessors have been the focus of many re-
searchers over the past few years. The appealing properties
of the hypercube [1] such as vertex and edge symmetry, log-
arithmic diameter, high fault resilience, scalability, and the
ability to host popular interconnection networks have made
this topology an excellent candidate for many parallel pro-
cessing applications. There is a rich literature dealing with
the structure of the n-cube [2]. In particular, the survey pa-
per by Harary [3] includes important graph theoretical results
pertaining to the n-cube.

The determination of the number of paths between two
nodes is important in the two-terminal reliability analyses of
communication networks [4]. The number of disjoint paths
between two nodes in an n-cube has already been determined
[1]. Here, we focus our attention on enumeration of non-
disjoint paths between two nodes. This quantification, in
addition to being of theoretical interest, may help finding a
solution for the two-terminal reliability in the n-cube, which
is an open problem thus far.

In particular, if the probability of having at least one oper-
ational path no longer than a specified value, say r + 2, is of
interest (in fact this is a conditional two-terminal reliability
[5]), then one has to take into account all the r and (r + 2)

178-056

paths in the network and, using one of the methods for two-
terminal reliability evaluation [4], derive the answer. The rest
of the paper is organized as follows. Section 2 includes the
preliminaries. In Section 3 the enumeration of various (r42)-
paths is performed. An example is also included in Section
3 to show the enumeration of paths. Section 4 concludes the
paper.

2. PRELIMINARIES

An n—dimensional hypercube (i.e. @,) can be modeled as a
graph G(V, E), with |[V| = N = 2", and |E| = n2"~!. The
graph G(V, E) is both node and link symmetric. Each node
in G(V, E) represents a processor and each edge represents
a link between a pair of processors. Nodes are assigned bi-
nary numbers from 0 to 2" — 1 such that addresses of any
two neighbors differ only in one bit position. Links are also
labeled from 0 to n — 1 such that link ¢ connects two nodes
whose addresses differ in the ¢th bit, the rightmost bit posi-
tion being 0. Figure 1 illustrates the n-cube (n < 3) with the
labeled nodes and links. The Hamming distance between two
nodes s and t, H(s,t), is the number of links between them
along the shortest path. The Hamming distance between s
and ¢ is also the number of bits in which addresses of s and ¢
differ. In the text, we shall assume H(s,t) = r. The distance
function H(s,t) satisfies the following three properties [6]:

(a) H(s,t) =0; iffs=t (1)
(b) H(s,t) = H(t,s) > 0; iff s # ¢)
(c) H(s,t) + H(t,w) > H(s,w); triangle inequality(3)

A path originating from a node s can be uniquely specified
by the labels of links composing it in the order of traversal
[4]. For instance, if node s has the address 0000, the path
1-3-0 originated from s, has its end-node at 1011, and passes
through intermediary nodes labeled as 0010 and 1010. The
length of a path is the number of links it contains. A path of

length 7 is referred to as an r-path. Two or more paths are
node-disjoint if, except for the source and destination, they do
not have any node in common; otherwise, the path is called
non-disjoint.

THE ENUMERATION OF PATHS
BETWEEN TWO NODES

Consider two nodes s and ¢ in the n-cube such that H(s,t) =
r. The following lemma establishes the number of node-
disjoint paths between s and .

Lemma 1: Between s and ¢ there are r disjoint r-paths and
(n —r) disjoint (r 4 2)-paths for 0 < r < n [1].

On the other hand, if the paths are not restricted to dis-
joint paths, the following lemma holds true.

Lemma 2: The total number of r-paths between s and ¢ is
given by 7! [1].

Definition 1. Two paths are called equivalent if they have
the same destination assuming they originate from the same
source.

From the above definition, the following corollary results.

Corollary 1: Two paths equivalent to a unique path, are
equivalent themselves.

Lemma 3: If a path contains some links with identical la-
bels, it is equivalent to a path obtained by eliminating pairs
of identical link labels.
Proof: A pair of identical link labels in a path imply comple-
menting the bit position corresponding to the identical label
twice. Therefore, any two identical labels cancel out, and the
result would be an equivalent path.O

For instance, the path {0 —2 —0—1— 0 — 2} is equivalent
to the path {0 —1}.

Definition 2. A path is valid if its address does not include
two adjacent identical labels; otherwise it is invalid.

As an example, the path {0 —0 — 1 — 2 — 3} is an invalid
path since traversing link 0 twice consecutively corresponds
to a cycle which is not to be included in a path.

Let the n-tuples a(s) and a(t) be the addresses of two
nodes s and ¢, respectively. Furthermore, suppose a(s) and
a(t) differ in r bit positions, namely bo, by, ..,b,—1, where
0 < by < b <. <b-1 <n. An (r+ 2)-path between
s and ¢t must traverse every link whose label is in the set
S = {bo, b1, .., b,—1} in addition to two extra links with identi-
cal labels (so that they cancel out). Denote the identical label
by b, such that 0 < b, < n. Depending on b, we distinguish
two classes of (r + 2)-paths, namely A and B. If b, € S, the
paths are in class A; otherwise, the paths are in class B. For
instance, suppose a(s) = 0100 and a(t) = 1010 in a 4-cube.
Hence,r = 3 and S = {1,2,3}. The 5-path {0—1—-2—-3—-0}
is in class A whereas the 5-path {2—3—2—1—2} belongs to

class B. Note that these two paths are equivalent by corollary
1.

Next, we shall obtain the number of all (r + 2)-paths (dis-
joint and non-disjoint) between s and t. It will be assumed
that s and ¢ belong to an n-cube, H(s,t) =r, and r > 2.

The Enumeration of Class A:

A typical (r + 2)-path in this class contains (r + 2) links
with r links having labels corresponding to r distinct bit po-
sitions in which s and ¢ differ and two extra links with the
same labels chosen from any one of the (n — r) remaining
bit positions. To enumerate the paths in class A, consider a
path with (r + 2) empty (or unassigned) positions and start
assigning link labels to these empty positions such that the
resulting path will be a valid path in class A. Note that there
are [" ; 2) ways to place two identical labels in (r 4 2) bit
positions. However, some of the paths such constructed are
not valid. As mentioned previously, the (r + 2)-paths which
contain the same labels in two consecutive positions are in-
valid. The number of invalid paths corresponds to instances
where two consecutive positions among (r +2) positions have
the same label. For each b,, there are (r + 1) invalid paths
(i.e. the pattern b, — b, can be in positions 0 & 1,1 & 2, .. ,
r-;—2) —(r—{—l)] ways
to place a particular label in two consecutive positions. But,
the repeated label b, can be any one of (n — r) bit positions
which does not belong to S. On the other hand, to the re-
maining r bit positions, the r labels of S can be assigned in
r! number of ways. Therefore, the number of (r + 2)-paths
belonging to class A is:

[(7‘;2)_(7‘_*_1)] x (n—r)xr!

_ r(r+l)2!(n—r) (4)

or r&r+1). Therefore, there are [(

Na

Il

Note that when n = r, Ny = 0; i.e. the class A is empty
for nodes located at opposite corners of the n—cube.

The Enumeration of Class B:

As mentioned earlier, for the paths belonging to class B,
b, € S. Therefore, b, must appear in the path sequence
three times. However, there are invalid paths here too. The
invalid paths are those in which the same label appears in
two or three consecutive positions. Examples of such unac-
ceptable paths are : 0 -0 —-0—-1—-20r0—-0—1-3—-0.
To determine the number of invalid paths in class B, con-
sider any one element, say y, of the r distinct elements in S

r+2

3
ways to place 3 y’s in (r + 2) bit positions. The number of
invalid paths can be determined by partitioning them into

and suppose ¥ is to repeat three times. There are

three groups.

Group I- There are 3 consecutive y’s (e.g. the path ..yyy..).
To construct such invalid paths, one can place 3 y’s in the left-
most 3 positions and every time shift the pattern to the right
by one bit position. Thus there are r invalid paths in group
1.

Group 2- There are 2 consecutive y’s in the leftmost (e.x.
yy..) or in the right-most positions (e.x. ..yy). In each case
the 3rd y can sit in one of the r — 1 positions(recall that
there cannot be three consecutive y’s in this group). Clearly,
the total number of invalid paths in group 2 is 2(r — 1).

Group 3- There are 2 consecutive y’s in the middle (neither
in the left nor in the rightmost: e.x. ..yy..). suppose the first
y is placed in the jth bit position where 2 < 7 < r. Such
paths can be obtained by moving the 3rd y to one of the re-
maining r — 2 positions resulting in (r — 2) paths for each j
and in (r — 2) x (r — 1) paths overall.

Therefore, the number of valid paths are:

(732)-@+ata ®)

where g; is the number of paths in group ¢. Substituting for

o' T (5] we gt
("3?)-e ©)

However, the remaining (r—1) labels can be permuted (r—1)!
times; moreover, y can be any one of r labels. Thus:

Ng =r><(r—l)![<r-§2>_(r2)]

7)o
— (MT"”))

The number of (r+2)-paths can now be obtained by adding
N4 and Np.

r(r)(r? —3r+2) 4+ 3r(r +1)!(n — 1)
/ ®
Observe that when r = 2, Ng = 0. This is true since if
there is a path like 0 — 1, there is no way to have a valid path
of length (r 4+ 2) = 4 which includes either 0 or 1 three times.
The (r + 2)-path enumeration is illustrated in the following
example.

Nyy2=Ns+ N =

Example- Find the number of (r + 2)-paths between nodes
labeled as a(s) = 00000 and a(t) = 00111 in a 5-cube.

Solution- The labels of s and ¢t differ in bit positions 0, 1,
and 2. Clearly, r = 3. For brevity, we show all ! = 3! = 6

permutations of the set {0,1,2} by three X’s in the corre-
sponding places. For instance, the (3X3XX) will represent
the set of paths:

{3—-0-3-1-2},

{3-0-3-2-1},

{3—-1-3-0-2},

{3—-1-3-2-10},

{3-2-3-0-1},

{3—2-3—1-0}

According to equation 8, for r = 3, there are 78 5-paths as
follows.
The paths in class A are:

3-X-3-X-X 4—-X-4-X-X
- X-X-3-X 4—-X-X—-4-X
J—-X-X-X-3 4-X-X-X—-4
X-3-X-3-X X-4-X-4-X
X-3-X-X-3 X—-4-X-X—-4
X-X-3-X-3 X-X—-4-X—-4

The paths in class B are:

0-1-0-2-0
0-2-0-0-1
1-2-1-0-1
1-0-1-2-1
2-0-2-1-2
2-1-2-0-2

Note that N4 = 72 and Ng = 6.

CONCLUSION

The enumeration of all the paths between two nodes in a
network is important for terminal-reliability analysis. The
paper has considered the enumeration of (r + 2)-paths be-
tween two nodes in a hypercube. Two different classes of
(r + 2)-paths, namely A and B, were distinguished. For each
class, the number of paths was determined. It was shown
that N4, the number of paths in class A, is much more than
Np, the number of paths in class B. Moreover, Ny is linearly
proportional to n; whereas Ng is independent of n. The fu-
ture direction of this work may include the characterization of
(r+2)-paths, using the properties of hypercube topology such
as symmetry, in order to obtain the two-terminal reliability
of this network when the length of the paths are restricted to
(r +2). Note that limiting the length of paths to a specific
value is a legitimate restriction since it puts an upper bound
on the communication delay between two nodes.

REFERENCES

(1

2

(3]

4]

(5]

Y. Saad and M.H. Schultz, *Topological properties of
hypercubes,” IEEE Transactions on Computers, vol. 37,
no. 7, pp. 867-872, July 1982.

S. Latifi, ”Hypercube-based topologies with incremental
link redundancy,” Ph.D. Dissertation, Louisiana State
University, August 1989.

F. Harary, "A survey of hypercube graphs,” Comput.
Math. Applications, 1989.

C.J. Colbourn, " The Combinatorics of Network Reliabil-
ity,” New York : Oxford, Oxford University Press. 1987.

S. Latifi and S. Rai, "Evaluating the distance reliability
in hypercube multiprocessors,” submitted to the Inter-
nation Phoeniz Conference on Computers and Commu-
nications.

L.N. Bhuyan and D.P. Agrawal, ”Generalized Hyper-
cube and Hyperbus Structures for a Computer Network,”
IIEEE Transactions on Computers, vol. C-33, no. 4, pp.
323-333, April 1984.

Planning Monotone Watchman Paths

Laxmi P Gewali
Department of Computer Science
University of Nevada, Las Vegas

Las Vegas, NEVADA 89154

Abstract: Computing an optimum watchman route in the pres-
ence of two dimensional obstacles is known to be NP-hard [3].
We introduce a variation of this problem called The Mono-
tone Watchman Path Problem (MWP) that asks for a mono-
tone collision-free path connecting two given points amidst a
collection of disjoint simple obstacles so that the number of ob-
stacles visible from P is maximized. We present an O(n3logn)
algorithm to plan such a path.

I. Introduction

Planning collision-free paths in the presence of obstacles is
a central problem in robotics and computational geometry [8].
Given a collection of obstacles, a start point s, and a target
point t the find path problem in robotics asks for a collision-
free path connecting s and ¢. Usually obstacles are modeled by
polygon/polyhedra and the object to be moved is considered to
be a point. The quality of a collision-free path is often measured
by its length: “the shorter the length better the path”. The
two dimensional version of this problem is rather well studied
and several polynomial time algorithms are reported. Voronoi
diagrams [10] and visibility graphs are popular tools used for
planning collision-free paths in 2-d. The problem is significantly
harder in three dimensions. Finding a shortest collision free path
in 3-d is shown to be NP-hard in general [5].

Many interesting problems arise when visibility properties
are considered for planning paths. In [3], one such problem
called the watchman route problem is introduced. A watch-
man route is such that each point on the scene is visible to some
point along the route. An optimum watchman route is a watch-
man route of minimum length. It has been proven that finding
an optimum watchman routes inside a polygon with holes in
NP-hard [3]. An linear time algorithm for computing an opti-
mum watchman route inside a simple triangulated orthogonal
polygon is reported in [3). An O(ntloglogn) time algorithm for
finding an optimum watchman route in a simple polygon is given
in [4].

In many situations it is useful to compute monotone paths.
A path is said to be monotone along a given line [if the pro-
jections of the segments of the path along ! do not overlap.
Monotone paths have important applications for deciding the
separability of obstacles [11,1]. An O(nlogn) algorithm for com-
puting a monotone path (if it exists) along a given direction is
reported in [ACM89].

In section II we introduce a variation of the watchman route
problem called the monotone watchman path problem and present
an O(n®logn) time algorithm to solve it. We conclude in section
IIT by discussing possible extensions of this problem.

178-018

II. Algorithm for Monotone Watchman Path

Consider a two dimensional scene consisting of disjoint polyg-
onal obstacles. We assume obstacles to be simple and are de-
fined to be convex obstacles with bounded number of edges.
Two points are said to be visible if the straight line segment
joining them does not intersect any obstacle. An obstacle O is
visible to a point p if some point in O is visible to p. A path P
connecting points s and ¢ is called a s-t-monotone path if it
is monotone along the direction s-t.

The Monotone Watchman Path Problem (MWP): Given
a two dimensional scene consisting of disjoint simple obstacles,
a start point s, and a target point t find a collision-free s-i-
monotone path P such that the number of obstacles visible from
P is mazimized.

Figure 1 shows an example of such a path. A problem closely
related to MWP is the monotone visit problem (MVP). MVP
asks for a s-t-monotone path that visits the maximum number
of obstacles and an O(n?) algorithm for solving it is given in [7].

Our approach to solve MWP is similar to the technique used
in [7]. Let {O4,0,,03,...,0k} be the total number of obstacles
in the scene. The region of illumination R; corresponding to
the obstacle O; is the region illuminated when the boundary of
O; acts as light source (Figure 2). Define illumination graph
G(V, E) of obstacle scene to be the planar graph formed by the
intersection of edges on the boundaries of R;’s and obstacles to-
gether with points s and ¢ (Figure 3). From each vertices of
G(V, E) extend vertical line segments in both direction till they
meet some obstacle boundary. The resulting graph G'(V', E')
is called the vertical adjacency graph (VAG) of G(V,E)
(Figure 4). Observe that G'(V’, E') is trapezoidization of the
obstacle scene. A directed acyclic graph (DAG) is obtained
from G'(V’, E’) by replacing each vertical edge by two edges, as
shown in Figure 5, and assigning left to right direction to all

edges. Two s-t-monotone paths are equivalent if they see the
same set of obstacles. Now observe that equivalent s-t-monotone
paths pass through the same sequence of trapezoids.

Lemma 1: [7] Corresponding to each s-t-monotone path there
is an equivalent s-t-monotone path consisting of edges in DAG.

Proof: Let T;,, Ts,, ..., T, be the sequence of trapezoids through
which a given s-t-monotone path goes. Replace the portion of
path passing through each trapezoid by an equivalent sub-path
consisting of left-edge, bottom-edge (or top-edge), and right-
edge of corresponding trapezoids one by one. All such edges are
in DAG.

Q.E.D.

In order to search for a s-t-monotone path from which max-
imum number of obstacles are visible we find a longest s-t-
monotone path in DAG. Here the length of the path is measured
by the number of edges on the path. Algorithm for computing
longest path in a directed acyclic graph is similar to topological
sort [2] and can be done in O(n) time. However the longest
s-t-monotone path in DAG may not correspond to the one that
sees the maximum number of obstacles. The reason is that the
path may visit the same obstacle more than once. We can fix this
problem by keeping track of obstacles seen from the path during
the computation of longest path. The idea is to increment the
length of the path only when the newly visited vertex was not
belonging to the illumination region already visited. This rule
makes sure that an obstacle is counted only once even though
the path may see the same obstacle more than once. A precise
description of the algorithm is given in Figure 5.

Theorem 1: The monotone watchman path problem can be
solved in O(n®logn) time.

Proof: Illumination regions corresponding to one obstacle
can be done in O(n%logn) time by using maintenance of perspec-
tive view algorithm given in [6]. Thus step 1 takes O(n3logn).
Step 2, step 3, and step 4 can be done in O(nlogn) time by using
sweep line techniques. Step 5 can be done by using breath first
search in O(n) time (since graph is planar). Step 6 to step 9
is the longest path algorithm for an acyclic directed graph and
can be done in O(n) time provided the function on_the_path in
line 9 can be done in constant time. But on_the_path can take
O(n) time (we may have to check the path all the way back to
s). Thus time of step 1 dominates time for all other steps.

Q.E.D.

III. Conclusions

We presented an O(n3logn) time algorithm for computing
s-t-monotone watchman path from which maximum number of
obstacles can be seen. It is very likely that one may be able
to improve on the time complexity of the algorithm by find-
ing better ways of computing regions of illumination. Although
our algorithm is for simple obstacle it can be easily extended
to include the case of general 2-d obstacles in O(n*logn) time.
Our algorithm can have important applications for detecting the
separability of objects [11] under visibility properties.

References

[1] Arkin, E. M., "R. Connelly and J. S. B. Mitchell, “On
Monotone Paths Among Obstacles, With Applications to
Planning Assemblies”, Proc. 5th Annual Symposium on
Computational Geometry, 1989.

[2] Aho, A. V., J. E. Hopcroft and J. D. Ullman, “The Design
and Analysis of Computer Algorithms”, Addison Wesley
Publishing Company, 1974

[3] Chin, Y. P. and S. Ntafos, “Optimum Watchman Routes”,
Information Processing Letters 28(1988) 39-44.

[4] Chin, Y. P. and S. Ntafos, “Watchman Routes in Sim-
ple Polygons”, Discrete and Computational Geometry, To
Appear.

[5] Canny, J. and J. Reif, “New Lower Bound Techniques for
Robot Motion Planning Problems”, Proc. of 28th FOCS,
pp. 46-60, Oct 1987.

11

[6 Edelsbruner, H., M. Overmars, and D. Wood, ”Graphics
in Flatland: A case study in: Advances in Computing
Research 1, JAI, Greenwich, 1983, CT, pp. 35-59.

[7] Gewali, L., “Planning Monotone Paths to Visit a Set of
Obstacles”, Technical Report No. CRS-90-36, Department
of Computer Science, University of Nevada, Las Vegas,

1990.

[8] Schwartz,J., J. Hopcroft and M. Sharir, “Planning, Ge-
ometry and Complexity of Robot Motion Planning”, Allex
Publishing Company, New Jersey, 1987.

[9] Sharir, M.and A. Schorr, “On Shortest Path in Polyhe-
dral Spaces”, Siam Journal of Computing, Vol. 15, No. 1,
pp- 193-215, Feb. 1986.

[10] Schwartz, J. and C. K. Yap, “Algorithmic and Geometric
Aspects of Robotics”, Lawrence Erlbaum Associates, 1987.

(11] Toussaint, G. F., “Movable Separability of Sets”, Com-
putational Geometry, Ed. G. T. Toussaint, North Holland

Figure 1: Illustrating an example of s-t-monotone path
from which maximum number of obstacles can be seen.

Figure 2: Showing the region of illumination (gray area)
of an object.

Figure 4: Vertical adjacency graph (VAG) of the obstacle

scene.

Before split

.

After split

Figure 5: Illustrating the splitting process.

12

Algorithm Monotone_Watchman

LongDist.v; is the distance of the longest path from s to
v;. PrevNode.v, is the node before v, in the longest path
from s to v,

1. Construct the region of illumination for all obstacles.

2. Compute the planar graph G(V,E) formed by the in-
tersection of the edges on the boundaries of obstacles
and their illumination regions.

3. Compute the vertical adjacency graph (VAG) from
G(V,E).
4. Convert VAG to directed acyclic graph (DAG).

5. create stack; LongDist.vo:=0; PrevNode.s := s;
initialize in-degree for all vertices; push s on stack;

6. while stack not empty do

7. v := pop(stack);

8. for each edge (vy,v;) do

9. if on_the_path(v;) then Temp := LongDist.v,
10. else Temp := LongDist.v; + 1

11. if LongDist.v; < Temp then
12. PrevNode.v; := v,
13. LongDist.v; := Temp
14. in-degree.v; := in-degree.v; - 1
15. if in-degree.v; = 0 then push v;

16. end{for}
18. end{while}

function on_the_path(v;);
{this function returns ‘true’ if the longest path from s to

v; contains at least two vertices belonging to the obstacle
corresponding to vj}

Let Q be the obstacle corresponding to vj;
on_the_path := false; v := PrevNode.vj;
while v # s and (not on_the_path) do

begin
v := PrevNode(v);
if v belongs to Q then On_the_path := true

end.

Figure 6: Algorithm for computing s-t-monotone path
from which maximum number of obstacles can be seen.

A New Raster to Vector Algorithm

Chu, Y. P., Tasi, M. H. and Yu, C. C.*

Institute of Applied Mathematics

National Chung Hsing University

*Shu-Teh Junior College of Technology
Taichung, Taiwan, R.O.C.

ABSTRACT

In engineering drawing, only some lines, curves or symbols
(which can also be regarded as lines or curves) are of essential
meanings to the users. Using raster files to edit or store images
is both space-consuming and difficult. If, however, some of these
lines within raster images are transformed into vectors for storage,
we can not only save a lot of space, but also make the jobs of
edition, enlaragement, shrinkage and even resolution much easier.

An efficient and effective new method of algorithm will be
presented here. First, a basic vectorizing concept is used to de-
vise a new piecewise linear approximation of digital curves in
2-dimensional space, which will in turn be applied to raster-to-
vector algorithm.

I. INTRODUCTION

Generally speaking, there are two types of data images: one
is gray level image, and the other is bilevel image. Algorithm
varies with the data types. Because of its gray value, the image
in gray level image is usually used as a basis for trace. In using
such method [1] [2], the input device must be equipped with over
256 gray levels [3] to achieve better effect, otherwise, line breakage
will occur easily. If the gray level of a camera is not high enough,
the technique of segmentation can be used to change the gray
level image into bilevel image. Scanner can also be used as input
device to obtain bilevel image directly.

There are two typical approaches to vectorizations: one
based on Runlength code, the other based on thinning. Basically,
the former uses Runlength code to show digital image, and con-
nects each individual run before changing them into vectors. The
process can be divided into five steps: (1) scanning and thresh-
olding, (2) noise removal and void filling, (3) edge detection, (4)
outline following, (5) vectorizing [4].

The advantages of adopting Runlength code to trace vec-
tors can be summed up as follows: Runlength code can retain
the width of line, and because of its faster processing speed, it
is suitable for real time system, and does not take up too many
memory [5] during the course of process. It has its drawbacks,
however, such as unsuitable for handling curves, cross-lines (be-
cause the lengths of cross point Run are quite uneven), and slight
slanting line. These disadvantages have been mollified.

The thinning process allows users to obtain skeleton of the
original image as the object for processing. The thinning process
can be divided into four steps: (1) thinning, (2) classification,
(3) chainning, (4) vectorizing. Thinning has the advantages of
doing as litttle damage as possible to the original shape of the
geometric diagram, while the width of each line is kept to just
one pixel wide. The image after going through thinning remains
a bilevel image except that its number of black pixels (which
gray value are equal to 1) has been reduced to the minimum
number necessitated to show the lines of the original image. In
other words, there remains a lot of excessive information (the

178-035

13

background of image) within the file. Therefore, we hope to be
able to remove the background, and to show the lines by chain
code. Black pixels are usually classified before processing. Uutil
the classification is done, the whole image looks indeed like some
geometric lines. To the image itself, however, it consists of only
black pixels and white pixels. The purpose of classification is to
assign roles to the black pixels within the image. What follows
is to chain up the pixels into curves according to the role of each
pixel. Finally, curve approximation is conducted.

II. IMAGE TRANSFORMATION FROM RASTER TO
VECTOR

We will now explore and implement the image transforma-
tion method. The entire handling process can be divided into
three major stages as shown in figure 1. The sections that follow
will discuss in detail the method of each stage.

(I) Thinning

An effective thinning algorithm, i.e., Chen-Hsu method (6], is
adopted. A binary image is generally defined as a square matrix
IM, where each element IM(i,j) is called a pixel which has the
value 1 or 0. 1 represents the black pixels which is the lines.
Another 3 x 3 square matrix is then defined as a 8-neighbors
matrix with central pixel P1 and is shown in figure 2. In this
method, each iteration is divided into two subiterations. In the
first subiteration, the central pixel P1 will be deleted from the
binary image if it can satisfy the following conditions:

(a) 2<B(P1) <7

(b) A(P1) = 1;if A(P1) = 2 then goto (d)

(c) (P4=0)or (P6=0) or (P2= P8=0);end.

(d) (P2=P4=1and P6 = P7T= P8 =0) or (P4= P6=

1 and P8 = P9 = P2 =0); end.

where B(P1) is the number of nonzero neighbors of pixel P1,
and A(P1) is the number of 0-1 pair in the P2, P3, P4,..., P9, P2
sequence.

In figure 3, for example, B(P1) is equal to 5 and A(P1) is
equal to 2. But the central pixel still cannot be deleted from the
binary inage because condition (d) is not satisfied. In the second
subiteration, the central pixel P1 will be deleted from the binary
image if it can satisfy the following conditions:

(a) 2<B(P1)<T7

(b) A(P1) = 1;if A(P1) = 2 then goto (d)

(c) (P2 =0)or (P8 =0) or (P4 = P6 = 0); end.

(d) (P2=P8=1and P4=P5=P6=0)or (P6 =P8 =

1 and P2 = P3 = P4 =0);end.
The flowchart of this method is described in figure 4.
(IT) Split
Because the file captured by the scanner is too much for the

computer to process completely at one time, it is necessary to split
raster file first to facilitate processing. Basically, to save splitting

time, equal division splitting is adopted, that is, regardless of how
the lines are scattered, the file is always splitted into definite size.

The advantages of proper splitting are as follows: First, the
size is suitable for program processing; Second, it is suitable for
parallel processing. The advantages of equal division splitting
are that it is simple and swift. The disadvantages are as follows:
when distributed system or parallel processing is used to process
the splitted files, the unevenly distributed lines in each splitted
file may result in too much difference in the processing time of
the processors. To narrow the difference, a more ingenious split-
ting method, that is, unequal division splitting, is adopted. This
method is to split the file into several small files of unequal size
to make the linear density within the splitted files more uniform.
The steps involved are as follows:

(a) claculate the numver of black pixels in each row of the

original file, and keep the score.

(b) Total the number of black pixels in the entire image,
which is then divided by the number of processors n to
arrive at a reference value.

(c) Split each row into n small files to make the number
of black pixels in each small file to come closest to the
reference value.

Because it is necessary to analyze the image first, unequal di-
vision splitting is more time-consuming than equal division split-
ting. Under the circumstances of distributed system or parallel
processing, and if the lines in an image scatter unevenly, unequal
division splitting is prefered, as this method tends to lessen the
load of the processors and to save time. But if the lines in an
image distribute more evenly, it is more suitable to use equal
division splitting to save the time on analyzing.

(ITI) Vectorizing

This section will first introduce a new method, and then
pseudocode will be used to describe the calculating method. Some
definitions of terms are as follows: "m” is the array for storing
image, and each element of array represents a pixel. "L” is the
maximum length of the line section, whose function is to prevent
falling into an infinite loop during the course of processing. ”S” is
the starting point. ”C” is the current point. ”N” is the next point.
"P” is the plus point, recording the point coordinate which is in
the positive direction and farthest from line 1. "M” is the minus
point, recording the point coordinate which is in the negitave
direction and farthest from line 1.

Besides, if a certain point has three or more than three ad-
jacent points around it, it is defined as cross point. If it has two

adjacent point, it is defined as center point. If it has only one
adjacent point, it is defined as endpoint. If it has no adjacent
point, it is defined as isolated point.

Next, a new piecewise linear approximation of digital curves
in 2-dimensional space will be discussed. Assuming ASXN as
figure 5.

Let .—X—Tg’ = ?,ﬁ = T;_
The area of ASXN = Ly/[a2[b]? — (a-b)? = Lhd.
Further let @ = (al,%),? = (by,5,),

a; Gy

b, b,

then we obtain h = o ;
Here, h is not the absolute value, so h can be plus or minus.
We then use this simple mathematical equation to calculate the
distance between point X and line section SN. First, let the
initial value L” be 1, beginning from m in the upper left corner of
the figure, and follow the colum major to locate the first nonzero
points. Following the direction defined in figure 6, beginning with
0 in clockwise direction (0,1,---,7), locate the first nonzero point
within the 3 X 3 adjacent matrix with S as center, let this point
be C. Increment L by 1, record C relative to the direction value
of S (for example, if C is in the direction 3 of S, then the direction

14

value is 3), and calculate the number of the asjacent points of S
to judge the pattern of S.

Let both P and M be equal to C. Because S and C do not
form a triangle, C is taken as the center of 3 x 3 adjacent matrix.
Beginning with the upper direction value and follow clockwise
direction (3,4,-:-,2) to locate the first nonzero point. Let this
point be N. Increment L by 1, record N relative to the direction
value of C, calculate the number of the adjacent points of C to
judge the pattern of C. Replace C with N, and follow the afore-
mentioned method to locate the next point N of C, increment L
by 1, calculate the heights of SN within ASCN, ASPN, and
ASMN as H, Hp and Hm respectively. If H is larger than 0,
then it means C is in the plus direction of line section SN. In
comparison with Hp, if H > Hp, it means C is further deviated
from SN than P. Replace C with P, if H < Hp, then P is not
to be replaced. Similarly, if H < 0, it means C is in the minus
direction of line section SN; if H < Hm, it means C is further
deviated from SN than M. Replace M with C; if H > Hm, then
M is not to be replaced. If any of H, Hp and Hm exceeds the
defined standard CR, it means the margin of errror is too large
in approaching SN to curve SN, so SC is used to approxinate
curve SC. If H, Hp and Hm are all smaller than CR, then follow
the aforementioned sequence to locate the next point until H, Hp
and Hm are larger than CR, or untill L exceeds the maximum
length MAXL, or until the end of the line.

Figure 7 is a simple example. Let CR be 1. First locate P1
as S, then locate P2 as C and as P, M; follow the afomentioned
sequence, when P3 is C, P4 is N, H < 0, and H < Hm, so P3
is M. When P4 is C, and P5 is N, becausse |Hm]| is larger than
CR, P1P4 is a line section. Next, P4 is S, locate P5 as C and as
P, M, and locate P6 as N; when P6 is C, and P7 is N, H > 0 and
H = Hm, so P6 is P, when P7 is C, and P8 is N, because |Hp|
is already larger than CR, P4P7 is a line section. Finally, P7P8
is a line section, so, in this example, curve P1P8 is approximated
by the three line sections of P1P4, PAP7 and P7P8

Figure 8 is an example of curve. CR is still 1, first lo-
cate P1 as S, then follow the aforementioned sequence to locate
the first line section as P1P2. Next, let P2 be S, continue the
steps to obtain P3 as M, P4 as P. When P5 is C, and P6 is
N, because|Hp| > CR and |H| > |CR|, P2P5 is a line sec-
tion. Then let P5 be S, continue the steps to obtain P7 as
M, P6 as P; when P8 is C, P9 is N, because |[Hm| > CR and
|H| > CR,P5P8 is a line section. Finally, P8P10 is a line sec-
tion, therefore, curve P1P10 is approximated by four line sections
of P1P2, P2P5, P5P8 and PSP10.

The algorithm mentioned above is described in pseudo code as
follows:
L=

TOOFAR FALSE;

FOR (all points in matrix M)
Find S in column major sequence;
Find next pomt N of S;

P= =
WHILE ((SS # isolated point) and (S # end point)
(L< maxlength) and (not TOOFAR))
é++,

Find next point N of C;
IF (C # end point)
Calculate height H of SN in ASCN;
Calculate height Hp of SN in ASPN;
Calculate height Hm of SN in ASMN;
IF ((H < CR) and (Hm< CR} and (Hp < CR))

IF ((H >0) and (H > Hp)) P=C
IF ((H <0) and (H<Hm)) M = C
ELSE
TOOFAR = ture;
ELSE
TOOFAR = true;
S=¢C;

III. RESULTS

We use three images (1200 x 1200 pixels, 300 dpi) to test our
algorithm. Final results are shown in figure 9, 10, 11. Table 1
shows the precessing time, vector number and saving time about

these images.

IV. CONCLUSIONS

Due to the requirements in various applications, many re-
searchers have spared no effort to direct their attentions to de-
vise algorithms for vectotizing image. However, both Runlength
method and Thinning method are time consuming, since they
involve large amount of data and operations. Therefore, it’s im-
perative to improve our existing software technique by adoptions
hardware and parallel processing. For instance, the GTX 5000
system, when expanded to eight 68020 processors is suitable to
handle such problems.

We have proposed here a new algorithm for vectorizing im-
age. By utilizing the Hp and Hm techniques, the computing
time will not increase with the longer line segment. The curve-
approximating method presented here is also effective. In addi-
tion, from the viewpoint of distributed processing, it’s advisable
to balance the loads of all processors by unequal division splitting.

REFERENCES AND BIBLIOGRAPY:

1. Watson, L.T., Arvind, A., Ehrivh, R.W., and Haralick, R.M.,
” Extraction of lines and Regions from Grey Tone Line Draw-
ing Images”, Pattern Recognition, 17, 5, 1984, pp. 493-507.

2. Bixler J.P., and Sanford, J.P., ”A Technique for Encoding
Lines and Regious in Engineering Drawings”, Pattern Recog-
ition, 18, 5, 1985, pp367-377.

3. Pavlidis, T., " Algorithm For Graphics and Image Process-
ing”, 1882.

4. Ramachandran, K., ”Coding Methos for Vector Representa-
tion of Engineering Drawings”, Proc. IEEE, 68,7, Jul. 1980,
pp. 813-817.

5. Ramer, U., ”An Iterative Procedure for The Polygon Ap-
proximation of Plane Curves”, CGVIP, 1, 1972, pp. 244-256.

6. Chen, Y.S., and Hsu, W.H., ”An New Parallel Thinning Al-
gorithm For Binary Image”, NCS, 1985, pp. 295-299.

7. Peuquet, D.J., ” An Examination of Techniques for Reform-
mating Digital Cartographic Data/ Part 1: The Raster-to-
Vector Process”, Cartographica, 18, 1, 1891, pp. 34-38.

8. Parker, J.R.,” Extracting Vectors from Raster Images”, Com-
pute & Graphics, 12, 1988, pp. 75-79.

9. Sklansky J., and Gonzalez, V., ”Fast Polygonal Approxima-
tion of Digitized Curves”, Pattern Recognition, 12, 1980, pp.
327-331.

10. Landy, M.S., and Cohen, Y., ” Vectorgraph Coding: Efficient
Coding of Line Drawings”, CVGIP, 30, 1985, PP. 331-344.

thinning

vectorizing

Figure 1. The handling process of image slgorithm

P9 P2 P3
(1'11 J'l) (i'lv J) (i'lv .]+1)
P8 P1 P4
(iv j'l) (lv j) (iv j+1)
P7 Pé6 P5

Figure 2. 8-neighbors matrix with the central pixels P1

15

0|1
1{P1{1
1110

Figure 3. B(P1)=5, A(P1)=2

First subiteration 1

If all conditions are satisfied, then IM(i,j) is
removable, the value 0 is registered to IM'(z, j?
and the flag will be set. Otherwise, the flag will
not be affected and IM(i,j) is copied directly to

IM'(¢,7)

No

Second subiteration
If all conditions are satisfied, then IM'{i,j) is
removable, the value 0 is registered to IM(1,j)
and the flag will be set. Otherwise, the flag will
not be affected and IM' (1, j) is copied directly to
IM(i)

is

Jes flag set?

No

Figure 4. Flowchart of Chen-Hsu method

Figure 6. The definition of direction

B6— Figure 7. Example 1

