‘Malvino S ;
DIGITALCOMPUTER |
- ELECTRONICS e

'1

SECOND EDITIO : ;

Digital Computer

Electronics

An Introduction to
Microcomputers

Second Edition

Albert Paul Malvino, Ph.D.

Gregg Division
McGraw-Hill Book Company

New York Atlanta Dallas St. Louis San Francisco
Auckland Bogota Guatemala Hamburg Johannesburg
Lisbon London Madrid Mexico Montreal New Delhi
Panama Paris San Juan Sao Paulo Singapore Sydney

Tokyo Toronto

Sponsoring Editor: Paul Berk

Editing Supervisors: Tim Perrin and Larry Goldberg

Design and Art Supervisors: Nancy Axelrod and Meri Shardin
Production Supervisor: Priscilla Taguer

Text Designer: Ampersand Studio
Cover Designer: Ampersand Studio
Cover Illustrator: Jon Weiman
Technical Studio: Fine Line, Inc.

Library of Congress Cataloging in Publication Data

Malvino, Albert Paul.
Digital computer electronics.

Includes index.
1. Electronic digital computers.
2. Microcomputers. 3. INTEL 8085 (Computer)

I. Title.
TK7888.3.M337 1982 621.3819'58 82-8952
ISBN 0-07-039901-8 AACR2

Digital Computer Electronics:
An Introduction to Microcomputers, Second Edition

Copyright © 1983, 1977 by McGraw-Hill, Inc. All rights reserved. Printed in the
United States of America. Except as permitted under the United States Copyright
Act of 1976, no part of this publication may be reproduced or distributed in any
form or by any means, or stored in a data base or retrieval system, without the
prior written permission of the publisher.

234567890SEMBKP 89876543

ISBN 0-07-039901-8

Digital Computer
Electronics

ALSO BY ALBERT P. MALVINO

Electronic Principles

Experiments for Electronic Principles
(with G. Johnson)

Transistor Circuit Approximations

Experiments for Transistor Circuit
Approximations

Resistive and Reactive Circuits
Electronic Instrumentation Fundamentals

Digital Principles and Applications
(with D. Leach)

PREFACE

Textbooks on microprocessors and microcomputers are very
often hard to understand. Sometimes it seems as if something
important had been left out of the discussion; this book is
my attempt at putting everything back in.

The early chapters of Digital Computer Electronics,
Second Edition, cover digital theory and devices. In later
chapters this information is applied to microprocessors, and
finally, you will learn about the construction and operation
of microcomputer systems. The only prerequisite to using
this textbook is an understanding of diodes and transistors.

I have featured the 8085 microprocessor (an enhanced
version of the 8080) because this 8-bit device is an ideal
subject of study for a fundamental microcomputer textbook.
Once you understand the 8085, you pass a major hurdle
and things begin to make sense in the microcomputer world.

To help you master the 8085, you will first study
an educational computer called SAP (simple-as-possible).
This computer has three generations: SAP-1, SAP-2, and
SAP-3. SAP-1 is a bare-bones computer built with TTL
chips. You will see every wire, every signal, and every
circuit used in this elementary computer. This will reinforce
your grasp of digital electronics and prepare you to under-
stand the more advanced computer concepts in SAP-2 and
SAP-3. Many of the operational details of the 8080 and
8085 microprocessors are covered in SAP-2 and SAP-3.

After studying these you will have learned almost the entire
8080/8085 instruction set.

The later chapters discuss advanced microcomputer topics
such as handshaking, interrupts, memory shadows, and
D/A and A/D conversion. When finished with this book,
you will have a deep and solid understanding of microcom-
puter basics. With that kind of foundation you will find it
relatively easy to branch out to systems that use other 8-
bit, as well as 16-bit, microprocessors.

A correlated laboratory manual, Experiments for Digital
Computer Electronics by Michael A. Miller, is available
for use with this textbook. Early experiments cover the
basics of digital electronics: gates, adders, flip-flops, and
more. Later experiments are about program counters, in-
struction decoders, and accumulators. In the final experi-
ments you assemble and program a SAP-1 computer.

During the preparation of this textbook, many people
made valuable suggestions. I want to thank Charles Counts
of Intel Corporation, Michael A. Miller of the DeVry
Institute of Technology, William H. Murray of Broome
Community College, Richard Raines of Shasta College,
Michael Slater of Logical Services Incorporated, and the
staff of the Sylvania Technical School.

Albert Paul Malvino

A man of true science uses but few hard words,

and those only when none other will answer his purpose;

whereas the smatterer in science thinks that

by mouthing hard words he understands hard things.
Herman Melville

CONTENTS

PREFACE ix

CHAPTER 1. NUMBER SYSTEMS AND
CODES 1

1-1. Decimal Odometer 1-2. Binary Odometer

1-3. Number Codes 1-4. Why Binary Numbers Are
Used 1-5. Binary-to-Decimal Conversion

1-6. Microprocessors 1-7. Decimal-to-Binary
Conversion 1-8. Hexadecimal Numbers

1-9. Hexadecimal-Binary Conversions

1-10. Hexadecimal-to-Decimal Conversion

1-11. Decimal-to-Hexadecimal Conversion

1-12. BCD Numbers 1-13. The ASCII Code

CHAPTER 2. GATES 19

2-1. Inverters 2-2. OrR Gates 2-3. AND Gates
2-4. Boolean Algebra

CHAPTER 3. MORE LOGIC GATES 32

3-1. NOR Gates 3-2. De Morgan’s First Theorem
3-3. NAND Gates 3-4. De Morgan’s Second Theorem
3-5. EXCLUSIVE-OR Gates 3-6. The Controlled
Inverter 3-7. EXCLUSIVE-NOR Gates

CHAPTER 4. TTL CIRCUITS 48

4-1. Digital Integrated Circuits 4-2. 7400 Devices
4-3. TTL Characteristics 4-4. TTL Overview

4-5. AND-OR-INVERT Gates 4-6. Open-Collector Gates
4-7. Multiplexers

CHAPTER 5. BOOLEAN ALGEBRA AND
KARNAUGH MAPS 64

5-1. Boolean Relations 5-2. Sum-of-Products Method
5-3. Algebraic Simplification 5-4. Karnaugh Maps
5-5. Pairs, Quads, and Octets 5-6. Karnaugh
Simplifications 5-7. Don’t-Care Conditions

CHAPTER 6. ARITHMETIC-LOGIC
UNITS 79

6-1. Binary Addition 6-2. Binary Subtraction

6-3. Half Adders 6-4. Full Adders 6-5. Binary
Adders 6-6. Signed Binary Numbers 6-7. 2’s
Complement 6-8. 2’s-Complement Adder-Subtracter

CHAPTER 7. FLIP-FLOPS 90

7-1. RS Latches 7-2. Level Clocking 7-3. D Latches
7-4. Edge-Triggered D Flip-Flops 7-5. Edge-Triggered
JK Flip-Flops 7-6. JK Master-Slave Flip-Flop

CHAPTER 8. REGISTERS AND
COUNTERS 106

8-1. Buffer Registers 8-2. Shift Registers

8-3. Controlled Shift Registers 8-4. Ripple Counters
8-5. Synchronous Counters 8-6. Ring Counters

8-7. Other Counters 8-8. Three-State Registers

8-9. Bus-Organized Computers

CHAPTER 9. MEMORIES 130

9-1. ROMs 9-2. PROMs and EPROMs 9-3. RAMs
9-4. A Small TTL Memory 9-5. Hexadecimal
Addresses

CHAPTER 10. SAP-1 140

10-1. Architecture 10-2. Instruction Set

10-3. Programming SAP-1 10-4. Fetch Cycle

10-5. Execution Cycle 10-6. The SAP-1
Microprogram 10-7. The SAP-1 Schematic Diagram
10-8. Microprogramming

CHAPTER 11. SAP-2 173

11-1. Bidirectional Registers 11-2. Architecture
11-3. Memory-Reference Instructions 11-4. Register
Instructions 11-5. Jump and Call Instructions

11-6. Logic Instructions 11-7. Other Instructions
11-8. SAP-2 Summary

vii

CHAPTER 12. SAP-3 195

12-1. Programming Model
12-3. Arithmetic Instructions 12-4. Increments,
Decrements, and Rotates 12-5. Logic Instructions
12-6. Arithmetic and Logic Immediates 12-7. Jump
Instructions 12-8. Extended-Register Instructions
12-9. Indirect Instructions 12-10. Stack Instructions

12-2. MOV and MVI

CHAPTER 13. THE 8085 213

13-1. Block Diagram 13-2. Pinout Diagram
13.3. Driving the X, and X, Inputs 13-4. New

Instructions 13-5. The DAA Instruction 13-6. The
Minimum System 13-7. Fetching and Executing
Instructions 13-8. 8085 Timing Diagrams

CHAPTER 14. I/0 OPERATIONS 239

14-1. Programmed I/O 14-2. Restart Instructions

14-3. Interrupts 14-4. Interrupt Circuits

14-5. Interrupt Instructions 14-6. Serial Input and Serial
Output 14-7. Extending the Interrupt System

14-8. Direct-Memory Access

CHAPTER 15. SUPPORT CHIPS 254

15-1. The 8156 15-2. Port Numbers for the 8156
15-3. Programming the I/O Ports 15-4. Programming

the Timer 15-5. The 8355 15-6. Fully Decoded
viii contents

Minimum System
I/O Ports
RAMs

15-7. Creating and Addressing New
15-8. Expanding the Memory with Static
15-9. Dynamic RAMs

CHAPTER 16. THE ANALOG
INTERFACE 281

16-1. Op-Amp Basics 16-2. A Basic D/A Converter
16-3. The Ladder Method 16-4. The DACO0808
16-5. The Counter Method of A/D Conversion

16-6. Successive Approximation 16-7. The
ADCO0801 16-8. Successive Approximation with
Software 16-9. Voltage-Controlled Oscillator

16-10. Sample-and-Hold Circuits

APPENDIXES 308

1. Binary-Hexadecimal-Decimal Equivalents
Series TTL 3. Pinouts and Function Tables 4. SAP-1
Parts List 5. 8085 Instructions 6. Memory Locations:
Powers of 2 7. Memory Locations: 16K and 8K
Intervals 8. Memory Locations: 4K Intervals

9. Memory Locations: 2K Intervals 10. Memory
Locations: 1K Intervals

2. 7400

ANSWERS TO ODD-NUMBERED
PROBLEMS 325

INDEX 331

Number

Systems

and Codes

Modern computers don’t work with decimal numbers.
Instead, they process binary numbers, groups of Os and ls.
Why binary numbers? Because electronic devices are most
reliable when designed for two-state (binary) operation.
This chapter discusses binary numbers and other concepts
needed to understand computer operation.

1-1 DECIMAL ODOMETER

René Descartes (1596-1650) said that the way to learn a
new subject is to go from the known to the unknown, from
the simple to the complex. Let’s try it.

The Known

Everyone has seen an odometer (miles indicator) in action.
When a car is new, its odometer starts with

00000

After | mile the reading becomes

00001

Successive miles produce 00002, 00003, and so on, up to
00009

A familiar thing happens at the end of the tenth mile.

When the units wheel turns from 9 back to 0, a tab on this

wheel forces the tens wheel to advance by 1. This is why
the numbers change to

00010

Reset-and-Carry

The units wheel has reset to 0 and sent a carry to the tens
wheel. Let’s call this familiar action reset-and-carry.

The other wheels also reset and carry. After 999 miles
the odometer shows

00999

What does the next mile do? The units wheel resets and
carries, the tens wheel resets and carries, the hundreds
wheel resets and carries, and the thousands wheel advances
by 1, to get

01000

Digits and Strings

The numbers on each odometer wheel are called digits.
The decimal number system uses ten digits, O through 9.
In a decimal odometer, each time the units wheel runs out
of digits, it resets to 0 and sends a carry to the tens wheel.
When the tens wheel runs out of digits, it resets to 0 and
sends a carry to the hundreds wheel. And so on with the
remaining wheels.

One more point. A string is a group of characters (either
letters or digits) written one after another. For instance,
734 is a string of 7, 3, and 4. Similarly, 2C8A is a string
of 2, C, 8, and A.

1-2 BINARY ODOMETER

Binary means two. The binary number system uses only
two digits, 0 and 1. All other digits (2 through 9) are
thrown away. In other words, binary numbers are strings
of Os and 1s.

An Unusual Odometer

Visualize an odometer whose wheels have only two digits,
0 and 1. When each wheel turns, it displays 0, then I, then

1

back to 0, and the cycle repeats. Because each wheel has
only two digits, we call this device a binary odometer.
In a car a binary odometer starts with

0000 (zero)
After 1 mile, it indicates

0001 (one)

The next mile forces the units wheel to reset and carry; so
the numbers change to

0010 (two)

The third mile results in

0011 (three)

What happens after 4 miles? The units wheel resets and
carries, the second wheel resets and carries, and the third
wheel advances by 1. This gives

0100 (four)
Successive miles produce

0101 (five)
0110 (six)
0111 (seven)

After 8 miles, the units wheel resets and carries, the
second wheel resets and carries, the third wheel resets and
carries, and the fourth wheel advances by 1. The result is

1000 (eight)
The ninth mile gives

1001 (nine)
and the tenth mile produces

1010 (ten)

(Try working out a few more readings on your own.)

You should have the idea by now. Each mile advances
the units wheel by 1. Whenever the units wheel runs out
of digits, it resets and carries. Whenever the second wheel
runs out of digits, it resets and carries. And so for the other
wheels.

Binary Numbers
A binary odometer displays binary numbers, strings of Os

and 1s. The number 0001 stands for 1, 0010 for 2, 0011

2 Digital Computer Electronics

for 3, and so forth. Binary numbers are long when large
amounts are involved. For instance, 101010 represents
decimal 42. As another example, 111100001111 stands for
decimal 3,855.

Computer circuits are like binary odometers; they count
and work with binary numbers. Therefore, you have to
learn to count with binary numbers, to convert them to
decimal numbers, and to do binary arithmetic. Then you
will be ready to understand how computers operate.

A final point. When a decimal odometer shows 0036,
we can drop the leading Os and read the number as 36.
Similarly, when a binary odometer indicates 0011, we can
drop the leading Os and read the number as 11. With the
leading Os omitted, the binary numbers are O, 1, 10, 11,
100, 101, and so on. To avoid confusion with decimal
numbers, read the binary numbers like this: zero, one, one-
Zero, one-one, ONe-zZero-zero, one-zero-one, etc.

1-3 NUMBER CODES

People used to count with pebbles. The numbers 1, 2, 3
looked like @, @@, @@@®. Larger numbers were worse:
seven appeared as 0000 00®.

Codes

From the earliest times, people have been creating codes
that allow us to think, calculate, and communicate. The
decimal numbers are an example of a code (see Table
1-1). It’s an old idea now, but at the time it was as
revolutionary; 1 stands for @, 2 for @@, 3 for 0@@,
and so forth.

Table 1-1 also shows the binary code. 1 stands for @, 10
for @@, 11 for @@@®, and so on. A binary number and a
decimal number are equivalent if each represents the same
amount of pebbles. Binary 10 and decimal 2 are equivalent
because each represents @@. Binary 101 and decimal 5 are
equivalent because each stands for @@ @@@®.

TABLE 1-1. NUMBER CODES

Decimal Pebbles Binary
0 None 0
1 [1
2 &® 10
3 000 11
4 2889 100
5 00000 101
6 000000 110
7 000009 111
8 teaeeeed® 1000
9 29SS GOBED 1001

Equivalence is the common ground between us and
computers; it tells us when we're talking about the same
thing. If a computer comes up with a binary answer of 101,
equivalence means that the decimal answer is 5. As a start
to understanding computers, memorize the binary-decimal
equivalences of Table 1-1.

EXAMPLE 1-1

Figure 1-la shows four light-emitting diodes (LEDs). A
dark circle means that the LED is off; a light circle means
it’s on. To read the display, use this code:

(a) (b)
Fig. 1-1 LED display of binary numbers.

LED Binary

Off 0
On 1

What binary number does Fig. 1-1a indicate? Fig. 1-1b?

SOLUTION

Figure 1-la shows off-off-on-on. This stands for binary
0011, equivalent to decimal 3.

Figure 1-1b is off-on-off-on, decoded as binary 0101 and
equivalent to decimal 5.

EXAMPLE 1-2

A binary odometer has four wheels. What are the successive
binary numbers?

SOLUTION

As previously discussed, the first eight binary numbers are
0000, 0001, 0010, 0011, 0100, 0101, 0110, and O111. On
the next count, the three wheels on the right reset and carry;
the fourth wheel advances by one. So the next eight numbers
are 1000, 1001, 1010, 1011, 1100, 1101, 1110, and I111.
The final reading of 1111 is equivalent to decimal 15. The
next mile resets all wheels to 0, and the cycle repeats.
Being able to count in binary from 0000 to 1111 is
essential for understanding the operation of computers.

TABLE 1-2. BINARY-TO-DECIMAL

EQUIVALENCES
Decimal Binary Decimal Binary
0 0000 8 1000
1 0001 9 1001
2 0010 10 1010
3 0011 11 1011
4 0100 12 1100
5 0101 13 1101
6 0110 14 1110
7 0111 15 1111

Therefore, you should memorize the equivalences of Table
1-2.

1-4 WHY BINARY NUMBERS
ARE USED

The word *‘computer’ is misleading because it suggests a
machine that can solve only numerical problems. But a
computer is more than an automatic adding machine. It can
play games, translate languages, draw pictures, and so on.
To suggest this broad range of application, a computer is
often referred to as a data processor.

Program and Data

Data means names, numbers, facts, anything needed to
work out a problem. Data goes into a computer, where it
is processed or manipulated to get new information. Before
it goes into a computer, however, the data must be coded
in binary form. The reason was given earlier: a computer’s
circuits can respond only to binary numbers.

Besides the data, someone has to work out a program,
a list of instructions telling the computer what to do. These
instructions spell out each and every step in the data
processing. Like the data, the program must be coded in
binary form before it goes into the computer.

So the two things we must input to a computer are the
program and the data. These are stored inside the computer
before the processing begins. Once the computer run starts,
each instruction is executed and the data is processed.

Hardware and Software

The electronic, magnetic, and mechanical devices of a
computer are known as hardware. Programs are called
software. Without software, a computer is a pile of **dumb™’
metal.

Chapter 1 Number Systems and Codes 3

An analogy may help. A phonograph is like hardware
and records are like software. The phonograph is useless
without records. Furthermore, the music you get depends
on the record you play. A similar idea applies to computers.
A computer is the hardware and programs are the software.
The computer is useless without programs. The program
stored in the computer determines what the computer will
do; change the program and the computer processes the
data in a different way.

Transistors

Computers use integrated circuits (ICs) with thousands of
transistors, either bipolar or MOS. The parameters (..
10, &m» €tc.) can vary more than 50 percent with temperature
change and from one transistor to the next. Yet these
computer ICs work remarkably well despite the transistor
variations. How is it possible?

The answer is two-state design, using only two points
on the load line of each transistor. For instance, the common
two-state design is the cutoff-saturation approach; each
transistor is forced to operate at either cutoff or saturation.
When a transistor is cut off or saturated, parameter variations
have almost no effect. Because of this, it’s possible to
design reliable two-state circuits that are almost independent
of temperature change and transistor variations.

Transistor Register

Here’s an example of two-state design. Figure 1-2 shows
a transistor register. (A register is a string of devices that
store data.) The transistors on the left are cut off because
the input base voltages are 0 V. The dark shading symbolizes
the cutoff condition. The two transistors on the right have
base drives of 5 V.

The transistors operate at either saturation or cutoff. A
base voltage of 0 V forces each transistor to cut off, while
a base voltage of 5 V drives it into saturation. Because of
this two-state action, each transistor stays in a given state
until the base voltage switches it to the opposite state.

Another Code

Two-state operation is universal in digital electronics. By
deliberate design, all input and output voltages are either
low or high. Here’s how binary numbers come in: low
voltage represents binary 0, and high voltage stands for
binary 1. In other words, we use this code:

Voltage Binary
Low 0
High 1

For instance, the base voltages of Fig. 1-2 are low-low-
high-high, or binary 0011. The collector voltages are high-
high-low-low, or binary 1100. By changing the base voltages
we can store any binary number from 0000 to 1111 (decimal
0 to 15).

Bit

Bit is an abbreviation for binary digit. A binary number
like 1100 has 4 bits; 110011 has 6 bits; and 11001100 has
8 bits. Figure 1-2 is a 4-bit register. To store larger binary
numbers, it needs more transistors. Add two transistors and

you get a 6-bit register. With four more transistors, you'd
have an 8-bit register.

Nonsaturated Circuits

Don’t get the idea that all two-state circuits switch between
cutoff and saturation. When a bipolar transistor is heavily
saturated, extra carriers are stored in the base region. If the
base voltage suddenly switches from high to low, the
transistor cannot come out of saturation until these extra
carriers have a chance to leave the base region. The time
it takes for these carriers to leave is called the saturation
delay time t,. Typically, t, is in nanoseconds.

In most applications the saturation delay time is too short
to matter. But some applications require the fastest possible

1k

5V

10 k§2

ov
Fig. 1-2 Transistor register.

4 Digital Computer Electronics

10 k§2

5V

O +5V
1kQ 1kQ
ov ov
(Approx.) (Approx.)

10 k2

5V

switching time. To get this maximum speed, designers have
come up with circuits that switch from cutoff (or near
cutoff) to a higher point on the load line (but short of
saturation). These nonsaturated circuits rely on clamping
diodes or heavy negative feedback to overcome transistor
variations.

Remember this: whether saturated or nonsaturated circuits
are used, the transistors switch between distinct points on
the load line. This means that all input and output voltages
are easily recognized as low or high, binary O or binary 1.

FEBE

/ ! / /
(a)
(b)
Fig. 1-3 Core register.

Magnetic Cores

In some digital computers, magnetic cores store binary
data. Figure 1-3a shows a 4-bit core register. With the
right-hand rule, you can see that conventional current into
a wire produces a clockwise flux; reversing the current
gives a counterclockwise flux. (The same result is obtained
if electron-flow is assumed and the left-hand rule is used.)

The cores have rectangular hysteresis loops; this means
that flux remains in a core even though the magnetizing
current is removed (see Fig. 1-3b). This is why a core
register can store binary data indefinitely. For instance,
let’s use the following code:

Flux Binary
Counterclockwise 0
Clockwise 1

Then, the core register of Fig. 1-3b stores binary 1001,
equivalent to decimal 9. By changing the magnetizing
currents in Fig. 1-3a we can change the stored data.

To store larger binary numbers, add more cores. Two
cores added to Fig. 1-3a result in a 6-bit register; four more
cores give an 8-bit register.

The memory is one of the main parts of a computer.
Some memories contain thousands of core registers. These
registers store the program and data needed to run the
computer.

Other Two-State Examples

The simplest example of a two-state device is the on-off
switch. When this switch is closed, it represents binary 1;
when it’s open, it stands for binary 0.

Punched cards are another example of the two-state
concept. A hole in a card stands for binary 1, the absence
of a hole for binary 0. Using a prearranged code, a card-
punch machine with a keyboard can produce a stack of
cards containing the program and data needed to run a
computer.

Magnetic tape can also store binary numbers. Tape
recorders magnetize some points on the tape (binary 1),
while leaving other points unmagnetized (binary 0). By a
prearranged code, a row of points represents either a coded
instruction or data. In this way, a reel of tape can store
thousands of binary instructions and data for later use in a
computer.

Even the lights on the control panel of a large computer
are binary; a light that’s on stands for binary 1, and one
that’s off stands for binary 0. In a 16-bit computer, for
instance, a row of 16 lights allows the operator to see the
binary contents in different computer registers. The operator
can then monitor the overall operation and, when necessary,
troubleshoot.

In summary, switches, transistors, cores, cards, tape,
lights, and almost all other devices used with computers
are based on two-state operation. This is why we are forced
to use binary numbers when analyzing computer action.

EXAMPLE 1-3

Figure 1-4 shows a strip of magnetic tape. The black circles
are magnetized points and the white circles unmagnetized
points. What binary number does each horizontal row

represent?

[leleloN N N N]
@ 00O0OOC®®O
L ol N NeoN N N J
OOcCeeo0O0O0OS®
L N Nelel N e}
Ceoco0oec0O0Oe
L Nelol I NeoN }

L e~e——

Fig. 1-4 Binary numbers on magnetic tape.

SOLUTION

The tape stores these binary numbers:

Row 1 00001111 Row 5 11100110
Row 2 10000110 Row 6 01001001
Row 3 10110111 Row 7 11001101
Row 4 00110001

Chapter 1 Number Systems and Codes 5

(Note: these binary numbers may represent either coded
instructions or data.)

A string of 8 bits is called a byte. In this example, the
magnetic tape stores 7 bytes. The first byte (row 1) is
00001111. The second byte (row 2) is 10000110. The third
byte is 10110111. And so on.

A byte is the basic unit of data in computers. Most
computers process data in strings of 8 bits or some multiple
(16, 24, 32, and so on). Likewise, the memory stores data
in strings of 8 bits or some multiple of 8 bits.

1-5 BINARY-TO-DECIMAL
CONVERSION

You already know how to count to 15 using binary numbers.
The next thing to learn is how to convert larger binary
numbers to their decimal equivalents.

5 7 0 3 4 1 1 0 0 1
10 100 102 10" 100 2¢ 2% 22 ' 20
fa) (b)

Fig. 1-5 (a) Decimal weights; (b) binary weights.

Decimal Weights

The decimal number system is an example of positional
notation; each digit position has a weight or value. With
decimal numbers the weights are units, tens, hundreds,
thousands, and so on. The sum of all digits multiplied by
their weights gives the total amount being represented.
For instance, Fig. 1-5a illustrates a decimal odometer.
Below each digit is its weight. The digit on the right has a
weight of 10" (units), the second digit has a weight of 10!
(tens), the third digit a weight of 10? (hundreds), and so
forth. The sum of all units multiplied by their weights is

(5 X 10Y) + (7 x 10%) + (0 x 10*) + (3 x 10"
+ (4 x 10 = 50,000 + 7000 + 0 + 30 + 4
= 57,034

Binary Weights

Positional notation is also used with binary numbers because
each digit position has a weight. Since only two digits are
used, the weights are powers of 2 instead of 10. As shown
in the binary odometer of Fig. 1-5b, these weights are 2"
(units), 2' (twos), 27 (fours), 27 (eights), and 2* (sixteens).
If longer binary numbers are involved. the weights continue
in ascending powers of 2.

The decimal equivalent of a binary number equals the
sum of all binary digits multiplied by their weights. For
instance, the binary reading of Fig. 1-5b has a decimal
equivalent of

6 Digital Computer Electronics

(1 X 2% + (1 x 2 + (0 x 2% 4+ (0 x 2
+ (1 x29=16+8+0+0+1=25

Binary 11001 is therefore equivalent to decimal 25.
As another example, the byte 11001100 converts to
decimal as follows:

(1 X 27) + (1 X 20 + (0 X 25 + (0 x 2%
+ (1 X2) + (1 X 22) 4+ (0 x 2" + (0 x 29
=1284+464+0+0+8+4+0+0=204

So, binary 11001100 is equivalent to decimal 204.

Fast and Easy Conversion

Here’s a streamlined way to convert a binary number to its
decimal equivalent:

1. Write the binary number.
Write the weights 1, 2, 4, 8, .. ., under the binary
digits.

3. Cross out any weight under a 0.

4. Add the remaining weights.

For instance, binary 1101 converts to decimal as follows:

1. 1 1 0 1 (Write binary number)
2. 8 4 2 | (Write weights)

3.8 4 ¢ 1 (Cross out weights)

4. 8+4+0+1=13 (Add weights)

You can compress the steps even further:

11 0 1 (Step 1)
8 4 2 1—-13 (Steps 2 to 4)

As another example, here’s the conversion of binary
1110101 in compressed form:

I 1 1 01 01
64 32 16 § 4 2 1—117

Base or Radix

The base or radix of a number system equals the number
of digits it has. Decimal numbers have a base of 10 because
digits O through 9 are used. Binary numbers have a base
of 2 because only the digits 0 and 1 are used. (In terms of
an odometer, the base or radix is the number of digits on
each wheel.)

A subscript attached to a number indicates the base of
the number. 100, means binary 100. On the other hand,
100,, stands for decimal 100. Subscripts help clarify equa-
tions where binary and decimal numbers are mixed. For
instance, the last two examples of binary-to-decimal con-
version can be written like this:

11012 = 1310
1110101, = 117,

Il

In this book we will use subscripts when necessary for
clarity.

1-6 MICROPROCESSORS

What is inside a computer? What is a microprocessor? What
is a microcomputer?

Computer

The five main sections of a computer are input, memory,
arithmetic and logic, control, and output. Here is a brief
description of each.

Input This consists of all the circuits needed to get
programs and data into the computer. In some computers
the input section includes a typewriter keyboard that converts
letters and numbers into strings of binary data.

Memory This stores the program and data before the
computer run begins. It also can store partial solutions
during a computer run, similar to the way we use a scratchpad
while working out a problem.

Control This is the computer’s center of gravity, analo-
gous to the conscious part of the mind. The control section
directs the operation of all other sections. Like the conductor
of an orchestra, it tells the other sections what to do and
when to do it.

Arithmetic and logic This is the number-crunching sec-
tion of the machine. It can also make logical decisions.
With control telling it what to do and with memory feeding
it data, the arithmetic-logic unit (ALU) grinds out answers
to number and logic problems.

Output This passes answers and other processed data to
the outside world. The output section usually includes a
video display to allow the user to see the processed data.

Microprocessor

The control section and the ALU are often combined
physically into a single unit called the central processing
unit (CPU). Furthermore, it’s convenient to combine the
input and output sections into a single unit called the input-
output (1/0) unit. In earlier computers, the CPU, memory,
and /O unit filled an entire room.

With the advent of integrated circuits, the CPU, memory,
and I/O unit have shrunk dramatically. Nowadays the CPU
can be fabricated on a single semiconductor chip called a
microprocessor. In other words, a microprocessor is nothing
more than a CPU on a chip.

Likewise, the 1/O circuits and memory can be fabricated
on chips. In this way, the computer circuits that once filled
a room now fit on a few chips.

Microcomputer

As the name implies, a microcomputer is a small computer.
More specifically, a microcomputer is a computer that uses
a microprocessor for its CPU. The typical microcomputer
has three kinds of chips: microprocessor (usually one chip),
memory (several chips), and I/O (one or more chips).

If a small memory is acceptable, a manufacturer can
fabricate all computer circuits on a single chip. For instance,
the 8048 from Intel Corporation is a one-chip microcomputer
with an 8-bit CPU, 1,088 bytes of memory, and 27 I/O
lines.

Powers of 2

Microprocessor design started with 4-bit devices, then
evolved to 8- and 16-bit devices. In our later discussions
of microprocessors, powers of 2 keep coming up because
of the binary nature of computers. For this reason, you
should study Table 1-3. It lists the powers of 2 encountered
in microcomputer analysis. As shown, the abbreviation K
stands for 1,024 (approximately 1,000).T Therefore, 1K
means 1,024, 2K stands for 2,048, 4K for 4,096, and so
on.

Some personal microcomputers have 64K memories that
can store up to 65,536 bytes.

TABLE 1-3. POWERS OF 2

Powers of 2 Decimal equivalent Abbreviation

20 1

2! 2

22 4

22 8

24 16

25 32

28 64

27 128

28 256

2° 512

210 1,024 1K
a1 2,048 2K
212 4,096 4K
203 8,192 8K
24 16,384 16K
215 32,768 32K
216 65,536 64K

T The abbreviations 1K, 2K, and so on, became established
before K- for kilo- was in common use. Retaining the capital K
serves as a useful reminder that K only approximates 1,000.

Chapter 1 Number Systems and Codes 7

1-7 DECIMAL-TO-BINARY
CONVERSION

Next, you need to know how to convert from decimal to
binary. After you know how it’s done, you will be able to
understand how circuits can be built to convert decimal
numbers into binary numbers.

Double-Dabble

Double-dabble is a way of converting any decimal number
to its binary equivalent. It requires successive division by
2, writing down each quotient and its remainder. The
remainders are the binary equivalent of the decimal number.
The only way to understand the method is to go through
an example, step by step.

Here is how to convert decimal 13 to its binary equivalent.
Step 1. Divide 13 by 2, writing your work like this:

6 1 — (first remainder)

2713

The quotient is 6 with a remainder of 1.
Step 2. Divide 6 by 2 to get

3 0 — (second remainder)

2)6 1
2)13

This division gives 3 with a remainder of 0.
Step 3. Again you divide by 2:

I 1 — (third remainder)
2)3 0
2)6 1
2)13

Here you get a quotient of | and a remainder of 1.
Step 4. One more division by 2 gives

Read
down
0 1
2)1 1
2)3 0
2)6 1
2)13

8 Digital Computer Electronics

In this final division, 2 does not divide into 1; therefore,
the quotient is 0 with a remainder of 1.

Whenever you arrive at a quotient of 0 with a remainder
of 1, the conversion is finished. The remainders when read
downward give the binary equivalent. In this example,
binary 1101 is equivalent to decimal 13.

Double-dabble works with any decimal number. Pro-
gressively divide by 2, writing each quotient and its
remainder. When you reach a quotient of 0 and a remainder
of 1, you are finished; the remainders read downward are
the binary equivalent of the decimal number.

Streamlined Double-Dabble

There’s no need to keep writing down 2 before each division
because you're always dividing by 2. From now on, here’s
how to show the conversion of decimal 13 to its binary
equivalent:

0 1
)11
)3 0
)6 1
2)13

EXAMPLE 1-4

Convert decimal 23 to binary.

SOLUTION

The first step in the conversion looks like this:

11 1
2)23

After all divisions, the finished work looks like this:

2)23

This says that binary 10111 is equivalent to decimal 23.

