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PREFACE

This book is designed for a first course in numerical analysis. It differs considerably from
other such texts in its choice of topics. Our concern has been with the needs of science,
engineering and applied mathematics students, who, in increasing numbers, form a
majority of the students in numerical analysis courses. Thus, we have presented a broad
spectrum of topics of applied interest, which, in fact, bring the reader to various frontiers
of the subject. We have been able to do this by purging the traditional curriculum of many
topics which are not likely to be encountered in either science or technology. These topics
include, for example, number systems, computer operations, the secant method, Weddle's
rule, Richardson extrapolation, and the methods of Graeffe and Milne. Related decisions
were guided by a desire to include nonlinear equations, in addition to linear ones.

The need to solve a wide spectrum of nonlinear problems has been increasing since the
end of the nineteenth century. For example, accurate simulation of dynamical processes
related to planetary motion, rocket propulsion, turbulent flow, chemical oscillators,
diffusion processes, and elastic stress demand the ability to solve nonlinear equations.
Accurate fitting of data derived by use of laser technology, atomic clocks, electron
microscopes and/or radio telescopes requires greater sophistication than that available from
a linear least square fit. Quantitative methodology applicable to large classes of nonlinear
problems became available only with the development of modern digital computers, and the
result has been, and probably will continue to be, an explosion of knowledge.

In the final chapter, we have included a study of the Navier-Stokes equations, a fully
nonlinear system of fluid dynamical equations which, interestingly enough, can be derived
from both the macro, or hydrodynamic, approach and a micro, or molecular, approach.
These equations are among the most challenging in contemporary numerical analysis and
are fundamental to diverse studies relating to such areas as weather prediction,
aerodynamics, petroleum recovery, cardiovascular circulation, heat convection, ocean
currents, and the not-so-ordinary flow of ordinary water in pipes. Interest in the Navier-
Stokes equations is so broad that we felt their inclusion to be appropriate.

One of the major goals in writing this book was to develop methodology for which the
numerical solution of a given problem has the same qualitative behavior as the analytical
solution, for, thereby, the numerical solution preserves the physics of a given mathematical
model. Another major goal was to develop numerical analysis in such a fashion that the
reader would be able to apply the methods thoughtfully and within a reasonably short time
to problems which he or she finds both interesting and significant. For this reason,
methodology, theory and intuition have been interwoven throughout.

The book is suitable for a junior, senior or first year graduate course. Only a familiarity
with computer programming and ordinary differential equations is assumed throughout.
We have set stars before various sections to denote material of relative difficulty. Chapters
1-5, exclusive of the starred sections, provide ample material for a one semester
undergraduate course, assuming computer implementation by the student. In their entirety,
these chapters can be used for a one semester graduate course. Chapters 6-9 are designed
for the second half of a full year course. These chapters deal with partial differential
equations, and, in each, the first few sections develop the necessary mathematical
background. Note that a star has been affixed to the title of Chapter 9 to indicate the
advanced nature of the entire chapter. Observe also that the exercises have been divided into
two sets, basic ones and supplementary ones. Among the supplementary ones are several
unexpected surprises.
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In our own teaching, our philosophy has been that computer implementation by the
student is essential. As a consequence, the time required for the study of various topics has
been greater than that required in a purely theoretical lecture course. Nevertheless, from an
applied point of view, a numerical algorithm that does not run on a computer is useless, and
the student should verify an algorithm's viability by direct computer implementation.
Theory is important in numerical analysis, but theory, alone, will fail to meet the needs of
the majority of our students.

Finally, we wish to thank those undergraduate students at the University of Trento and
those undergraduate and graduate students at the University of Texas at Arlington who
contributed in so many ways to the final structure of the book. Unfortunately, the list of
names is too long for inclusion.

D. Greenspan
V. Casulli
1988
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Algebraic and
Transcendental Systems

1.1 INTRODUCTION

Science is study of Nature. We study Nature not only because we are curious, but because
we would like to control its very powerful forces. Understanding the ways in which Nature
works might enable us to grow more food, to prevent normal cells from becoming
cancerous, and to develop relatively inexpensive sources of energy. In cases where control
may not be possible, we would like to be able to predict what will happen. Thus, being able
to predict when and where an earthquake will strike might save many lives, even though, at
present, we have no expectation of being able to prevent a quake itself.

The discovery of knowledge by scientific means is carried out in the following way.
First, there are experimental scientists who, as meticulously as possible, reach conclusions
from experiments and observations. Since no one is perfect, not even a scientist, all
experimental conclusions have some degree of error. Hopefully, the error will be small.
Then, there are the theoretical scientists, who create models from which conclusions are
reached, often using mathematical methods. Experimental scientists are constantly checking
these models by planning and carrying out new experiments. Theoreticians are constantly
refining their models by incorporating new experimental results. The two groups work in a
constant check-and-balance refinement process to create knowledge. And only after
extensive experimental verification and widespread professional agreement is a scientific
conclusion accepted as valid.

Scientific experimentation and observation require mathematical methodology for
handling and analyzing data sets. Scientific modeling requires mathematical methodology
for solving equations and systems of equations. In this book we will develop basic,
constructive techniques for both these areas of endeavor. And, though the development will
be relatively elementary, we will, throughout, use the exceptional arithmetic power
available through the application of modern, high-speed digital computers. The resulting
methods are called numerical methods.

It is natural, then, since the arithmetical operations performed by modern computers
are those of classical algebra, that we begin with the study of algebraic and transcendental
systems of equations.
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1.2 MATRICES AND LINEAR SYSTEMS

For n>2, the general linear algebraic system of n equations in the n unknowns Xy, X, X3,
..., X, can be written in the form

a1Xy +a19Xp+a13X3+... A X = b]
471X +agoXg+ayXz+... +ag X, = b2

EEIRS +a32x2+a33x3+ etag X = b3

(1.1)

a 1X1+aXo+anXs+... +a, X, = b .

If matrix A and vectors x and b are defined by

F ; ¢ a ]
4 g gz - By, X b,
A By Ay - 8y Xy b,

(1.2) A=]8; %y 833 .- 830 x =|*3], b=|bs],
| an1 an’Z an3 ann_ | xn_ bn

then system (1.1) can be written compactly as
(1.3) Ax=b.

Of course, forms (1.1) and (1.3) are equivalent. For theoretical discussions,
however, (1.3) will be the more convenient one.

Unless otherwise stated, it should be noted that, throughout, we will concern
ourselves only with real numbers and real functions.

From a computer point of view, it is desirable to know that system (1.1) has one
and only one solution before one attempts to solve it. Numerical computations for
systems which have more than one solution usually yield meaningless results. Numerical
computations for systems which have no solutions are always meaningless. The
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fundamental theorem which assures such existence and uniqueness and is proved in
introductory algebra courses is stated now for completeness.

THEOREM 1.1. System (1.1) has one and only one solution if and only if
the determinant of A, denoted by |A], is different from zero.

Theoretically, when A0, the solution of (1.1) for given A and b can be given
constructively as the quotient of determinants by Cramer's rule. For example, for system

X1 +Xp—X3=2
X1—Xp+x3=0

—X1+X+x3=0,

one has, by Cramer's rule,

2 1 -1 1 2 -1 1 1 2
l 0 -1 1' l 1 0 1| | 1 -1 0)
Lo 11 -1 001 -1 1 0
X“M=T 1 1071 *xT7T 1 101 BT 1 111
‘ 1 -1 1’ I 1 -1 1’ I 1 -1 1|
-1 1 1 -1 1 1 1 1 1
so that
x=1, X,=1, x3=0.

Cramer's rule, however, though reasonable for n=2,3 and 4, becomes readily
intractable for increasing values of n because the determinants are difficult to evaluate, and
other methods must be used. Since we will be interested often in relatively large values of
n, let us introduce next some matrix properties which are common in many applied
problems and which will enable us to solve (1.1) quickly and efficiently. In general, the
more structure which is imposed on A, the easier it will be to solve (1.1). One must be
sure, however, when studying an applied problem, that the structure which has been
imposed is consistent with the physical constraints of the problem.

DEFINITION 1.1. System (1.1) is said to be diagonally dominant if and only
if

n
(1.4) lagl 212_:1|8u| » i=1,2,...,n,
Jj=i

with strict inequality valid for at least one value of i.
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EXAMPLE 1. The following system is diagonally dominant:

—4X1+2xZ + X3 + Xy = 2
—X1—5X9 + X3 + x4 =—1
3x1 +X2"6X3+2X4= 0

Xy +Xqo+2x3-4x4=-1.

EXAMPLE 2. The following system is not diagonally dominant, but interchange of the
second and third equations yields a system which is:

—4X1+2Xy +X3+ x4 = 2
3x1 +X2—6X3+2X4= 0
—X1—5X2 +X3 +X4 =-1

X1 +X2+2X3—4X4 =—1.

EXAMPLE 3. The following system is not diagonally dominant, nor is any system which
results by reordering the equations:

—x1+x2+x3+x4= -1
X1 —X2+X3+X4= -1
X1+Xy —X3+x4=—1

X1 +Xo+X3 —x4=—1.

DEFINITION 1.2. System (1.1) is said to be tridiagonal if and only if all
elements of A are zero except aj, ay 1.1 .1, i=L,2,..,n5 j=1,2,...,n-1,
and none of these is zero.

EXAMPLE. The following system is tridiagonal:

=3x1+ X, =1
X1—2Xy +X3 =-1
X2—2X3 +Xy4 =11

X3—2X4 +X5= 2
X4—2X5 =-3,



1.2 MATRICES AND LINEAR SYSTEMS 5

The term tridiagonal, in the last definition, is most appropriate because, in matrix
form, A has the particular representation

a a O

11 12
Q1 8y A8y
A9 233 8y

an-l,n-l an-l,n-l an-l.n

O a a

n,n-1 n,n

in which all elements are zero except those on three diagonals: the main diagonal, the
superdiagonal (just above the main diagonal), and the subdiagonal (just below the main
diagonal).

We turn now to practical methods of solution.

1.3 GAUSS ELIMINATION

If one knows only that |AI=0, it may be difficult to solve (1.1) for large n. The method
often applied first is an elementary one called Gauss elimination, which is reviewed next by
means of an example.

Consider the system

(1.5) 4X) — Xp+2X3 —X4=2
(1.6) X1+4%X) — X3 +x4=2
1.7) X1—2Xy—3x3+x4=4
(1.8) Xy —4x4=0.

It is verified easily that the determinant of the system has the value 290, so that the solution
exists and is unique. Next, we add suitable multiples of (1.5) to (1.6), (1.7) and (1.8) to
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eliminate x, in these equations. In this way (1.6)-(1.8) reduce to

' 17 3 5 3
(1.6") 7 X FxstIxe= 3

' 7 7 5 7
(1.7 —4—X2— EX3+ZX4=E
(1.8") X, - 4x,=0.

Next, add suitable multiples of (1.6") to each of (1.7") and (1.8') to eliminate x, in these
equations. In this way, (1.7") and (1.8") reduce to

70 .30 _70

(1.7 —ﬁx3+ﬁx4_ﬁ
s 60 By _ 6
(1.8%) 78T MT T

Next, add a suitable multiple of (1.7") to (1.8") to eliminate x5 in (1.8"). In this way,
(1.8") reduces to

(1.8 ~Zx,=0.

Thus, system (1.5)-(1.8) has been transformed into the equivalent system

(1.5) 4X1 — X+ 2X3 —x4=2
' 17 3 5 3
(1.6) 4—x2—§x3+4—x4=5
" 70 30 70
(1.7 ) —ﬁX3 1—7~x4=ﬁ
(1.8 ~Zx,=0.

Finally, the latter system is solved by backward substitution, that is, from (1.8")
one has x4=0; substitution of x,=0 into (1.7") yields x3=-1; substitution of x,=0 and

x3=-1 into (1.6') yields x,=0; and substitution of x,=0, x3=-1, x,=0 into (1.5) yields
x;=1, and the original system is solved.

With a little thought and a few self-generated examples, one can see readily how to
direct a digital computer to perform Gauss elimination. The mathematical recipe, or set of
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mathematical directions, to do this is a particular example of what is called formally an
algorithm. To develop a Gauss elimination algorithm, one must formalize the
elimination and the backward substitution steps, which are the basic elements of the
method. Now, with regard to the elimination step, we must have a means to indicate how
the element a;; in the i-th row and j-th column changes during the process. This is

accomplished by using the symbol 5 where k is a positive integer and will indicate that
the original a;; has been adjusted (k—l) times. With these abbreviations and notations in
mind, we next obscrve that the elimination step can be stated very grecisely as follows. Set

a(,i) ajj, 61)—b Then, for k=1,2,...,n—1, generate a D and b recursively by

(k) (k)
ajy a
(1.9) a(li(jﬂ) - a(ilg)_ i @ ikj), b(:(+1) Bk) ik b(k)
kk
for i,j=k+1,k+2,...,n—1,n. The system one then has is
a(ll)X1+a12X2+a(]3)X3+ +a(1]n)x = 611)
3(22)X2+a23))(3+ +a(22n)X = t;%)
a(333)x3+ . +a(3)x = 65")
(n)xn _ b(rr:)
Finally, the backward substitution step is
(1.10) by il "g’a(ilj))(j
. X, = , X =—Jﬁ-r—, i=n-1,n-2,...,2,1,
" ;(niny ' aili

and the algorithm is complete.

In Gauss elimination, if any of the elements af(lf(, which are called the pivot

elements, vanishes or, in absolute value, becomes very small compared to the other
elements a(,k, i>k, then we attempt to rearrange the remaining rows so as to attain a
nonvanishing pivot or to avoid mulnphcanon by a lar%c number. Specifically, for each k we
choose j, the smallest integer for which la I—maxla | and interchange rows k and j. This
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strategy is called pivoting. If A is diagonally dominant then no pivoting is necessary.
EXAMPLE. Consider the system

(1.11) Xg —4x4=0
(1.12) X1—2Xp—3x3+x4=4
(1.13) X1 +4Xy —X3+X4=2
(1.14) 4x) —Xo+2X3—X4=2 .

In this case, since a(111)=0, there is no multiple of (1.11) which can be added to (1.12),

(1.13) and (1.14) to eliminate x; in these equations. However, since Iaftll)l=maxla(ill)l,

interchange of equations (1.11) and (1.14) leads to the following equivalent system

(1.14) 4x| —Xp+2X3 —X4=2
(1.12) X1—2X9—3X3+x4=4
(1.13) X1+4x, — X3+%x4=2
(1.11) Xy —4x4=0.

Now, for k=1, use of (1.9) yields

(1.12') ~Ixp- Ixg+3xy=1

' 17 3 5 3
(1.13) ‘4—X2—"2'X3+ZX4='2—
(1.11% Xo  — 4x,=0.

Next, since the pivot element a(222)=—z—in (1.12') is smaller in absolute value than a(322) =—14—7,

we interchange (1.12") with (1.13'):

(1.13" Txo- Sxgt3x,=3
(1.12") ~Ixp-Lxgr3xg=1
(1.11Y9 X, — 4x4=0



