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Preface

This monograph is based on a graduate course, Mechanical Engineering
266, which was developed over a number of years at the University
of California—Berkeley. Shorter versions of the course were given at
the University of Paris VI in 1969, and at the University of Paris
X1 in 1972. The course was originally presented as the last of a three
quarter sequence on Compressible Flow Theory, with emphasis on
the treatment of non-linear problems by numerical techniques. This
is reflected in the material of the first half of the book, covering several
techniques for handling non-linear wave interaction and other problems
in Gas Dynamics. The techniques have their origins in the Method
of Characteristics (in both two and three dimensions). Besides reviewing
the method itself the more recent techniques derived from it, firstly
by Godunov and his group, and secondly by Rusanov and his co-workers,
are described. Both these approaches are applicable to steady flows
calculated as asymptotic states of unsteady flows and treat elliptic prob-
lems as limiting forms of unsteady hyperbolic problems. They are there-
fore applicable to low speed as well as to high speed flow problems.

The second half of the book covers the treatment of a variety of
steady flow problems, including effects of both viscosity and compressibi-
lity, by the Method of Integral Relations, Telenin’s Method. and the
Method of Lines. The objective of all these methods is to eliminate
finite difference calculations in one or more coordinate directions by
using interpolation formulae, especially polynomials, to represent the
unknowns in selected directions. These methods were- used originally
to solve flow problems connected with re-entry aerodynamics but have
subsequently been applied over the whole speed range. They are, in
principle, applicable te a broad range of problems governed by elliptic,
mixed elliptic-hyperbolic, and parabolic partial differential equations.

Many of the applications described in the book result from research,
carried out at Berkeley, sponsored by the Air Force Office of Scientific
Research, NASA Ames Research Center and the Office of Naval
Research. The support of all these agencies is gratefully acknowledged.

The less familiar methods discussed in the book are illustrated by
solutions to model problems worked out by graduate students enrolied
in the class and their contributions are recognized in the text. In addition.
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several students assisted in checking the equations. especially A. Falade.
W, K.Chan. and K.S.Chang. The manuscript was carefully typed by
Mrs. Arlene Martn and ! am indebted to her for completing this
exacting task with cheerful forbearance.

My original venture into the numerical field was encouraged by
Svdney Goldstein who pointed dut to me the importance of this approach
io picblems in { luid Dynamics many vears ago. when non-linear cffects
first assumed significance. In the present enterprise Victor Rusanov
was very helpful not only in providing material for Chapter 3. but
alse in obtaining fess accessible papers for Chapters 2 and 6. Oleg
Belotserkon skin has been a steady source of information on the Method
of Integral Relations and many of the applications of the method to
miviscid problems originate from his group.

I am grateful 1o Dr. W. Baiglbock for including the monograph
m this new Springer series. | wish to express my appreciation to Mrs.
Oelschliger and the editorial stall of Springer-Verlag for their assistance
and courteous cooperiiton in the production of. the book. Finally.
I wish to thank mv wife. Lilcen. for her pauent support during the
writng of the manuscript.

Berkeley. Caliiornia
Linuary 21. 1977 Maurice Holt
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CHAPTER 1

General Introduction

Brief Review of Concepts of Numerical Analysis

1.1 Introduction

At the present time the majority of unsolved problems in Fluid Dynamics
are governed by non-linear partial differential equations and can only be
treated by a numerical approach. As a consequence, specialists in Fluid
Dynamics have recently devoted increasing attention to numerical, as opposed
to analytical, techniques. Of course, there is no point in developing a novel
numerical method unless it can be applied to actual problems of interest. In
the early days of research on numerical analysis the capacity of computing
machines was too restricted to permit many applications to be carried cut.
Today this situation has changed; the machines now available are sufficiently
advanced to deal with an almost limitless range of problems; all that is needed
is to discover effective numerical methods to attack them.

Although the major advances in construction and development of actual
computing machines have taken place in the United States, many of the
principal advances in Numerical Methods were made in the Soviet Union.
This is especially true of methods applicable to problems in Fluid Dynamics
and here the methods can be divided into two categories. The first depend
. purely on finite difference techniques, while in the second, the number of
independent variables in the numerical scheme is reduced by supposing that
the unknowns are polynomials or trigonometric functions of one, or more.
of these variables.

In the first part of the monograph we shall be concerned mainly with
problems in Gas Dynamics. In many of these problems viscosity is unimportant
and the equations of motion reduce to a system of partial differential equa-
tions of the first order. If the motion is unsteady. this system is always hyper-
bolic. If the motion is steady the classification of the system depends on the
magnitude of the fluid speed, being hyperbolic if it is supersonic and elliptic if
subsonic. Thus the problems of Gas Dynamics are of three types, firstly,
elliptic for steady flow at low speeds; secondly, hyperbolic for steady super-
sonic flow and all unsteady flow; and finally, of mixed type, when the flow is
steady and subsonic in one region while being supersonic elsewhere. In all
discussions of finite difference methods given in this course we shall always
regard a steady flow as the asymptotic state of an unsteady flow and shall
therefore only consider hyperbolic systems.
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We shall describe two recent finite difference methods. The first is due to
GobunNov. originally presented in. 1960 and revised in 1970 (see Refs. Chapt. 2).
The second method was developed principally by RUsANOV, also in two stages.
The original formulation was presented in 1964 in collaboration with BABENKO,
VoskRESENSKIT and LiuBiMov and is familiarly known as the BVLR method
(BABENKO et al., Refs. Chapt. 3). This method was extended to three dimensional
unsteady flow in 1970 by RusaNnov and LyuBiMov (Refs. Chapt. 3). Both the
Godunov and BVLR methods have their origins in the method of charac-
teristics. In principle one could solve all nonstationary problems of Gas
Dynamics by a method of characteristics and there are at present several
research workers in the field who rely exclusively on this method. However,
the method does not lend itself easily to machine computations. The main
difficulty here results from the fact that the system of characteristic coordinates
is not rectangular but curvilinear and. frequently. the angle between coordinate
lines of opposing families is very small. It is, of course, always preferable to
work with a rectangular coordinate system if possible. :

The starting point in Godunov's method is the solution of the problem of
piston motion in a cylinder. This is a classical problem. When the piston speed
is constant the solution is well known: a shock wave propagates into the un-
disturbed gas. moving ahead of the piston with a larger but still constant
speed. The value of this speed. for a perfect gas, is defined by a simple quadratic
formula. When the piston motion is nonuniform the problem can be solved
numerically by a method of characteristics employing Riemann invariants.

GobuNoVv proposes to solve the general piston problem as follows: the
region between the piston face and the shock wave is divided into a number
of cells of small length (in general the cells are of equal length). If the velocity
distribution along the cylinder is given at one time we can calculate the mean
value of the velocity (and also the value of the other dependent variables)
in each cell. The actual distribution can then be replaced by a sequence of
constant values, one per cell. Then. across the boundary between two adjacent
cells the values of the velocity, pressure and density are in general discontinuous.
To determine the corresponding values at a slightly later instant it is necessary
to solve a problem of breakdown at a diaphragm. This problem has an analytical
solution defined by algebraic formulae. Thus, at the later instant, the values of
the unknowns on each cell boundary are defined (they are in fact constant)
and new cell values are determined as the means of values on the left and
right boundaries. GObDUNOV applies this process at successive times.

To solve a more general problem. for example, that of flow of supersonic
gas past a cylinder. the field of flow is divided into strips, the boundaries
of which are parallel to the axis of symmetry. The spacing of the strips is
constant and each strip is treated as a channel. However, it is now necessary
to take account of diaphragm breakdown between adjacent, strips as well as
between cell boundaries along each strip.

The BVLR method is parely a finite difference method. Three independent
variables are considered:; namely. the time (or a space variable which plays
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the role of time) and two coordinates. To advance the calculation in ime v
must_connect the values in two plancs representing conditions al successive
time intervals by certain finite difference relations along characteristic ines.
In the BVLR method these relations are replaced by equivalent conditions
along lines running in the time or coordinate directions. Furthcrmore. an
important part of the calculation is the determination of the shape of shock
which encloses the given body. To this end. the boundary conditions at the
body surface must be connected with conditions satisficd at the shock wave
To carry this out RUSANOV el al. use an extension of the double sweep method
originally proposed by GELraxp and LOKUTSIEVSKII (see Refs. Chapt. 3).

To make the coverage of finite difference methods for hyperbolic equations
complete. a chapter is included on the method of characteristics in -three
dimensions. In this the different versions of the method are described aud
particular attention is given to two of these: namely. the bicharacteristics
method of BurLER and the near characteristics method of SAUER.

The later chapters are devoted to techniques based partly on polynomial
or other series representations in one (or more) of the independent variabies.
The first of these. the Method of Integral Relations., was introduced b:
DORODNITSYN in 1950, principally as a means to solvé the problem of higi:
speed flow past a blunt nosed body (see Refs. Chapt. 5). The application of this
method carried out by Berorsikkovskin provided the first solution to the
problem of reentry of a space vehicle in the earth’s atmosphere. In 1960
DorODNITSYN extended the method to apply to viscous flow. especially to
boundary layer and wake problems. The method has been used widely in the
United States and many applications will be discussed. The method consisis
in writing the equations of motion in divergence form and then mmicgraimg
them with respect to one of the independent variables from one side of the
disturbed flow field to the other. To calculate the integrals it is assumed that
the integrands are polynomial or trigonometric functions of the varable of
integration. These functions contain unknown coefficients which satisfy
a reduced system of ordinary or partial differential equations.

The second group of methods using function fitting comes under the
headings of Telenin's method and the Method of Lines. The Method of Lines
has a comparatively long history as an essentially Soviet technique for solving
linear partial differential equations—this is reviewed by LISKOVETS (see Chapi. 6
Refs.). Telenin's method was developed in collaboration with G INSKL.
TiNnyAkov and LEBEDEV from 1964 onwards. In both methods the unknowns
are represented as polynomials or trigonometric functions of onc of the
independent variables but it is no longer required to infegrate the equations
of motion with respect to this variable. TELENIN and his collaborators applied
this method to the blunt body problem in both two and threc dimensions.
considering a wide range of body shapes. At Berkeley Telenin's method was
applied to the Supersonic Yawed Cone Problem by Nprro-and Howi and by
FLETcHER and Hout. It was applied by CHATTO1 to solve the transonic
double wedge flow problem in the hodograph plane.
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The Method of Lines differs from Telenin's method in using local poly-
nomial fitting rather than fitting over a whole coordinate range. It has been
applied to the Yawed Cone Problem by JONES, SOUTH, and by FLETCHER (see
Chapt. 6 Refs.).

In the remainder of this chapter we shall give a brief review of boundary
value and initial value problems, followed by a discussion of one dimensional
unsteady flow needed as an introduction to the Godunov schemes. We then deal
with the method of characteristics for two dimensional steady supersonic flow
as necessary background for Chapt. 4. The chapter concludes with an outline
of the basic concepts of finite difference methods. such as stability, consistency
and convergence. This draws on unpublished course notes of CHORIN and
MiLLER used at the University of California. :

1.2 Boundary Value Problems and Initial Value Problems

The partial differential equations to be solved in problems in Fluid Mechanics
are of three main types. elliptic, hyperbolic and parabolic. Steady inviscid flow
in an incompressible fluid, or at subsonic speeds in a compressible fluid is
governed by elliptic equations. When viscous boundary layer effects are
included in such problems the addition of a diffusion type term converts these
equations to parabolic form. Problems of steady supersonic or unsteady
inviscid flow of a compressible fluid require the solution of hyperbolic equations.
Transonic flow problems are governed by equations of mixed type, elliptic in
subsonic regions and hyperbolic in supersonic regions. Although many finite
difference methods have been developed for such problems they will not be
discussed in the present monograph. Other methods for transonic problems
will be discussed in Chapts. 5 and 6.

The three types of equations can be identified by their simplest forms,
namely. Laplace’s equations, the Wave equation, and the Heat Conduction
equation. Elliptic problems are associated with values of the unknowns (or
their normal derivatives) given on a closed curve and require the solution of
boundary value problems. The solution at a general point of an elliptic problem
depends on the data at every point of the boundary and a change in values at
one boundary point changes the whole solution. In hyperbolic problems either
one of the independent variables is the time or it has time like character and
their solution requires the specification of values of unknowns on an open line
or surface at some initial time. In this case the solution at a general point
only depends on data on a part of the line. Paratolic problems require, in
addition. that data be prescribed on certain fixed boundaries at all times.
Both problems are classified as initial value problems.

We consider now the solution of Laplace’s equation in two dimensions in
which unknowns are prescribed on a closed curve. The analytical solution of
this Dirichlet problem requires finding the conformal mapping transforming
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the boundary into the unit circle, equivalent to finding the Green's function
for the problem. For a complicated boundary curve this is a difficult task
and it may often be easier to solve the problem numerically. If we seek a
solution by Finite Differences we divide the region bounded by the curve into
a network and set up five point difference equations for the unknown at each
interior point, supplementing these with difference equations derived from
boundary points. These difference equations are coupled and, although in
principle their solution is unique, in practice either an iterative or matrix
inversion method must be used to find it.

An alternative method to the iterative process of solving Laplace’s equation
for such problems is to replace the steady boundary value problem by an
unsteady initial value problem. In this boundary values are fixed on the
closed curve at all times and values of the unknowns are estimated at the
interior network points at some initial time. Values of unknowns at interior
points at a later time are then found from difference ejuations in time and
space variables. The solutions of these are determned from only local network
values at the new and cld times and arc found directly without any iteration.
The process is carried out at successive instants until the difference between
the current value of the unknown at a general point and its corresponding
value at the previous instant is less than some assigned small quantity. In
other words, the soluticn of the steady state plane potential problem ts found
as the limiting approach to steady state of the unsteady initial value problem
in two space variables.

The equivalent unsteady problem can either be formulsted in parabolic or
hyperbolic form, depending on whether a first or second order t:mc derivative
is added to Laplace's equation.

In discussing solutions of problems in Fluid Mechanics by Finite Difference
Methods we shall treat Boundary Value Problems by this technique of unsteady
approach to the steady state, normally using equations in wave propagation
rather than parabolic form. Thus we shall only discuss finite difference methods
for time dependent problems.

We first consider the simplest equations of motion in one-dimensional gas
dynamics, defining charactecistic lines, Riemann invariants and the role
they play in finite difference methods, including the Method of Characteristics.
We then generalize to equations of unsteady flow in two space variables so
that we can deal with problems of compressible inviscid motion in plane or
axi-symmetric flow. We describe techniques of solving these equations directly
by the Method of Characteristics (in three independent variables) and then
consider finite difference methods based on treating two dimensional flows as
interdependent layers of one dimensional flows. Two methods of the latter
type have been successfully developed over the past decade or so in the USSR,
the first due to GopuNov (1961, 1970), and the second by RUSANOV and others,
usually known as the BVLR method (BABENKO et al., 1964; RusaNov and
Lyusimov, 1970).
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1.3 One Dimensional Unsteady Flow Characteristics

The equations of motion of unsteady flow in one dimension are

du ou .+1idp :
adi Y EROVIPADS i 3
7 + ua + 0.3 0 e {1:3.1)

do do Cu
§+u5;+ga._0 ; (1.3.2)
oS oS

Here t is the time measured from some initial instant; x is the distance in the
direction of motion; u, p. ¢ and S are velocity. pressure, density. and entropy,

respectively.
If we define the speed of sound a by
£y
a? = k‘—i’) (1.3.4)
cQJs
Egs. (1.3.1) and (1.3.2) may be combined to yield
0 : 40 A 1 8
(9 + .—”) - (uia)(i—f +— éﬁ) - (1.3.5)
L aai el N0 a 0

Egs. (1.3.5) and (1.3.3) are called the equations of one dimensional unsteady
flow in characteristic form and have special properties connected with the
families of lines defined by '

dx_ i "

—_= 1.3.6
0 uta (1.3.6)
dx

i afigri 37
dt K ( )

called characteristic lines or characteristics. '
Eqgs. (1.3.3) and (1.3.5) state that the original equations of motion
(1.3.1)41.3.3) can be replaced by equivalent equations in characteristic form,

namely, that
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1
du + —dp=0 (1.3.8)
a

dS=0 (1.3.9

along the directions (1.3.6) and (1.3.7), respectively.

Eqgs. (1.3.8) and (1.3.9) are in “inner” differential form, i.e., they only contain
derivatives along the corresponding directions (1.3.6) and (1.3.7). The
characteristics therefore have the property that derivatives normal to
them may be discontinuous. Egs. (1.3.8) and (1.3.9) form the basis for solving
problems of one dimensional gas dynamics in finite difference form, called the
Method of Characteristics.

For isentropic flow of a perfect gas, (1.3.9) disappears and (1.3.8) simplify.
We can now introduce the variable

d
grasfobl (1.3.10)

pa

and (1.3.8) can be integrated to give

YT 1.3.11)
u—o=p

where . and f are constant along lines (1.3.6), respectively, and are called
Riemann invariants.

In general Egs. (1.3.11) and (1.3.6) state that Riemann invariants o and p
are propagated without change along plus and minus characteristic directions,
respectively. In problems where disturbances are propagated in one direction
only either « or f is constant throughout the whole flow region. Exact solu-
tions can easily be found in such flows, which are called simple waves. Simple
waves also can be used in certain flows with propagation in both directions.

We now cite two problems with simple wave solutions resulting from the
sudden breakdown of a discontinuity. In both cases the undisturbed gas obeys
perfect gas behavior with constant specific heat ratio y and is uniform.

Problem 1

A semi infinite column of gas is bounded at its right end by a diaphragm
to the right of which is a vacuum. At time =0 the diaphragm is suddenly
ruptured. Determine the way in which gas escapes from the column.

Solution

No fundamental length or time enter the problem so the solution is a
function of x/t only, where x is the space coordinate measured from the original
position of the diaphragm and ¢ is the time measured from the instant of
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rupture. If y is the specific heat ratio, and suffix zero refers to undisturbed con-
ditions, it can easily be shown that the solution is

2 X
Wihahat s 1.3.12
y+1<t +a°> ( )

2 y—1 x
o B $:3.43
7+1 <a° 2 t> ( )

This gives a linear variation with x/t for both u and a, and has the property
that at the original position of diaphragm x=0, u=a= 2u(,,(y+1) for all time.
This is the simplest of the breakdown scolutions used in. Godunov's method.

Problem 2

A diaphragm separates two semi infinite columns of gas, initially at rest,
with pressure p,, density ¢, on the left and pressure ps, density ¢s on the right.
If p,>ps, determine the motion after the diaphragm is instantaneously
ruptured.

Solution

This is the shock tube problem. A shock wave is propagated to the right
while & centered expansion wave is propagated to the left. The expansion
and compression regions are separated by a contact discontinuity which acts
like a uniform piston moving to the right.

The significant flow regions after breakdown are shown in Fig. 1.1.

1 2 3 4 5
undisturbed expansion uniform uniform undisturbed
fan I region region
Head Tail Co B, Shock

Fig. 1.1  Shock tube problem

The problem is solved iteratively. One approach is to assume a value for
p. and hence for &=p,/ps, the pressure ratio across the shock. This then
determines the velocity of the contact discontinuity. We then solve in the
expansion regions 2 and 3 regarding the contact discontinuity as a withdrawing
piston and obtain a value for the velocity of sound a,, at the head of the wave.
This value is compared with the undisturbed value a, =(yp,/¢,)"? and if the
two are unequal, another value of p, must be prescribed and the cycle repeated.

In the full breakdown solutions the semi-infinite columns of gas 1 and 2
are not initially at rest but are moving with different uniform velocities. These
can also be solved iteratively. The full formulae are given in Sect. 2.2.
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1.4 Steady Supersonic Plane or Axi-Symmetric Flow.
Equations of Motion in Characteristic Form

The equations of motion for steady irrotational flow in a plane or with axial
symmetry are

t,—v,=0 (1.4.1)
(@2 —u)u, —2uvu,+ (@ —v*)v,+ja* v/y=0 (14.2)

Here x, y are Cartesian coordinates (plane flow)
Cylindrical coordinates (axi-symmetric flow with x along the axis
of symmetry)

(u,v) are velocity components in the directions (x,y)

a=speed of sound, j=0 plane
=1 axial symmetry.

We wish to write (1.4.1) and (1.4.2) in characteristic form. This means that we
seek a new set of coordinates &=¢(x,y), n=n(x,y) with the following property:
When (1.4.1) and (1.4.2) are referred to £ and n instead of x and y as independent
variables, the first equation contains only & derivatives and the second
equation only n derivatives. Each equation therefore only contains derivatives
along the coordinate direction in question (inner derivatives) and derivatives
in directions oblique or normal to the coordinate (outer derivatives) are absent.

To determine (&,#7) we investigate the following problem. Given a curve
x=x(s), y=y(s) and values of u,v along the curve u=u(s), v=uv(s), under
what conditions will (1.4.1) and (1.4.2) determine outer derivatives of u and v?

Without loss of generality we suppose that the given curve is nowhere
parallel to the y-axis. Then it is sufficient to investigate the conditions under
which (1.4.1) and (1.4.2) determine u,,v, on the line. We denote the slope of
the line by m=(yy/x,).

The inner derivatives of u,v on the line are given by

Ug=U X+ Uy Y5 (1.4.3)
Uy =0, X+, s (1.4.4)
where u,=(du/ds), etc., u,=(0u/Cx), etc.

We can solve (1.4.3) and (1.4.4) for u,v, on the line, in terms of inner
derivatives and u,,v,. We have

o o T (1.45)

R
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U, = — — Mgy (1.4.6)

Substitute for wu.,v, in (1.4.1) and (1.4.2) and rearrange as simultaneous
equations for u,,v,. Then we obtain,

Uy +mo,=0,/x, (1.4.7)

—{m(a® —u?)+2uv}u,+(a* —v*)v,= —(a* 2)— --jfl—i (1.4.8)

S

Eqs (1.4.7) and (1.4.8) are simultaneous algebralc equations to determine
.- The matrix of the pair is

1 m Ci3
—{m(@*—u?)+2uv} (®>—v?) —(a*—uP)u/x,—ja*vly

Denote the leading determinant of the matrix by 4, and the determmam
formed from the first and last columns by 4,.

Then
. t m
) S ( 2 2 !
—m(a*—u”)+2ur|
- 1 v /X
S = im@® —ud)+2uv) (@ =uP)ug x,—jat v/y

In connection with solving (1.4.7) and (1.4.8) for u,.v, the following three
possibilities arise,

(i) 4%0.
In this case u,.v, are determined uniquely by the data on the line and by the
equations of motion.

(ii)3i4=074,%0:
In this case (1.4.7) and (1.4.8) give no solutions for u,.r,

(iii) 4=0. 4,=0. a5 :
In this case solutions for u,, v, are finite but are not unigue. In fact there is a
© single infinity of pairs of (u,.r,) satisfying the linear relation (1.4.7) (or (1.4.8)
which is now the same equation).

Conditions (iii) correspond to the case of interest. The condition 4=0
determines the directions of the given line for which wu,,r, are not uniquely



