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Preface

This monograph represents an expanded version of the series of
invited lectures I gave as principal speaker of the Seventh Annual
Lecture Series in the Mathematical Sciences at the University of
Arkansas, Fayetteville, in the Spring of 1983.

The theme of the lecture series was the numerical analysis of
nonlinear equations involving a finite number of parameters. Such
equations arise typically in connection with static equilibrium
problems in science and engineering. The aim of these notes is to
discuss some of the recent developments in this area. They are
not meant to provide a survey of any kind; rather, this monograph
reflects very much my own view of the topic. Moreover, the Tectures
were supposed to cover some of my related research results, and
hence the presentation has a decidedly personal flavor.

In my opinion, the theory of parametrized equations has strong
roots in modern differential geometry and should be considered in
the setting of differentiable manifolds. Most of the numerical
studies in the area, notably those on continuation methods, utilize
this theoretical foundation very little.

In these notes I have tried to show how a numerical analysis of
parametrized equations may be developed on a differential geometric
basis. The first three sections are intended to set the scene;
Section 1 provides some general comments about the problem area;
Section 2 illustrates the area with several typical model problems;
and, finally, Section 3 summarizes some background material from
nonlinear analysis in a form needed Tater.

The next three sections form an introduction to the theoretical
aspects of the problem. Section 4 provides a rudimentary discussion
of the theory of differentiable manifolds and its use in the study
of the solution manifolds of parametrized equations. Section 5
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presents some recent results about a priori estimates of the errors
between the solution manifold of an equation and the corresponding
manifold defined by one of its discretizations. Essentially all
available computational methods for analyzing the solution manifold
of an equation consist of some form of continuation process for the
computational trace of one-dimensional submanifolds. Section 6
introduces the one-distribution concept used in defining these sub-
manifolds and considers some of the connections with augmented
forms of the equations.

Section 7 begins the discussion of the numerical aspects of the
problem area; it describes the design of the continuation package
PITCON for which a FORTRAN Tisting is included in an appendix to
the monograph. Section 8 discusses the use of this package, and
Section 9 gives an overview of various algorithms which have been
proposed for the computation of Timit points, including the method
used in PITCON itself.

The Tast two sections address further related material. Section
10 summarizes some recent results about differential-algebraic equa-
tions that are based on interpreting them as differential equations
on a manifold. Finally, Section 11 outlines a new approach for the
computation of a posteriori estimates of the errors considered in
Section 5.

As noted before, the presentation has a very personal flavor and
hence is certainly uneven in its emphasis on the various topics and
ideas. In particular, there exists additional material that could
have been included or at least mentioned. For example, I deliber-
ately touched only in passing upon the rich subject of bifurcation
theory. There are already a number of excellent books in that area
and within the framework of this monograph it would have been impos-
sible to do any justice to the wealth of relevant topics.

I would Tike to express my special thanks to the organizers of
the lecture series for their fine planning and personal attention,
which made it a very enjoyable experience. It is also a pleasure
to acknowledge the support of the National Science Foundation under
grants MCS-78-05299 and MCS-83-09926, as well as that of the Office
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of Naval Research under contract N-00014-80-C-9455, for the parts
of my own research which are covered in these notes.

Werner C. Rheinboldt
Pittsburgh, Pennsylvania
November 1984
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1. INTRODUCTION

parameter
Greek: para - besides
metron - measure

In every computational application we encounter various parameters.
They may measure intrinsic properties of the physical system under
consideration or they may represent external quantities which influ-
ence its behavior. The aim of a scientific computation is to draw
conclusions, or derive implications about the system. For instance,
in engineering the computed data may have to provide a basis for a
decision about a proposed design, while in a scientific study the
intent may be to develop predictions of the system's behavior for
experimental verification. Accordingly, the computation has to

give information about the response of the system under variation
of specific parameters; that is, we are interested in the effects

of changes of the values of these parameters upon the computed
results.

The study of the influence of parameters upon the behavior of
mathematical models is one of the basic problems of applied math-
ematics. Usually, we are interested in systems which are Tocally
stable in the sense that their qualitative behavior does not change
under small variations of the parameters. Here, some form of per-
turbation theory may be the appropriate tool, or we may bring to
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bear some theoretical results about the structural stability of
mappings. Before this, dimensional analysis may have to be applied
to identify the dimensionless parameters upon which a particular
practical problem depends. In turn, the choice of properly scaled
dimensionless variables is important for the specification of mean-
ingfully small parameters needed in the perturbation analysis. This
list of relevant fundamental techniques of applied mathematics is
easily extended.

While the determination of local stability is highly important
in practice, it is equally essential to understand those variations
of the parameters which produce a change of the behavior. In par-
ticular, there may be a change in the stability properties. For
instance, a mechanical structure may buckle or collapse, or a lam-
inar fluid flow may turn turbulent. Loosely speaking, the parameter
values, where such stability changes occur, define the set of bifur-
cation points of the problem. The general study of these points is
the topic of bifurcation theory, a field with a burgeoning litera-
ture. But, in practice, and especially in connection with complex
engineering problems, many of these theoretical results turn out to
be difficult to apply. Moreover, for experimental comparisons we
often need to know explicitly the properties of the solutions for a
large region of physical significance. Then interest centers on
computational methods for determining quantitatively the form of
specific segments of the solution set. As noted in the Preface,
that is the topic of this monograph.

The mathematical models for describing the systems considered here
are formed by nonlinear equations, including algebraic, differential,
or integral equations. A1l of them involve several parameters, and
hence have the generic form

F(z,x) = 0. (1.1)

Here =z varies in some space Z and characterizes the state of the
system while )\ denotes the parameter variable allowed to vary in
a space A. Hence the nonlinear operator F is defined on a set in
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the product space Z x A.

In 1ine with the earlier comments, it does not suffice to deter-
mine solution states z of (1.1) only for a few specified values
of . Instead, we want to assess how these states change when the
parameters vary in some prescribed subset of A. In other words,
we have to look at the solutions of (1.1) as points (z,\) in the
product space Z x A.

Under rather general conditions, this solution set has the struc-
ture of a differentiable manifold. Broadly speaking, our task then
is the numerical determination of the principal features of this
manifold. In order to identify some of the relevant questions, it
may be useful to consider a very simple model problem, namely, the
cubic equation

z3 - Az -yu =0. (1.2)

Here z ¢ R1 is the state variable, and the parameter vector

(A>u) € RZ is two-dimensional. The solution set of (1.2) in RS is
easily drawn and constitutes a two-dimensional surface of the form
shown in Figure 1.1. This figure also includes projections onto
two planes parallel to certain coordinate axis. This identifies
some interesting features. The X-axis together with the parabola

z2 = ) forms a so-called pitchfork bifurcation diagram in the

(z,1)-plane. The cusp Tine u2 = (4/27)>\3 represents the projec-
tion onto the ()\,u)-plane of the Tine of fold points (z,322,-223),
Z e Rl. If the surface were made of translucent plastic and illum-
inated along the direction of the z-axis, the cusp Tine then would
be its apparent image on a projection screen orthogonal to that
axis.

The example already suggests some of the tasks involved in a
numerical study of the solution manifold of an equation of the form
(1.1). First of all, we are certainly interested in calculating
suitable sequences of solution points. Usually this means that we
wish to compute points along specified paths on the manifold. For

instance, in the case of (1.2) such a path might be defined by the
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FIGURE 1.1
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condition u = constant. As the model problem of Section 1.2 below
will illustrate, fold lines often constitute the locus of points
where the stability behavior changes. Hence the determination of
such points clearly is another task for our numerical study. Such
fold points might be determined one by one, say as extrema on paths
of the form X = constant. Alternately, we may want to design
numerical processes which are capable of following a fold Tine
directly.

In our example, the origin constitutes a so-called simple bifur-
cation point while the other points on the fold 1ines are simple
1imit points or turning points. This identifies two of the most
basic types of singular points on such solution manifolds. As
indicated earlier, the general study of the changes in equilibrium
behavior at singular points is a topic of bifurcation theory. For
our purposes we are interested in devising methods for locating and
computing such points and for determining the form of the manifold
near them.

These are only some of the many computational tasks before us.
Some others do not occur in our simple example (1.2). For instance,
when (1.1) is a differential or integral equation then we need to
introduce a suitable discretization before we can proceed with the
actual numerical calculation. In other words, we do not solve the
original equation but some approximate form. This in turn leads to
the question of estimating the approximation error between the sol-
ution manifold of the given equation and that of its discretization.
Moreover, we are interested in determining whether any features on
the original manifold, such as Timit points or bifurcation points,
correspond to analogous features on the approximating manifold.

The literature which relates to our topic spans a wide spectrum.
The mathematical foundations include, in particular, the theory of
stable mappings and their singularities. The origin of this theory
may be found in the fundamental results of Hassler Whitney and
Marston Morse which in part formed a basis of René Thom's develop-
ment of catastrophe theory. Broadly speaking, a mapping is stable
if every nearby mapping is identical with it after suitable
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coordinate changes in the domain and range. For some presentations
of stability theory and the classification of the singularities of
stable mappings we refer, for instance, to Arnold (1968), Golubitsky
and Guillemin (1973), Gibson (1979), or Martinet (1982), where many
further references may be found. For an overview of some of the
applications of catastrophe theory see Poston and Stewart (1978).

In practical applications the topological approaches of modern
singularity theory are often replaced by approximate analytical
techniques based on linearizations at singular points and the ear-
lier mentioned methods of perturbation theory and asymptotics.

This is, for instance, the approach of elastic stability theory as
presented by Thompson and Hunt (1973).

As noted earlier, the term bifurcation theory usually refers to
the study of the solution set of parametrized equations, especially
in the neighborhoods of points where the structure of this set does
change. Here, one needs to distinguish two situations. The static
case involves the structure of the set of zeros of a parameterized
function. On the other hand, in the dynamic case one is interested
in the structure of the 1imit sets of solutions of differential
equations as the parameters vary. For some monographs in the area
see, for instance, Iooss and Joseph (1980), Marsden and McCracken
(1976), and, especially, Chow and Hale (1982), where numerous ref-
erences are given.

The numerical analysis of our general area developed from a num-
ber of different roots. One of these is the study of continuation
methods which in turn has several evolutionary lines. In the num-
erical analysis literature, probably beginning with Lahaye (1934)
and Davidenko (1953), much emphasis has been placed on constructing
a zero of a nonlinear function by connecting that function homo-
topically with another function for which the zeros are known. The
numerical procedure then consists in following the corresponding
homotopy path of zeros. For some survey of such methods see, for
example, Wacker (1978), or Garcia and Zangwill (1981). In the
engineering literature continuation procedures developed under the
name of incremental methods or methods of incremental loading. In
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general, these are methods for determining a path of equilibrium
solutions of a structure when some intrinsic parameter, such as a
load intensity, is changed. For some overviews of these approaches
see, e.g., Oden (1972) and Rheinboldt and Riks (1983). Discussions
of computational aspects of continuation methods may be found, for
instance, in Allgower and Georg (1980), Deuflhard et al (1976),
Deuflhard (1979), Haselgrove (1961), Kearfott (1981), Kubicek
(1976), Kubicek et al (1981), Burkardt and Rheinboldt (1983), Watson
(1979), and Watson and Fenner (1980).

Parallel with this work on continuation procedures, the study of
the constructive aspects of bifurcation theory and of the numerical
solution of bifurcation problems has evolved. Here some of the
fundamental results are due to H. B. Keller, who also contributed
significantly to the study of continuation methods (see e.g. Keller
(1970), Keener and Keller (1973), Keller (1973), and Keller (1978)).
For some overviews we refer, for instance, to Kubicek and Marek
(1983) and the recent conference proceedings edited by Kuepper,
Mittelmann, and Weber (1984).

These brief historical comments are intended only to sketch the
broad areas of the Titerature which relate to our topic, and, as
noted in the Preface, no survey of this literature will be given
here.



2. SOME SAMPLE PROBLEMS

This chapter presents several sample problems involving parametrized
equations. They are intended to illustrate the principal concepts
and some of the questions that are to be considered. Further exam-
ples are included throughout the text.

2.1. A SIMPLE FRAMEWORK

In order to focus the discussion, we begin with a simple example
involving a two-dimensional solution manifold in R3 (see also
Poston and Stewart (1978)). The planar framework shown in Figure
2.1 consists of two rigid rods of length 1 each. The rods are
pin-jointed and the spring between them tries to keep the frame-
work in the straight reference configuration. Two loads A,v are
applied as indicated. The deformation can be characterized by the
angle y and, clearly, any deformation y Tlengthens the spring by
2y. If the spring is assumed to be linear it will then contain the
elastic energy (1/2)k(2y)?, where k is the given spring constant.



