

S. SUSAN YOUNG • RONALD G. DRIGGERS • EDDIE L. JACOBS

SIGNAL PROCESSING and **PERFORMANCE ANALYSIS** for IMAGING SYSTEMS

Signal Processing and Performance Analysis for Imaging Systems

S. Susan Young Ronald G. Driggers Eddie L. Jacobs

江苏工业学院图书馆 藏 书 章

Library of Congress Cataloging-in-Publication Data

A catalog record for this book is available from the U.S. Library of Congress.

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

ISBN-13: 978-1-59693-287-6

Cover design by Igor Valdman

© 2008 ARTECH HOUSE, INC. 685 Canton Street Norwood, MA 02062

All rights reserved. Printed and bound in the United States of America. No part of this book may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.

All terms mentioned in this book that are known to be trademarks or service marks have been appropriately capitalized. Artech House cannot attest to the accuracy of this information. Use of a term in this book should not be regarded as affecting the validity of any trademark or service mark.

10987654321

Signal Processing and Performance Analysis for Imaging Systems

For a listing of recent titles in the Artech House Optoelectronics Series, turn to the back of this book.

Preface

In today's consumer electronics market where a 5-megapixel camera is no longer considered state-of-the-art, signal and image processing algorithms are real-time and widely used. They stabilize images, provide super-resolution, adjust for detector nonuniformities, reduce noise and blur, and generally improve camera performance for those of us who are not professional photographers. Most of these signal and image processing techniques are company proprietary and the details of these techniques are never revealed to outside scientists and engineers. In addition, it is not necessary for the performance of these systems (including the algorithms) to be determined since the metric of success is whether the consumer likes the product and buys the device.

In other imaging communities such as military imaging systems (which, at a minimum, include visible, image intensifiers, and infrared) and medical imaging devices, it is extremely important to determine the performance of the imaging system, including the signal and image processing techniques. In military imaging systems that involve target acquisition and surveillance/reconnaissance, the performance of an imaging system determines how effective the warfighter can accomplish his or her mission. In medical systems, the imaging system performance determines how accurately a diagnosis can be provided. Signal and image processing plays a key role in the performance of these imaging systems and, in the past 5 to 10 years, has become a key contributor to increased imaging system performance. There is a great deal of government funding in signal and image processing for imaging system performance and the literature is full of university and government laboratory developed algorithms. There are still a great number of industry algorithms that, overall, are considered company proprietary. We focus on those in the literature and those algorithms that can be generalized in a nonproprietary manner.

There are numerous books in the literature on signal and image processing techniques, algorithms, and methods. The majority of these books emphasize the mathematics of image processing and how they are applied to image information. Very few of the books address the overall imaging system performance when signal and image processing is considered a component of the imaging system. Likewise, there are many books in the area of imaging system performance that consider the optics, the detector, and the displays in the system and how the system performance behaves with changes or modifications of these components. There is very little book content where signal and imager processing is included as a component of the overall imaging system performance. This is the gap that we have attempted to fill with this book. While algorithm development has exploded in the past 5 to 10 years,

the system performance aspects are relatively new and not quite fully understood. While the focus of this book is to help the scientist and engineer begin to understand that these algorithms are really an imaging system component and help in the system performance prediction of imaging systems with these algorithms, the performance material is new and will undergo dramatic improvements in the next 5 years.

We have chosen to address signal and image processing techniques that are not new, but the real time implementation in military and medical systems are relatively new and the performance predication of systems with these algorithms are definitely new. There are some algorithms that are not addressed such as electronic stabilization and turbulence correction. There are current programs in algorithm development that will provide great advances in algorithm performance in the next few years, so we decided not to spend time on these particular areas.

It is worth mentioning that there is a community called "computational imaging" where, instead of using signal/image processing to improve the performance of an existing imaging system approach, signal processing is an inherent part of the electro-optical design process for image formation. The field includes unconventional imaging systems and unconventional processing, where the performance of the collective system design is beyond any conventional system approach. In many cases, the resulting image is not important. The goal of the field is to maximize system task performance for a given electro-optical application using nonconventional design rules (with signal processing and electro-optical components) through the exploitation of various degrees of freedom (space, time, spectrum, polarization, dynamic range, and so forth). Leaders in this field include Dennis Healey at DARPA, Ravi Athale at MITRE, Joe Mait at the Army Research Laboratory, Mark Mirotznick at Catholic University, and Dave Brady at Duke University. These researchers and others are forging a new path for the rest of us and have provided some very stimulating experiments and demonstrations in the past 2 or 3 years. We do not address computational imaging in this book, as the design and approach methods are still a matter of research and, as always, it will be some time before system performance is addressed in a quantitative manner.

We would like to thank a number of people for their thoughtful assistance in this work. Dr. Patti Gillespie at the Army Research Laboratory provided inspiration and encouragement for the project. Rich Vollmerhausen has contributed more to military imaging system performance modeling over the past 10 years than any other researcher, and his help was critical to the success of the project. Keith Krapels and Jonathan Fanning both assisted with the super-resolution work. Khoa Dang, Mike Prarie, Richard Moore, Chris Howell, Stephen Burks, and Carl Halford contributed material for the fusion chapter. There are many others who worked signal processing issues and with whom we collaborated through research papers to include: Nicole Devitt, Tana Maurer, Richard Espinola, Patrick O'Shea, Brian Teaney, Louis Larsen, Jim Waterman, Leslie Smith, Jerry Holst, Gene Tener, Jennifer Parks, Dean Scribner, Jonathan Schuler, Penny Warren, Alan Silver, Jim Howe, Jim Hilger, and Phil Perconti. We are grateful for the contributions that all of these people have provided over the years.

We (S. Susan Young and Eddie Jacobs) would like to thank our coauthor, Dr. Ronald G. Driggers for his suggestion of writing this book and encouragement in this venture. Our understanding and appreciation of system performance significance started from collaborating with him. S. Susan Young would like to thank Dr.

Hsien-Che Lee for his guidance and help early in her career in signal and image processing. On a personal side, we authors are very thankful to our families for their support and understanding.

Contents

Pref	ace	xiii
A STATE OF THE PARTY.	RT I c Principles of Imaging Systems and Performance	1
СН	APTER 1	
Intro	oduction	3
1.1	"Combined" Imaging System Performance	3
1.2	Imaging Performance	3
1.3	Signal Processing: Basic Principles and Advanced Applications	4
1.4	Image Resampling	4
1.5	Super-Resolution Image Reconstruction	5
1.6	Image Restoration—Deblurring	6
1.7	Image Contrast Enhancement	7
1.8	Nonuniformity Correction (NUC)	7
1.9	Tone Scale	8
1.10	0	8
	References	10
СН	APTER 2	
Ima	ging Systems	11
2.1	Basic Imaging Systems	11
2.2	Resolution and Sensitivity	15
2.3	Linear Shift-Invariant (LSI) Imaging Systems	16
2.4	Imaging System Point Spread Function and Modulation	
Trai	Transfer Function	
	2.4.1 Optical Filtering	21
	2.4.2 Detector Spatial Filters	22
	2.4.3 Electronics Filtering	24
	2.4.4 Display Filtering	25
	2.4.5 Human Eye	26
	2.4.6 Overall Image Transfer	27
2.5	Sampled Imaging Systems	28
2.6	Signal-to-Noise Ratio	34
2.7	Electro-Optical and Infrared Imaging Systems	38
2.8	Summary References	39
	39	

CH/	APTER 3	
Targ	et Acquisition and Image Quality	41
3.1	Introduction	41
3.2	A Brief History of Target Acquisition Theory	41
3.3	Threshold Vision	43
	3.3.1 Threshold Vision of the Unaided Eye	43
	3.3.2 Threshold Vision of the Aided Eye	47
3.4	Image Quality Metric	50
3.5	Example	53
3.6	Summary	61
	References	61
COMMERCIALISM	RT II	
Basi	c Principles of Signal Processing	63
STREET, STREET	APTER 4	
	c Principles of Signal and Image Processing	65
4.1	Introduction	65
4.2	The Fourier Transform	65
	4.2.1 One-Dimensional Fourier Transform	65
	4.2.2 Two-Dimensional Fourier Transform	78
4.3	Finite Impulse Response Filters	83
	4.3.1 Definition of Nonrecursive and Recursive Filters	83
	4.3.2 Implementation of FIR Filters	84
	4.3.3 Shortcomings of FIR Filters	85
4.4	Fourier-Based Filters	86
	4.4.1 Radially Symmetric Filter with a Gaussian Window	87
	4.4.2 Radially Symmetric Filter with a Hamming Window at	
	a Transition Point	87
	4.4.3 Radially Symmetric Filter with a Butterworth Window at	0.0
	a Transition Point	88
	4.4.4 Radially Symmetric Filter with a Power Window	89
1.5	4.4.5 Performance Comparison of Fourier-Based Filters	90
4.5	The Wavelet Transform	90
	4.5.1 Time-Frequency Wavelet Analysis	91
	4.5.2 Dyadic and Discrete Wavelet Transform	96
	4.5.3 Condition of Constructing a Wavelet Transform	97
	4.5.4 Forward and Inverse Wavelet Transform	97
	4.5.5 Two-Dimensional Wavelet Transform	98
11	4.5.6 Multiscale Edge Detection	98
4.6	Summary	102
en anno en	References	102
ERROMAN	RT III anced Applications	105

Contents ix

CH	APTER 5	
lmag	ge Resampling	107
5.1	Introduction	107
5.2	Image Display, Reconstruction, and Resampling	107
5.3	Sampling Theory and Sampling Artifacts	109
	5.3.1 Sampling Theory	109
	5.3.2 Sampling Artifacts	110
5.4	Image Resampling Using Spatial Domain Methods	111
	5.4.1 Image Resampling Model	111
	5.4.2 Image Rescale Implementation	112
	5.4.3 Resampling Filters	112
5.5	Antialias Image Resampling Using Fourier-Based Methods	114
	5.5.1 Image Resampling Model	114
	5.5.2 Image Rescale Implementation	115
	5.5.3 Resampling System Design	117
	5.5.4 Resampling Filters	118
	5.5.5 Resampling Filters Performance Analysis	119
5.6	Image Resampling Performance Measurements	125
5.7	Summary	127
	References	127
CU	ADTER	
	APTER 6 er-Resolution	129
•		
6.1	Introduction	129
	6.1.1 The Meaning of Super-Resolution	129
	6.1.2 Super-Resolution for Diffraction and Sampling	129
	6.1.3 Proposed Nomenclature by IEEE	130
6.2	Super-Resolution Image Restoration	130
6.3	Super-Resolution Image Reconstruction	131
	6.3.1 Background	131
	6.3.2 Overview of the Super-Resolution Reconstruction Algorithm	132
	6.3.3 Image Acquisition—Microdither Scanner Versus Natural Jitter	132
	6.3.4 Subpixel Shift Estimation	133
	6.3.5 Motion Estimation	135
<i>(</i> 1	6.3.6 High-Resolution Output Image Reconstruction	143
6.4	Super-Resolution Imager Performance Measurements	158
	6.4.1 Background	158
	6.4.2 Experimental Approach 6.4.3 Measurement Results	159
6.5		166
6.5	Sensors That Benefit from Super-Resolution Reconstruction 6.5.1 Example and Performance Estimates	167
66	6.5.1 Example and Performance Estimates Performance Modeling and Prediction of Super-Resolution	168
6.6 Reco	onstruction	172
6.7	Summary	173
0.7	References	174
	TVERGRADAGE	1 / -

Contents

СН	APTER 7	
Ima	ge Deblurring	179
7.1	Introduction	179
7.2	Regularization Methods	181
7.3	Wiener Filter	181
7.4	Van Cittert Filter	182
7.5	CLEAN Algorithm	183
7.6	P-Deblurring Filter	184
	7.6.1 Definition of the P-Deblurring Filter	183
	7.6.2 Properties of the P-Deblurring Filter7.6.3 P-Deblurring Filter Design	$\frac{186}{188}$
7.7	Image Deblurring Performance Measurements	199
/./	7.7.1 Experimental Approach	200
	7.7.2 Perception Experiment Result Analysis	203
7.8	Summary	204
, •0	References	204
No.	APTER 8	
Ima	ge Contrast Enhancement	207
8.1	Introduction	207
8.2	Single-Scale Process	208
	8.2.1 Contrast Stretching	208
	8.2.2 Histogram Modification	209
8.3	8.2.3 Region-Growing Method Multiscale Process	209 209
0.5	8.3.1 Multiresolution Analysis	210
	8.3.2 Contrast Enhancement Based on Unsharp Masking	210
	8.3.3 Contrast Enhancement Based on Wavelet Edges	211
8.4	Contrast Enhancement Image Performance Measurements	217
	8.4.1 Background	217
	8.4.2 Time Limited Search Model	218
	8.4.3 Experimental Approach	219
	8.4.4 Results	222
	8.4.5 Analysis	223
	8.4.6 Discussion	226
8.5	Summary	227
	References	228
CH.	APTER 9	
	nuniformity Correction	231
9.1	Detector Nonuniformity	231
9.2	Linear Correction and the Effects of Nonlinearity	232
	9.2.1 Linear Correction Model	233
	9.2.2 Effects of Nonlinearity	233
9.3	Adaptive NUC	238
	9.3.1 Temporal Processing	238
	9.3.2 Spatio-Temporal Processing	240

Contents

9.4	Imaging System Performance with Fixed-Pattern Noise	243
9.5	Summary	244
	References	245
CH/	APTER 10	
	e Scale	247
10.1	Introduction	247
10.2	Piece-Wise Linear Tone Scale	248
10.3	Nonlinear Tone Scale	250
	10.3.1 Gamma Correction	250
	10.3.2 Look-Up Tables	252
10.4	Perceptual Linearization Tone Scale	252
10.5	Application of Tone Scale to Enhanced Visualization in Radiation	
Trea	tment	255
	10.5.1 Portal Image in Radiation Treatment	255
	10.5.2 Locating and Labeling the Radiation and Collimation Fields	257
	10.5.3 Design of the Tone Scale Curves	257
	10.5.4 Contrast Enhancement	262
	10.5.5 Producing the Output Image	264
10.6	Tone Scale Performance Example	264
10.7	•	266
	References	267
CHA	APTER 11	
lmag	ge Fusion	269
11.1	Introduction	269
11.2	Objectives for Image Fusion	270
11.3	Image Fusion Algorithms	271
	11.3.1 Superposition	272
	11.3.2 Laplacian Pyramid	272
	11.3.3 Ratio of a Lowpass Pyramid	275
	11.3.4 Perceptual-Based Multiscale Decomposition	276
	11.3.5 Discrete Wavelet Transform	278
	Benefits of Multiple Image Modes	280
11.5	Image Fusion Quality Metrics	281
	11.5.1 Mean Squared Error	282
	11.5.2 Peak Signal-to-Noise Ratio	283
	11.5.3 Mutual Information	283
	11.5.4 Image Quality Index by Wang and Bovik	283
	11.5.5 Image Fusion Quality Index by Piella and Heijmans	284
	11.5.6 Xydeas and Petrovic Metric	285
11.6	Imaging System Performance with Image Fusion	286
11.7	Summary	290
	References	290
Abou	ut the Authors	293
Inde	x	295

PARTI

Basic Principles of Imaging Systems and Performance

CHAPTER 1 Introduction

1.1 "Combined" Imaging System Performance

The "combined" imaging system performance of both hardware (sensor) and software (signal processing) is extremely important. Imaging system hardware is designed primarily to form a high-quality image from source emissions under a large variety of environmental conditions. Signal processing is used to help highlight or extract information from the images that are generated from an imaging system. This processing can be automated for decision-making purposes or it can be utilized to enhance the visual acuity of a human looking through the imaging system.

Performance measures of an imaging system have been excellent methods for better design and understanding of the imaging system. However, the imaging performance of an imaging system with the aid of signal processing has not been widely considered in the light of improving image quality from imaging systems and signal processing algorithms. Imaging systems can generate images with low-contrast, high-noise, blurring, or corrupted/lost high-frequency details, among others. How does the image performance of a low-cost imaging system with the aid of signal processing compare with the one of an expensive imaging system? Is it worth investing in higher image quality by improving the imaging system hardware or by developing the signal processing software? The topic of this book is to relate the ability of extracting information from an imaging system with the aid of signal processing to evaluate the overall performance of imaging systems.

1.2 Imaging Performance

Understanding the image formation and recording process helps in understanding the factors that affect image performance and therefore helps the design of imaging systems and signal processing algorithms. The image formation process and the sources of image degradation, such as loss of useful high-frequency details, noise, or low-contrast target environment, are discussed in Chapter 2.

Methods of determining image performance are important tools in determining the merits of imaging systems and signal processing algorithms. Image performance determination can be performed via subjective human perception studies or image performance modeling. Image performance prediction and the role of image performance modeling are also discussed in Chapter 3.