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PREFACE

The recent proliferation of optimization techniques and the widespread
availability of digital computers have encouraged most universities to offer a
collection of courses in optimization theory, with applications to various
disciplinary areas. These courses have been received with considerable en-
thusiasm by students, faculty, and, in many cases, by postgraduate profes-
sional people. The pioneer courses of this nature have been difficult to
develop, however, owing to the lack of suitable text material which would
bring the entire field into a proper perspective for introductory classroom
instruction. We have attempted to write such a text, intending it for either
the beginning graduate level or, with some modification, the advanced under-
graduate level. Our intent is to present the basic ideas of each of the major
classes of optimization methods, offering at the same time a basis for unifica-
tion and some essence of comparison among them.

It was necessary for us to decide whether to orient the text toward cer-
tain disciplinary areas, or to write a more general textbook which a competent
instructor could supplement with specialized comprehensive problems reflect-
ing his particular drea of interest. We have chosen the latter. In using early
versions of this manuscript to teach senior- and graduate-level engineering
optimization courses at Carnegie-Mellon University, the University of
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xii / Preface

Pittsburgh, and the University of Cincinnati, we found it very effective
supplement the text material with a few carefully chosen disciplinary pre
lems requiring a computer solution. Thus our students received an expost
to some analytical model building in their own area of expertise. We stron,
recommend that others consider this approach, particularly if a few gene
purpose computer codes (e.g., linear programming, hill-climbing, etc.) :
available.

This text contains more than enough material for atwo-semester(30-wec
course at the introductory graduate level. The text has been organized so tt
linear programming is presented as an integrated part of optimization theo:
Before linear programming is discussed (Chapter 4), optimization term‘nolo
(Chapter 1); the classical Calculus (Chapter 2); Kuhn-Tucker conditio
(Chapter 2); and unconstrained optimization (Chapter 3) are presented. Tl
sequence allows linear programming to be related to other optimizati
techniques as well as allowing duality theory to be derived on the basis of t
Kuhn-Tucker conditions.

Chapters 1 through 4, plus Appendix B, can be used for the first semest
course. The remaining chapters offer considerable latitude for the secoi
semester. These chapters present nonlinear programming (Chapter 5); int
ger programming and the method of decomposition (Chapter 6); optimizatic
of functionals (Chapter 7); dynamic programming and the discrete maximu
principle (Chapter 8); and, finally, optimization under risk and uncertain
(Chapter 9). If the curriculum calls for a first semester course more heavi
oriented towards linear programming, this can be provided by Chapters 1,
4, 6, and Appendix B. A one-semester course in nonlinear programmir
can be structured from Chapters 3, 5, 6, and a part of Chapter 9. Also, Chaj
ters 7 and 8, and a portion of Chapter 9, can be used for a one-semest:
course in dynamic systems optimization.

Each chapter is supplemented with an extensive set of problems fc
student solution. The problems are designed to illustrate and, in some case:
extend the text material. In a number of problems, some seemingly quit
simple, the student will find it difficult to arrive at a nume.ical solution b
hand. These problems are meant to illustrate the real complexity of mos
optimization tasks. The student should be encouraged to set up such prot
lems for solution but to carry the numerical solution procedure only as fa
as seems reasonable. When the class composition is such that developmen
of special problems in a given discipline is not feasible, it is suggested that
few complex problems be selected from those provided by the text and as
signed for solution on a digital computer.

The required mathematical background for this text does not extenc
beyond elementary calculus and differential equations, though an introduc
tory exposure to linear algebra is desirable. Appendix B contains the basic
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concepts of linear algebra for those who lack background in this important
area. :

Finally, we wish to thank several people for their assistance and en-
couragement during the course of this work. To R. H. Curran, who proofread
much of the manuscript; D. L. Keefer, who proofread portions of the manu-
script and developed some of the problems; and to M. J. Lempel, who made
a number of useful suggestions, we extend our sincere appreciation. Qur
special thanks to Dr. A. G. Holzman who, as a teacher and a colleague, con-
tributed to this project in numerous ways. Last, but not least, we wish to
acknowledge the patience and understanding shown by our wives and chil-
dren for the many hours of preoccupation, which we hope will serve a worth-
while purpose.

BYRON S. GOTTFRIED
Pittsburgh, Pennsylvania

JoEL WEISMAN
Cincinnati, Ohio



NOMENCLATURE

Vector and Scalar Notation

E,e
E
EI
E‘l
|E|

Symbol

i

» R

Xiy

Symbols in standard type refer to scalar quantities

Symbols in bold face type indicate vectors or matrices
Primed, bold face symbol indicates transpose of matr.x

Bold face symbol to power of (—1) indicates inverse of matrix
Bold face symbol in | | indicates determinant of matrix
within | |

Definition

constant,

lower bound on x

coefficients of decision variables in constraint relationships
constant

a matrix,

matrix where components are g,,,

vector where components represent lower bounds of X
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d,

D,
D
|D,|

E( )
S(x)
FI
F(x)

2(X)

G

G(X, X°)
G

H

H(z)

Nomenclature | xv

constant,

upper bound of x

constraint requirement

constant

a column vector,

vector where components are b,,

vector where components represent upper bound of X,

matrix where columns are the basis vectors P,.... P,

coefficient of x, in objective function

vectcr whose components are c, — the objective function
coefficients

coefficient of x, in Gomory constraint or cut, or in any equation
defining a hyperplane

demand during period k

vector whose components are d,

an i X i determinant whose elements are second partials of y
with respect to the x,

expected value of quantity within brackets

frequency function of x

n’th member of Fibonacci sequence

distribution function of x;

F(x) = Jimf(s) ds, where s is a dummy variable

constraint relationship

constraint equation

hyperplane approximating g(X) at X°
constraint set,

[G(u, x, W', X', 1) = 0]

Hamiltonian function

H(@, x,3) = 33 1,() gu, x)
stagewise Hamiltonian function

(@) — () T (a)
H® = ,‘gl’ T|
matrix used to determine search direction in Fletcher-Powell
algorithm
Hessian matrix

integral of function with respect to ¢
J"! o(u, v, 1) dt

to
J-'! ¢+ en, u' + en', 1) dt

identity matrix
constant



xvi /| Nomenclature

K positive constant, penalty factor
! constant,

augmented integral = J[[ (b + AG) dt

L, interval of uncertainty after » search points
L Lagrangian function
m a constant,

number of constraint equations,
number of search points
M(u, 1) function defined by M (u, A) = Max H(u, x, A)
X

n number of decision variables,
number of terms in series
N total number of subregions
D fraction of points in given region
P probability
P projection of vector on hyperplane -
P, search vector,
vector consisting of jth column of constraint matrix coefficients
r net worth
e return function for stage k
r; fractional part of number
R set of points
R, remainder term
s distance
S feasible direction vector
t time or any quantity for which a functional relationship, u(z),
exists,
standard normal variate = (x — u)/o
1, a polynomial expression with only positive coefficients
T transfaormation function—function which transforms state
variable u!=~" into state variable u{*’
T matrix whose columns consist of search vectors P,
u state variable
u' first derivative of u(r)
U, 'simplex multiplier for row i
u; technological coefficient, state variable
u,; integer part of number
ul® value of j'th state variable at stage «
uy contributions to objective function from stages | through o
U utility, value
v value of game
v, simplex multiplier for column j,

fractional advance in stack prices for year j
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dual function in geometric programming

projection matrix

dual variable,

weighting factor

vector of dual variables

decision variable

vector of decision variables

weight to be given to basis vector P, in expression determin-
ing P,

vector whose components are values of the decision variables
at extremum

vector whose components are values of decision variables at
some arbitrarily specified starting point

minimum feasible solution

objective function .

sum of the products of ¢, x,, for all the x,, in the jth column
of the Simplex tableau

optimum value of objective function for k stages

= max(min) {r (s, X, + re_j(Wy-y, X)) A+ o0 4 o (uyx)
Xiy Xp—q 770 X4

first derivative of y(x) with respect to x

second derivative of y(x) with respect to x

Lagrangian function

constant,

index indicating stage or subregion number

weights which replace variables and/or nonlinear functions
in separable programming procedure

scalar constant between 0 and 1

scalars determining direction of search vector P,

quantity whose value is O or 1

change in cost coefficient c,

dual variables of geometric programming problem

first variation of integral I(e)

(I(e) — I(O))

€

= lim

initial pattern search vector

magnitude of positive change in x;

magnitude of negative change in x;

small increment

arbitrary function with continuous segond derivatives and
vanishing boundary conditions

first derivative of #(z)
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0 scalar constant;
in some cases a scalar restricted to be between 0 and 1
y) Lagrange multiplier
A adjoint variable for state variable u, at stage a
A vector of Lagrange multipliers
A, vector whose coordinates are values of Lagrange multipliers
at extremum
U scalar weighting factor, mean value
U, weight, in geometric programming problem for constraint 1
K weights applied to extremal point x,;
& arbitrary point
n geometrical constant, failure cost sum
T, Ry dual variables in decomposition algorithm
m, simplex multipliers or shadow prices
P; change in j’th constraint requirement
c standard deviation (#? = variance)
T time
(] function of u, u’ and ¢
#(X) function of X, augmented objective function
v differential or integral constraint function

Vy gradient of y [vector whose components are dy/dx ]
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INTRODUCTION

All of us must make many decisions in the course of our day-to-day
events in order to accomplish certain tasks. Usually there are several, perhaps
many, possible ways to accomplish these tasks, although some choices will
generally be better than others. Consciously or unconsciously, we must
therefore decide upon the best—or optimal—way to realize our objectives.

For example, all of us at one time or another find it necessary to drive
through city traffic. We could attempt to find the shortest possible route
from point A to point B without concern for the time required to traverse
this route. Alternatively, we could seek out the quickest, though not neces-
sarily the shortest, route between 4 and B. As a compromise, we might at-
tempt to find the shortest path from A to B subject to the auxiliary condition
that the transit time not exceed some prescribed value. Here we have examples
of three similar, but different, optimization problems.

The stock market is another example of a fascinating, if not always
successful, endeavor to form an optimal strategy. There are several objectives
from which to choose when “playing the market,” such as maximum rate of
growth of capital, maximum rate of return from a fixed amount of capital,
minimum chance of loss of capital, and so on. Thus one must first formulate
carefully an appropriate objective, and then develop some strategy which



