Saeed V. Vaseghi

Advanced Digital Signal Processing and Noise Reduction

Third Edition

Advanced Digital Signal Processing and Noise Reduction

Third Edition

Saeed V. Vaseghi

Professor of Communications and Signal Processing Department of Electronics and Computer Engineering Brunel University, UK

Copyright © 2006

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SO, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The Publisher is not associated with any product or vendor mentioned in this book.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging in Publication Data

Vaseghi, Saeed V.

Advanced digital signal processing and noise reduction / Saeed V. Vaseghi. — 3rd ed.

p. cm.

Includes bibliographical references and index.

ISBN 0-470-09494-X

1. Signal processing. 2. Electronic noise. 3. Digital filters (Mathematics) I. Title. TK5102.9.V37 2005

621.382'2-dc22

2005018514

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library.

ISBN-13 978-0-470-09494-5 (HB) ISBN-10 0-470-09494-X (HB)

Typeset in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India. Printed and bound in Great Britain by Antony Rowe Ltd, Chippenham, Wiltshire. This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Preface

The applications of DSP are numerous and include multimedia technology, audio signal processing, video signal processing, cellular mobile communication, adaptive network management, radar systems, pattern analysis, pattern recognition, medical signal processing, financial data forecasting, artificial intelligence, decision making systems, control systems and information search engines.

The theory and application of signal processing is concerned with the identification, modelling and utilisation of patterns and structures in a signal process. The observation signals are often distorted, incomplete and noisy. Hence, noise reduction and the removal of channel distortion and interference are important parts of a signal processing system.

Since the publication of the first edition of this book in 1996, digital signal processing (DSP) in general and noise reduction in particular, have become even more central to the research and development of efficient, adaptive and intelligent mobile communication and information processing systems. The third edition of this book has been revised extensively and improved in several ways to take account of the recent advances in theory and application of digital signal processing. The existing chapters have been updated with new materials added. Two new chapters have been introduced; one for speech enhancement in mobile noisy conditions and the other for modelling and combating noise and fading in wireless communication systems.

The aim of this book is to provide a coherent and structured presentation of the theory and applications of statistical signal processing and noise reduction methods and is organised in 17 chapters.

Chapter 1 begins with an introduction to signal processing, and provides a brief review of signal processing methodologies and applications. The basic operations of sampling and quantisation are reviewed in this chapter.

Chapter 2 provides an introduction to noise and distortion. Several different types of noise, including thermal noise, shot noise, acoustic noise, electromagnetic noise and channel distortions, are considered. The chapter concludes with an introduction to the modelling of noise processes.

Chapter 3 provides an introduction to the theory and applications of probability models and stochastic signal processing. The chapter begins with an introduction to random signals, stochastic processes, probabilistic models and statistical measures. The concepts of stationary,

nonstationary and ergodic processes are introduced in this chapter, and some important classes of random processes, such as Gaussian, mixture Gaussian, Markov chains and Poisson processes, are considered. The effects of transformation of a signal on its statistical distribution are considered.

Chapter 4 is on Bayesian estimation and classification. In this chapter the estimation problem is formulated within the general framework of Bayesian inference. The chapter includes Bayesian theory, classical estimators, the estimate—maximise method, the Cramer—Rao bound on the minimum—variance estimate, Bayesian classification, and the modelling of the space of a random signal. This chapter provides a number of examples on Bayesian estimation of signals observed in noise.

Chapter 5 considers hidden Markov models (HMMs) for nonstationary signals. The chapter begins with an introduction to the modelling of nonstationary signals and then concentrates on the theory and applications of hidden Markov models. The hidden Markov model is introduced as a Bayesian model, and methods of training HMMs and using them for decoding and classification are considered. The chapter also includes the application of HMMs in noise reduction.

Chapter 6 considers Wiener filters. The least square error filter is formulated first through minimisation of the expectation of the squared error function over the space of the error signal. Then a block-signal formulation of Wiener filters and a vector space interpretation of Wiener filters are considered. The frequency response of the Wiener filter is derived through minimisation of mean square error in the frequency domain. Some applications of the Wiener filter are considered, and a case study of the Wiener filter for removal of additive noise provides useful insight into the operation of the filter.

Chapter 7 considers adaptive filters. The chapter begins with the state-space equation for Kalman filters. The optimal filter coefficients are derived using the principle of orthogonality of the innovation signal. The recursive least square (RLS) filter, which is an exact sample-adaptive implementation of the Wiener filter, is derived in this chapter. Then the steepest-descent search method for the optimal filter is introduced. The chapter concludes with a study of the LMS adaptive filters.

Chapter 8 considers linear prediction and sub-band linear prediction models. Forward prediction, backward prediction and lattice predictors are studied. This chapter introduces a modified predictor for the modelling of the short-term and the pitch period correlation structures. A maximum *a posteriori* (MAP) estimate of a predictor model that includes the prior probability density function of the predictor is introduced. This chapter concludes with the application of linear prediction in signal restoration.

Chapter 9 considers frequency analysis and power spectrum estimation. The chapter begins with an introduction to the Fourier transform, and the role of the power spectrum in identification of patterns and structures in a signal process. The chapter considers nonparametric spectral estimation, model-based spectral estimation, the maximum entropy method, and high-resolution spectral estimation based on eigenanalysis.

Chapter 10 considers interpolation of a sequence of unknown samples. This chapter begins with a study of the ideal interpolation of a band-limited signal, a simple model for the effects of a number of missing samples, and the factors that affect interpolation. Interpolators are divided into two categories: polynomial and statistical interpolators. A general form of polynomial interpolation as well as its special forms (Lagrange, Newton, Hermite and cubic spline interpolators) is considered. Statistical interpolators in this chapter include maximum

PREFACE xix

a posteriori interpolation, least square error interpolation based on an autoregressive model, time-frequency interpolation, and interpolation through the search of an adaptive codebook for the best signal.

Chapter 11 considers spectral subtraction. A general form of spectral subtraction is formulated and the processing distortions that result from spectral subtraction are considered. The effects of processing distortions on the distribution of a signal are illustrated. The chapter considers methods for removal of the distortions and also nonlinear methods of spectral subtraction. This chapter concludes with an implementation of spectral subtraction for signal restoration.

Chapters 12 and 13 cover the modelling, detection and removal of impulsive noise and transient noise pulses. In Chapter 12, impulsive noise is modelled as a binary-state nonstationary process and several stochastic models for impulsive noise are considered. For removal of impulsive noise, median filters and a method based on a linear prediction model of the signal process are considered. The materials in Chapter 13 closely follow Chapter 12. In Chapter 13, a template-based method, an HMM-based method and an AR model-based method for removal of transient noise are considered.

Chapter 14 covers echo cancellation. The chapter begins with an introduction to telephone line echoes, and considers line echo suppression and adaptive line echo cancellation. Then the problem of acoustic echoes and acoustic coupling between loudspeaker and microphone systems is considered. The chapter concludes with a study of a sub-band echo cancellation system.

Chapter 15 covers blind deconvolution and channel equalisation. This chapter begins with an introduction to channel distortion models and the ideal channel equaliser. Then the Wiener equaliser, blind equalisation using the channel input power spectrum, blind deconvolution based on linear predictive models, Bayesian channel equalisation and blind equalisation for digital communication channels are considered. The chapter concludes with equalisation of maximum phase channels using higher-order statistics.

Chapter 16 covers speech enhancement methods. Speech enhancement in noisy environments improves the quality and intelligibility of speech for human communication and increases the accuracy of automatic speech recognition systems. Noise reduction systems are increasingly important in a range of applications such as mobile phones, hands-free phones, teleconferencing systems and in-car cabin communication systems. This chapter provides an overview of the main methods for single-input and multiple-input speech enhancement in noise.

Chapter 17 covers the issue of noise in wireless communication. Noise, fading and limited radio bandwidth are the main factors that constrain the capacity and the speed of communication on wireless channels. Research and development of communications systems aim to increase the spectral efficiency, defined as the data bits per second per Hertz bandwidth of a communication channel. For improved efficiency, modern mobile communications systems rely on signal processing methods at almost every stage from source coding to the allocation of time bandwidth and space resources. In this chapter we consider how communications signal processing methods are employed for improving the speed and capacity of communications systems.

As an additional resource, this book is supported by a companion website on which lecturers and instructors can find electronic versions of the figures. Please go to ftp://ftp.wiley.co.uk/pub/books/vaseghi3e.

Symbols

```
A
                                Matrix of predictor coefficients
                                Linear predictor coefficients
a_k
                                Linear predictor coefficients vector
\boldsymbol{a}
                                Probability of transition from state i to state j in a Markov
a_{ij}
                                model
\alpha_i(t)
                                Forward probability in an HMM
                                Backward prediction error
b(m)
b(m)
                                 Binary state signal
\beta_i(t)
                                 Backward probability in an HMM
c_{xx}(m)
                                 Covariance of signal x(m)
c_{XX}(k_1, k_2, \cdots, k_N)
                                 kth-order cumulant of x(m)
                                 kth-order cumulant spectra of x(m)
C_{XX}(\omega_1, \omega_2, \cdots, \omega_{K-1})
                                 Diagonal matrix
e(m)
                                 Estimation error
\mathcal{E}[x]
                                 Expectation of x
f
                                 Frequency variable
Fs
                                 Sampling frequency
                                 Probability density function for process X
f_X(\mathbf{x})
f_{X,Y}(x,y)
                                 Joint probability density function of X and Y
f_{X|Y}(x|y)
                                 Probability density function of X conditioned on Y
f_{X:\Theta}(x;\boldsymbol{\theta})
                                 Probability density function of X with \theta as a parameter
                                 Probability density function of X given a state sequence s of
f_{X|S,\mathcal{M}}(x|s,\mathcal{M})
                                 an HMM \mathcal{M} of the process X
\Phi(m, m-1)
                                 State transition matrix in Kalman filter
                                 Filter gain factor
G
h
                                 Filter coefficient vector, channel response
                                 Maximum-phase channel response
\boldsymbol{h}_{\text{max}}
                                 Minimum-phase channel response
\boldsymbol{h}_{\min}
hinv
                                 Inverse channel response
                                 Channel frequency response
H(f)
H^{\mathrm{inv}}(f)
                                 Inverse channel frequency response
```

H	Observation matrix, distortion matrix
I	Identity matrix
J	Fisher's information matrix
$ m{J} $	Jacobian of a transformation
K(m)	Kalman gain matrix
λ	Eigenvalue
Λ	Diagonal matrix of eigenvalues
m	Discrete time index
m_k	kth-order moment
$\mathcal M$	A model, e.g. an HMM
μ	Adaptation convergence factor
μ_{x}	Expected mean of vector \boldsymbol{x}
n(m)	Noise
$\boldsymbol{n}(m)$	A noise vector of N samples
$n_{\rm i}(m)$	Impulsive noise
N(f)	Noise spectrum
$\frac{N^*(f)}{f}$	Complex conjugate of $N(f)$
N(f)	Time-averaged noise spectrum
$\mathcal{N}(\mathbf{x}, \boldsymbol{\mu}_{\mathbf{x}\mathbf{x}}, \boldsymbol{\Sigma}_{\mathbf{x}\mathbf{x}})$	A Gaussian pdf with mean vector μ_{xx} and covariance matrix Σ_{xx}
$O(\cdot)$	In the order of (\cdot)
P	Filter order (length)
$P_X(\mathbf{x}_i)$	Probability mass function of x_i
$P_{X,Y}(\boldsymbol{x}_i,\boldsymbol{y}_j)$	Joint probability mass function of x_i and y_j
$P_{X Y}\left(oldsymbol{x}_{i}\left oldsymbol{y}_{j} ight)$	Conditional probability mass function of x_i given y_j
$P_{\mathrm{NN}}(f)$	Power spectrum of noise $n(m)$
$P_{XX}(f)$	Power spectrum of the signal $x(m)$
$P_{XY}(f)$	Cross-power spectrum of signals $x(m)$ and $y(m)$
$\hat{oldsymbol{ heta}}$	Parameter vector
$\hat{m{ heta}}$	Estimate of the parameter vector θ
r_k	Reflection coefficients
$r_{xx}(m)$	Autocorrelation function
$r_{xx}(m)$	Autocorrelation vector
R_{xx}	Autocorrelation matrix of signal $x(m)$
R_{xy}	Cross-correlation matrix
S	State sequence
s^{ML}	Maximum-likelihood state sequence
$\sigma_{\rm n}^2$	Variance of noise $n(m)$
σ_{n}^{2} \sum_{nn} \sum_{xx} σ_{x}^{2} σ_{n}^{2}	Covariance matrix of noise $n(m)$
Σ_{xx}	Covariance matrix of signal $x(m)$
σ_{x}^{z}	Variance of signal $x(m)$
	Variance of noise $n(m)$
x(m)	Clean signal
$\hat{x}(m)$	Estimate of clean signal
$\mathbf{x}(m)$	Clean signal vector
X(f)	Frequency spectrum of signal $x(m)$
$X^*(f)$	Complex conjugate of $X(f)$

$\overline{X(f)}$	Time-averaged frequency spectrum of the signal $x(m)$
X(f,t)	Time-frequency spectrum of the signal $x(m)$
X	Clean signal matrix
X^{H}	Hermitian transpose of X
y(m)	Noisy signal
y(m)	Noisy signal vector
$\hat{y}(m m-i)$	Prediction of $y(m)$ based on observations up to time $m-i$
Y	Noisy signal matrix
Y^{H}	Hermitian transpose of Y
Var	Variance
$w_{\scriptscriptstyle k}$	Wiener filter coefficients
w(m)	Wiener filter coefficients vector
W(f)	Wiener filter frequency response
z	z-transform variable

Abbreviations

AR Autoregressive process

ARMA Autoregressive moving average process

AWGN Additive white Gaussian noise

bps Bits per second

cdf Cumulative density function
CELP Code excited linear prediction
dB Decibels: $10 \log_{10}(\text{power ratio})$ DFT Discrete Fourier transform
DSP Digital signal processing

EM Estimate-maximise

ESPIRIT Estimation of signal parameters via rotational invariance techniques

FFT Fast Fourier transform FIR Finite impulse response GMM Gaussian mixture model

GSM Global system for mobile communications

HMM Hidden Markov model

Hz Hertz, unit of frequency in cycles per second

IFFT Inverse fast Fourier transform IID Independent identically distributed

IIR Infinite impulse response
ISD Itakura-Saito distance
ISI Inter symbol interference
LMS Least mean squared error
LP Linear prediction model

LPSS Spectral subtraction based on linear prediction model

LS Least square

LSAR Least square AR interpolation

LSE Least square error
LTI Linear time invariant
MA Moving average process

MAP Maximum a posteriori estimate

xxvi ABBREVIATIONS

M-ary Multilevel signalling

MAVE Minimum absolute value of error estimate

MIMO Multiple-input multiple-output ML Maximum likelihood estimate

MMSE Minimum mean squared error estimate

ms Milliseconds

MUSIC Multiple signal classification

NLMS Normalised least mean squared error

pdf Probability density function pmf Probability mass function psd Power spectral density

QRD Orthogonal matrix decomposition

RF Radio frequency

RLS Recursive least square

SINR Signal-to-impulsive noise ratio

SNR Signal-to-noise ratio

STFT Short-time Fourier transform SVD Singular value decomposition

Var Variance

Contents

Preface			xvii		
Sy	mbol	s	xxi		
Al	brev	iations	xxv		
1	Intr	roduction	1		
	1.1	Signals and Information	1		
	1.2	Signal Processing Methods	3		
		1.2.1 Transform-based Signal Processing	3		
		1.2.2 Model-based Signal Processing	4		
		1.2.3 Bayesian Signal Processing	4		
		1.2.4 Neural Networks	5		
	1.3	Applications of Digital Signal Processing	. 5		
		1.3.1 Adaptive Noise Cancellation	5		
		1.3.2 Adaptive Noise Reduction	6		
		1.3.3 Blind Channel Equalisation	7		
		1.3.4 Signal Classification and Pattern Recognition	8		
		1.3.5 Linear Prediction Modelling of Speech	9		
		1.3.6 Digital Coding of Audio Signals	10		
		1.3.7 Detection of Signals in Noise	12		
		1.3.8 Directional Reception of Waves: Beam-forming	13		
		1.3.9 Dolby Noise Reduction	15		
		1.3.10 Radar Signal Processing: Doppler Frequency Shift	15		
	1.4	Sampling and Analogue-to-digital Conversion	17		
		1.4.1 Sampling and Reconstruction of Analogue Signals	18		
		1.4.2 Quantisation	19 21		
	Bibliography				

viii CONTENTS

2	Noise	and Distortion	23			
	2.1	Introduction	24			
	2.2	White Noise	25			
		2.2.1 Band-limited White Noise	26			
	2.3	Coloured Noise	26			
	2.4	Impulsive Noise	27			
	2.5	Transient Noise Pulses	29			
	2.6	Thermal Noise	30			
	2.7	Shot Noise	31			
	2.8	Electromagnetic Noise	31			
	2.9	Channel Distortions	32			
	2.10	0 Echo and Multipath Reflections				
	2.11	Modelling Noise	33 33			
		2.11.1 Additive White Gaussian Noise Model	36			
		2.11.2 Hidden Markov Model for Noise	36			
	Biblio	ography	37			
3	Prob	ability and Information Models	39			
3	3.1	Introduction	40			
	3.2	Random Signals	41			
	3.2	3.2.1 Random and Stochastic Processes	43			
		3.2.2 The Space of a Random Process	43			
	3.3	Probability Models	44			
	5.5	3.3.1 Probability and Random Variables	45			
		3.3.2 Probability Mass Function	45			
		3.3.3 Probability Density Function	47			
		3.3.4 Probability Density Functions of Random Processes	48			
	3.4	Information Models	50			
	J. T	3.4.1 Entropy	51			
		3.4.2 Mutual Information	54			
		3.4.3 Entropy Coding	56			
	3.5	Stationary and Nonstationary Random Processes	59			
	3.5	3.5.1 Strict-sense Stationary Processes	61			
		3.5.1 Strict-sense Stationary Processes 3.5.2 Wide-sense Stationary Processes	61			
		3.5.3 Nonstationary Processes	62			
	3.6	Statistics (Expected Values) of a Random Process	62			
	3.0	3.6.1 The Mean Value	63			
		3.6.2 Autocorrelation	63			
		3.6.3 Autocovariance	66			
		3.6.4 Power Spectral Density	66			
		3.6.5 Joint Statistical Averages of Two Random Processes	68			
		3.6.6 Cross-correlation and Cross-covariance	68			
		3.6.7 Cross-power Spectral Density and Coherence	70			
		3.6.8 Ergodic Processes and Time-averaged Statistics	70			
		3.6.9 Mean-ergodic Processes	70			
		3.6.10 Correlation-ergodic Processes	70			
		5.0.10 Confetation-ergodic Frocesses	12			

CONTENTS

	3.7	Some	Useful Classes of Random Processes	73
			Gaussian (Normal) Process	73
			Multivariate Gaussian Process	74
			Mixture Gaussian Process	75
			A Binary-state Gaussian Process	76
			Poisson Process	77
			Shot Noise	78
			Poisson-Gaussian Model for Clutters and Impulsive Noise	79
			Markov Processes	80
			Markov Chain Processes	81
			Gamma Probability Distribution	82
			Rayleigh Probability Distribution	83
			Laplacian Probability Distribution	83
	3.8		ormation of a Random Process	83
			Monotonic Transformation of Random Processes	84
			Many-to-one Mapping of Random Signals	86
		Summ		90
	Bibl	iograph	у	90
4	Roy	ocion II	nference	93
7	4.1		ian Estimation Theory: Basic Definitions	94
	7.1		Dynamic and Probability Models in Estimation	95
			Parameter Space and Signal Space	96
			Parameter Estimation and Signal Restoration	97
			Performance Measures and Desirable Properties of Estimators	98
			Prior and Posterior Spaces and Distributions	100
	42		ian Estimation	102
	7.2		Maximum a Posteriori Estimation	103
			Maximum-likelihood Estimation	104
			Minimum Mean Square Error Estimation	107
			Minimum Mean Absolute Value of Error Estimation	108
		4.2.5		
		2.5	Processes with Uniform Distributed Parameters	109
		4.2.6	The Influence of the Prior on Estimation Bias and Variance	109
			The Relative Importance of the Prior and the Observation	114
	4.3		stimate–Maximise Method	116
			Convergence of the EM Algorithm	117
	4.4	Crame	er-Rao Bound on the Minimum Estimator Variance	119
		4.4.1	Cramer-Rao Bound for Random Parameters	120
		4.4.2	Cramer-Rao Bound for a Vector Parameter	121
	4.5	Desig	n of Gaussian Mixture Models	121
			EM Estimation of Gaussian Mixture Model	122
	4.6		sian Classification	124
			Binary Classification	125
			Classification Error	127
			Bayesian Classification of Discrete-valued Parameters	128

CONTENTS

		4.6.4 Maximum a Posteriori Classification	128		
		4.6.5 Maximum-likelihood Classification	129		
		4.6.6 Minimum Mean Square Error Classification	129		
		4.6.7 Bayesian Classification of Finite State Processes	130		
		4.6.8 Bayesian Estimation of the Most Likely State Sequence	131		
	4.7	Modelling the Space of a Random Process	132		
		4.7.1 Vector Quantisation of a Random Process	132		
		4.7.2 Vector Quantisation using Gaussian Models	133		
		4.7.3 Design of a Vector Quantiser: K-means Clustering	133		
	4.8	Summary	134		
	Bibl	iography	135		
5	Hidden Markov Models				
_	5.1		137 138		
		Hidden Markov Models	139		
		5.2.1 Comparison of Markov and Hidden Markov Models	139		
		5.2.2 A Physical Interpretation: HMMs of Speech	141		
		5.2.3 Hidden Markov Model as a Bayesian Model	142		
		5.2.4 Parameters of a Hidden Markov Model	143		
		5.2.5 State Observation Probability Models	143		
		5.2.6 State Transition Probabilities	144		
		5.2.7 State-Time Trellis Diagram	145		
	5.3	Training Hidden Markov Models	145		
		5.3.1 Forward–Backward Probability Computation	147		
		5.3.2 Baum-Welch Model Re-estimation	148		
		5.3.3 Training HMMs with Discrete Density Observation Models	149		
		5.3.4 HMMs with Continuous Density Observation Models	150		
		5.3.5 HMMs with Gaussian Mixture pdfs	151		
	5.4	Decoding of Signals using Hidden Markov Models	152		
		5.4.1 Viterbi Decoding Algorithm	154		
	5.5	HMMs in DNA and Protein Sequence Modelling	155		
	5.6	HMMs for Modelling Speech and Noise	156		
		5.6.1 Modelling Speech with HMMs	156		
		5.6.2 HMM-based Estimation of Signals in Noise	156		
		5.6.3 Signal and Noise Model Combination and Decomposition	158		
		5.6.4 Hidden Markov Model Combination	159		
		5.6.5 Decomposition of State Sequences of Signal and Noise	160		
		5.6.6 HMM-based Wiener Filters	160		
		5.6.7 Modelling Noise Characteristics	162		
	5.7	Summary	162		
	Bib	liography	163		
6	Lea	st Square Error Filters	165		
	6.1	Least Square Error Estimation: Wiener Filters	166		
	6.2	Block-data Formulation of the Wiener Filter	170		
		6.2.1 QR Decomposition of the Least Square Error Equation	171		

CONTENTS xi

	6.3	Interpretation of Wiener Filters as Projections in Vector Space	172
	6.4	Analysis of the Least Mean Square Error Signal	174
	6.5	Formulation of Wiener Filters in the Frequency Domain	175
	6.6	Some Applications of Wiener Filters	177
		6.6.1 Wiener Filters for Additive Noise Reduction	177
		6.6.2 Wiener Filters and Separability of Signal and Noise	178
		6.6.3 The Square-root Wiener Filter	179
		6.6.4 Wiener Channel Equaliser	180
		6.6.5 Time-alignment of Signals in Multichannel/Multisensor Systems	181
	6.7	Implementation of Wiener Filters	182
		6.7.1 The Choice of Wiener Filter Order	183
		6.7.2 Improvements to Wiener Filters	184
	6.8	Summary	185
	Bibl	iography	185
7	Ada	ptive Filters	187
	7.1	Introduction	188
	7.2	State-space Kalman Filters	188
		7.2.1 Derivation of the Kalman Filter Algorithm	190
	7.3	Sample-adaptive Filters	195
	7.4	Recursive Least Square Adaptive Filters	196
		7.4.1 The Matrix Inversion Lemma	198
		7.4.2 Recursive Time-update of Filter Coefficients	199
	7.5	The Steepest-descent Method	201
		7.5.1 Convergence Rate	203
		7.5.2 Vector-valued Adaptation Step Size	204
	7.6	The LMS Filter	204
		7.6.1 Leaky LMS Algorithm	205
		7.6.2 Normalised LMS Algorithm	206
	7.7	Summary	207
	Bibl	iography	208
8	Lin	ear Prediction Models	209
	8.1	Linear Prediction Coding	210
		8.1.1 Frequency Response of LP Models	213
		8.1.2 Calculation of Predictor Coefficients	214
		8.1.3 Effect of Estimation of Correlation Function on LP Model Solution	216
		8.1.4 The Inverse Filter: Spectral Whitening	216
		8.1.5 The Prediction Error Signal	217
	8.2	Forward, Backward and Lattice Predictors	219
		8.2.1 Augmented Equations for Forward and Backward Predictors	220
		8.2.2 Levinson–Durbin Recursive Solution	221
		8.2.3 Lattice Predictors	223
		8.2.4 Alternative Formulations of Least Square Error Prediction	224 225
	0.2	8.2.5 Predictor Model Order Selection	223
	8.3	Short- and Long-term Predictors	220

	8.4	MAP 8.4.1	Estimation of Predictor Coefficients Probability Density Function of Predictor Output	228 229
		8.4.2	Using the Prior pdf of the Predictor Coefficients	230
	8.5		int-tracking LP Models	230
	8.6		and Linear Prediction Model	232
	8.7		Restoration using Linear Prediction Models	233
	0.,	8.7.1	Frequency-domain Signal Restoration using Prediction Models	235
		8.7.2	Implementation of Sub-band Linear Prediction Wiener Filters	237
	8.8	Summ	=	238
		ography	•	238
9	Powe	er Speci	trum and Correlation	241
	9.1		Spectrum and Correlation	242
	9.2		er Series: Representation of Periodic Signals	243
	9.3		er Transform: Representation of Aperiodic Signals	245
	7.0		Discrete Fourier Transform	246
			Time/Frequency Resolutions, the Uncertainty Principle	247
		9.3.3	Energy-spectral Density and Power-spectral Density	248
	9.4		arametric Power Spectrum Estimation	249
		9.4.1	The Mean and Variance of Periodograms	250
		9.4.2	Averaging Periodograms (Bartlett Method)	250
		9.4.3	Welch Method: Averaging Periodograms from Overlapped and	
			Windowed Segments	251
		9.4.4	Blackman-Tukey Method	252
		9.4.5	Power Spectrum Estimation from Autocorrelation of	
			Overlapped Segments	253
	9.5	Mode	l-based Power Spectrum Estimation	254
		9.5.1	Maximum-entropy Spectral Estimation	255
		9.5.2	Autoregressive Power Spectrum Estimation	257
		9.5.3	Moving-average Power Spectrum Estimation	257
		9.5.4	Autoregressive Moving-average Power Spectrum Estimation	258
	9.6	High-	resolution Spectral Estimation Based on Subspace Eigenanalysis	259
		9.6.1	Pisarenko Harmonic Decomposition	259
		9.6.2	Multiple Signal Classification Spectral Estimation	261
		9.6.3	Estimation of Signal Parameters via Rotational Invariance	
			Techniques	264
	9.7	Sumn	nary	265
	Bibli	ography	y	266
10	Inte	rpolatio	on.	267
		Introd		268
	10.1		Interpolation of a Sampled Signal	268
			2 Digital Interpolation by a Factor of I	269
			3 Interpolation of a Sequence of Lost Samples	271
			The Factors that affect Interpolation Accuracy	273