Lecture Notes in

Computer Science

Edited by G. Goos and J. Hartmanis

86

Abstract Software
Specifications |

1979 Copenhagen Winter School
Proceedings

Edited by D: Bjerner

\%{/
Springer-Verlag i
Berlin Heidelberg New York

Lecture Notes in
Computer Science

Edited by G. Goos and J. Hartmanis

86

Abstract Software

Specifications

1979 Copenhagen Winter School
January 22 - February 2,1979
Proceedings

Edited by D. Bjerner

\o5ar/
L By S

Springer-Verlag
Berlin Heidelberg New York 1980

Editorial Board

W. Brauer P. Brinch Hansen D. Gries C. Moler G. Seegmiiller
J. Stoer N. Wirth

Editor

Dines Bjerner
Department of Computer Science, Technical University of Denmark
DK-2800 Lyngby/Denmark

AMS Subject Classifications (1979): 68-02, 68 A05, 68 A30
CR Subiject Classifications (1974): 5.21, 5.23, 4.20

ISBN 3-540-10007-56 Springer-Verlag Berlin Heidelberg New York
ISBN 0-387-10007-5 Springer-Verlag New York Heidelberg Berlin

This work is subject to copyright. All rights are reserved, whether the whole or part
of the material is concerned, specifically those of translation, reprinting, re-use of
illustrations, broadcasting, reproduction by photocopying machine or similar means,
and storage in data banks. Under § 54 of the German Copyright Law where copies
are made for other than private use, a fee is payable to the publisher, the amount of
the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1980
Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

Lecture Notes in Computer Science

Vol. 1: Gl-Gesellschaftfir Informatik e.V. 3. Jahrestagung, Ham-
burg, 8.-10. Oktober 1973. Herausgegeben im Auftrag der Ge-
sellschaft fir Informatik von W. Brauer. XI, 508 Seiten. 1973.

Vol. 2: GI-Gesellschaft fir Informatik e.V. 1. Fachtagung iber
Automatentheorie und Formale Sprachen, Bonn, 9.-12. Juli 1973.
Herausgegeben im Auftrag der Gesellschaft fur Informatik von
K.-H. Béhling und K. Indermark. VIl, 322 Seiten. 1973.

Vol. 3: 5th Conference on Optimization Techniques, Part I
(Series: LF.I.P. TC7 Optimization Conferences.) Edited by R.
Conti and A. Ruberti. XIll, 565 pages. 1973.

Vol. 4: 5th Conference on Optimization Techniques, Part Il
(Series: LF.LP. TC7 Optimization Conferences.) Edited by R.
Conti and A. Ruberti. XIIl, 389 pages. 1973.

Vol. 5: International Symposium on Theoretical Programming.
Edited by A. Ershov and V. A Nepomniaschy. VI, 407 pages.
1974.

Vol. 6: B. T. Smith, J. M. Boyle, J. J. Dongarra, B. S. Garbow,
Y. lkebe, V. C. Klema, and C. B. Moler, Matrix Eigensystem Routines -
EISPACK Guide. XI, 551 pages. 2nd Edition 1974.1976.

Vol. 7: 3. Fachtagung uber Programmiersprachen, Kiel, 5.-7.
Marz 1974. Herausgegeben von B. Schlender und W. Frieling-
haus. VI, 225 Seiten. 1974.

Vol. 8: GI-NTG Fachtagung uber Struktur und Betrieb von
Rechensystemen, Braunschweig, 20.-22. Marz 1974. Heraus-
gegeben im Auftrag der Gl und der NTG von H.-O. Leilich. VI,
340 Seiten. 1974.

Vol. 9: GI-BIFOA Internationale Fachtagung: Informationszen-
tren in Wirtschaft und Verwaltung. Kéin, 17./18. Sept. 1973.
Herausgegeben im Auftrag der Gi und dem BIFOA von P.
Schmitz. VI, 259 Seiten. 1974.

Vol. 10: Computing Methods in Applied Sciences and Engineer-
ing, Part 1. International Symposium, Versailles, December 17-21,
1973. Edited by R. Glowinski and J. L. Lions. X, 497 pages. 1974.

Vol. 11: Computing Methods in Applied Sciences and Engineer-
ing, Part 2. International Symposium, Versailles, December 17-21,
1973. Edited by R. Glowinski and J. L. Lions. X, 434 pages. 1974.

Vol. 12: GFK-GI-GMR Fachtagung Prozessrechner 1974. Karls-
ruhe, 10.-11. Juni 1974. Herausgegeben von G. Kriiger und
R. Friehmelt. XI, 620 Seiten. 1\974.

Vol. 13: Rechnerstrukturen und Betriebsprogrammierung, Er-
langen, 1970. (Gl-Gesellschaft fir Informatik e.V.) Herausgege-
ben von W. Hindler und P. P. Spies. Vil, 333 Seiten. 1974.

Vol. 14: Automata, Languages and Programming - 2nd Col-
loquium, University of Saarbriicken, July 29-August 2, 1974.
Edited by J. Loeckx. VIIl, 611 pages. 1974.

Vol. 15: L Systems. Edited by A. Salomaa and G. Rozenberg.
VI, 338 pages. 1974.

Vol. 16: Operating Systems, International Symposium, Rocquen-
court 1974. Edited by E. Gelenbe and C. Kaiser. VI, 310 pages.
1974.

Vol. 17: Rechner-Gestiitzter Unterricht RGU ‘74, Fachtagung.
Hamburg, 12.-14. August 1974, ACU-Arbeitskreis Computer-
Unterstitzter Unterricht. Herausgegeben im Auftrag der Gl von
K. Brunnstein, K. Haefner und W. Handler. X, 417 Seiten. 1974.

Vol. 18: K. Jensen and N. E. Wirth, PASCAL - User Manual and
Report. VII, 170 pages. Corrected Reprint of the 2nd Edition 1976.

Vol. 19: Programming Symposium. Proceedings 1974. V, 425 pages.

1974.

Vol. 20: J. Engelfriet, Simple Program Schemes and Formal
Languages. VI, 254 pages. 1974.

Vol. 21: Compiler Construction, An Advanced Course. Edited by
F. L. Bauer and J. Eickel. XIV. 621 pages. 1974.

Vol. 22: Formal Aspects of Cognitive Processes. Proceedings 1972.

Edited by T. Storer and D. Winter. V, 214 pages. 1975.

Vol. 23: Programming Methodology. 4th Informatik Symposium,
IBM Germany Wildbad, September 25-27, 1974. Edited by C. E.
Hackl. VI, 501 pages. 1975.

Vol. 24: Parallel Processing. Proceedings 1974. Edited by T. Feng.
VI, 433 pages. 1975.

Vol. 25: Category Theory Applied to Computation and Control. Pro-
ceedings 1974. Edited by E. G. Manes. X, 245 pages. 1975

Vol. 26: GI-4. Jahrestagung, Berlin, 9.-12. Oktober 1974. Her-
ausgegeben im Auftrag der Gl von D. Siefkes. IX, 748 Seiten.
1975.

Vol. 27: Optimization Techniques. IFIP Technical Conference.
Novosibirsk, July 1-7, 1974. (Series: |.F.LP. TC7 Optimization
Conferences.) Edited by G. |. Marchuk. VIIl, 507 pages. 1975.

Vol. 28: Mathematical Foundations of Computer Science. 3rd
Symposium at Jadwisin near Warsaw, June 17-22, 1974. Edited
by A. Blikle. VIl, 484 pages. 1975.

Vol. 29: Interval Mathematics. Procedings 1975. Edited by K. Nickel.-
VI, 331 pages. 1975.

Vol. 30: Software Engineering. An Advanced Course. Edited by
F. L. Bauer. (Formerly published 1973 as Lecture Notes in Eco-
nomics and Mathematical Systems, Vol. 81) XII, 545 pages. 1975.

Vol. 31: S. H. Fuller, Analysis of Drum and Disk Storage Units. IX,
283 pages. 1975.

Vol. 32: Mathematical Foundations of Computer Science 1975.
Proceedings 1975. Edited by J. Betvat. X, 476 pages. 1975.

Vol. 33: Automata Theory and Formal'Languages, Kaiserslautern,
May 20-23, 1975 Edited by H. Brakhage on behalf of Gl. VIl
292 Seiten. 1975

Vol. 34: GI - 5. Jahrestagung, Dortmund 8.-10. Oktober 1975.
Herausgegeben im Auftrag der Gl von J. Miihibacher. X, 755 Seiten.
1975.

Vol. 35: W. Everling, Exercises in Computer Systems Analysis.
(Formerly published 1972 as Lecture Notes in Economics and
Mathematical Systems, Vol. 65) VIII, 184 pages. 1975.

Vol. 36: S. A Greibach, Theory of Program Structures: Schemes,
Semantics, Verification. XV, 364 pages. 1975.

Vol. 37: C. Bohm, i-Calculus and Computer Science Theory. Pro-
ceedings 1975 XII, 370 pages. 1975.

Vol. 38: P. Branquart, J.-P. Cardinael, J. Lewi, J.-P. Delescaille,

M. Vanbegin. An Optimized Translation Process and Its Application

to ALGOL 68. IX, 334 pages. 1976.

Vol. 39: Data Base Systems. Proceedings 1975. Edited by H. Hassel-
meier and W. Spruth. VI, 386 pages. 1976.

Vol. 40: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 1. Proceedings 1975. Edited by J. Cea. XIV,
854 pages. 1976.

Vol. 41: Optimization Techniques. Modeling and Optimization in the
Service of Man. Part 2. Proceedings 1975. Edited by J. Cea. XIlI,
852 pages. 1976.

Vol. 42: James E. Donahue, Complementary Definitions of Pro-
gramming Language Semantics. VII, 172 pages. 1976.

Vol.43: E Specker und V. Strassen, Komplexitit von Entscheidungs-
problemen. Ein Seminar. V, 217 Seiten. 1976.

Vol. 44: ECI Conference 1976. Proceedings 1976. Edited by K.
Samelson. Vlil, 322 pages. 1976.

Vol. 45: Mathematical Foundations of Computer Science 1976.
Proceedings 1976. Edited by A. Mazurkiewicz. XI, 601 pages. 1976.

Vol. 46: Language Hierarchies and Interfaces. Edited by F. L. Bauer
and K. Samelson. X, 428 pages. 1976.

Vol. 47: Methods of Algorithmic Language Implementation. Edited
by A. Ershov and C. H. A. Koster. VIIl, 351 pages. 1977.

Vol. 48: Theoretical Computer Science, Darmstadt, March 1977.
Edited by H. Tzschach, H. Waldschmidt and H. K.-G. Walter on
behalf of G. VIII, 418 pages. 1977.

DEDICATINN

This volume is dedicated to:

PrRoFESSOR, DR.TECHN. HEINZ ZEMANEK

The dedication occurs in connection with Professor Zemaneks 60th Anniver=

sary.

The dedication is motivated by Professor Zemaneks inspired founding, and

inspiring leadership of the IBM Vienna Laboratory.

The applied scientific work of the Vienna Laboratory could not have taken
place had it not been for Zemaneks continued attention. Examples of this
work are: the VDL (Vienna Definition Languace) based, operational seman=
tics definition of PL/I, of the mid-to-late 1960s; and the therefrom di=
stinct VDM/META-IV (Vienna Development Method / Meta Lancuage) based deno=
tational semantics definition of a PL/I subset, of the earlv-to-mid 1970s.
The editor of this volume, the co-director of the 1979 Copenhagen Winter
School on 'Abstract Software Specifications', and many others, derived
from - shorter or longer stays with - the Vienna Laboratory of those pe=

riods, long and lasting impressions and inspirations.

The editor of this volume is grateful to be able to open and close this
volume with papers by Professor Zemanek. Both were oresented at the above-
mentioned Winter School. The editor is also grateful to the Springer-

Verlag for the opportunity and kind permission to present this dedication.

ACKNOWLEDGEMENTS

The present collection of sixteen papers relate to the subject of AB=
STRACT SOFTWARE SPECIFICATIONS. This was the theme of a two week Win=
ter School held at the Technical University of Denmark, Januarv 22 -
February 2, 1979. The 'School' also featured a number of workshop
sessions, and drew some 120 participants from 23, mostlv European,
countries. Most of the papers derive directly from series of lectures

or workshop seminar presentations given.
The event was sponsored by, and held under the auspices of:

(1) the Commission of the European Communities, in particular
the EEC/CREST Subcommittee on Education in Informatics, and

(2) the Danish Research Councils for the Natural- and the Techni=

cal Sciences, colloquially known as SNF & STVF.

Most valuable direct, as well as indirect (participant scholarship)

financial support was also received from:
(3) the edp group ('dif data') of the Danish Engineering Society,
and from the following, national IBM Companies:

(4) IBM Denmark,

(5) 1IBM Finland,

(6) IBM Norway,

(7) 1IBM Sweden, and

(8) The Netherlands IBM (Holland).

The School Directors, D.Bjgrner & C.B.Jones, wishes hereby to extend
their most sincere thanks to the EEC/CREST, the SNF+STVF, the DIF-DATA,
and especially to the above IBM national companies whose generous un=
derstanding and prompt contributions was most appreciated.

The Director of the Winter School finally thanks the administration &
technical services of the Technical University of Denmark for having

provided such outstanding facilities and services.

FOREWORD

The subject of abstractly specifying software - before embarking upon
costly realizations - is presently being firmly established. Not just
in University Computer Science Curricula, but also as an engineering

practice in small and large corporations.

This volume records a number of software abstraction and desion methods,
their mathematical foundations and use. Common to the methods dealt with
in this volume is their reliance on mathematical foundations. This also

sets these methods apart from most other recorded means of software spe=

cification.

Most papers, with the exceptions being papers number 5, 10 and 15, cover
rather exactly lectures and shorter seminars given at the 1979 Copenhagen
Winter School on Abstract Software Specifications. Professors Liskov and
Plotkin . lectured on 'Abstractions in CLU', respectively 'Towards a Math=
ematical Theory of Concurrently Executing Programs'. Plotkins present pa=

per is an elaboration of only a part of his lectures at the Winter School.

The Winter School was held at the Technical University of Denmark, in

the period: January 22 - Februar 2, 1979.

BROAD CLASSIFICATION

Two main streams of definitional styles are identified: the constructive
methods based on the Scott-Strachey approach to Mathematical Semantics,

and the Algebraic Semantics methods. The papers by Stoy, Jones, Bjgrner,
Park and Plotkin belong to the former school; with the papers by Zilles,
Dahl, Burstall & Goguen, D&m6lki and Liskov, the latter indirectly, be=

longing to the latter school.

Two hitherto separate areas of application are identified: specification
of essentially deterministic, secuential, respectively non-deterministic,
parallel-process oriented systems. This is admittedly a rather gross de=
lineation. The papers by Dahl, Lauer et.al., Park and Plotkin address the
latter issues, while remaining papers primarily, if not exclusively, stay

within a simpler, non-power domain of discourse (!).

PAPER OVERVIEWS

The opening paper by ZEMANEK: "ABSTRACT ARCHITECTURE" relates the task

of the computer and software systems architects to that of 'conventional'
(i.e. building) architects; investigates the nature of design; of systems
and their components; analyzes the notions of in- & formality; etc.. It

is a thought provoking paper which, in very relevant terms, is a con=
tribution towards the philosophy- and the theory of science of computer
science and software engineering. Awareness of the manyv points brought

up by Zemanek should lead to better suited, more appropriatelv pronortioned

systems serving satisfied users.

STOYs paper on the "FOUNDATIONS OF DENOTATIONAL SEMANTICS" opens the part
on constructive definition methods. It provides an elementary introduction
to the mathematical theory underlying such constructive definition methods,
& thus, in particular, the papers by Jones and Bjdrner. The papers of
Park and Plotkin are more advanced treatises, extending & applyina these
foundations in the search for answers to and characterizations of crucial
notions in non-deterministic & parallel programs. Stoys paper also discus=
ses techniques for reasoning about denotational semantics definitions, and
for modelling GOTOs via the technique of so-called continuations. A section
of Jones' paper ('Escape Mechanisms') and Bjdrners 2nd paper (numbered:5)
deals with another way of modelling GOTOs - the so-called exit-mechanism.
Bjgrners paper (no.5) also combines exit & continuation modelling tech=

niques.

JONESs paper is an introduction to techniques, and a notation, for "MODEL=
LING PROGRAMMING LANGUAGE CONCEPTS". The paper unfolds the notation and
techniques required, by covering concepts in a stepwise, first orthogonal,
subsequently combined fashion.

BJPRNERs paper on "FORMALIZATION OF. DATA BASE MODELS" provides an alter=
native introduction, but now to techniques for modelling Data Base con=
cepts. Not that there is any significant difference! But the audience
might be different. Jones' paper emphasizes understanding the modelling
techniques and motivates (desired properties of) the notational constructs.
Bjgrners paper emphasizes the application of these techniques to other
than the 'classical' area (of programming languages). Jones' paper, in

a sense, assumes some familiarity of the exemplified (source) language

constructs; while Bjgrners paper can be read as an alternative intro=

IX

duction to Data Base concepts for persons not familiar with these, and

as an introduction to modelling techniques for Data Base professionals.

BJPRNERs paper on "EXPERIMENTS IN BLOCK-STRUCTURED GOTO LANGUAGE MODEL=
LING: EXITS VERSUS CONTINUATIONS" is a mere exercise in expressing GOTO
semantics. It starts with the so-called exit-based modelling techniques
motivated in Jones' paper. It then exemplifies 'corresponding' continu=

ation-based models; and finally 'merges' these styles!

Summarizing the papers by STOY, JONES and BJ@RNER, we can say that with
this volume two prominent variations on the theme of expressing mathema=
tical semantics has been brought together: The VDM (Vienna Development
Method) and the Oxford Styles of Denotational Semantics. Stoys paper
clearly points out some differences, but is otherwise a contribution to
a unified understanding of their foundations.

The mostly theoretical paper by ZILLES, "AN INTRODUCTION TO DATA ALGEBRA",
opens the part on Algebraic Semantics. It provides an advanced level in=
troduction to the mathematics underlying algebraic presentations of ab=
stract data types. It is a long expected paper from one of the first re=

searchers of this most fascinating and booming area.

DAHLs paper, "TIME SEQUENCES AS A TOOL FOR DESCRIBING PROGRAM BEHAVIOUR",
explores the (time) sequence concept of e.g. programming languages, u=
sing techniques akin to those treated by Zilles. The aim is to provide

a "tool kit" for speaking about 'operatcrs, functions and predicates

on sequences', aiding practicing programmers in program specification,
mechanization and proofs. Use of the established tools are then demon=
strated by applications to specification & proofs concerning semaphores,

mutual exlusion, deadlock, and the classical readers/writers problem.

"THE SEMANTICS OF CLEAR, A SPECIFICATION LANGUAGE", by BURSTALL & GOGUEN,
defines a basically algebraic specification language, CLEAR, CLEAR permits
the configurated, bottom-up, as well as the hierarchical, top-down, con=
struction of abstract models, put together, respectively derived from
models of constituent, respectively overall concepts. CLEAR is here de=
fined using 'a blend of denotational semantics with categorical ideas'.

DOMOLKIs paper, "AN EXAMPLE OF HIERARCHICAL PROGRAM SPECIFICATION", ap=

plies ideas of CLEAR to the development of a program: specification,
realization and correctness proofs.

"MORULAR PROGRAM CONSTRUCTION USING ABSTRACTIONS", by LISKOV, 'presents
a programming method in which modular decomposition is based on recogni=
tion of useful abstractions'. The paper is structured around a very in=

structive specification & implementation example.

LUCAS's paper "ON THE STRUCTURE OF APPLICATION PROGRAMS" is concerned
with the 'parameterization of programs with respect to factual inform=
ation'. It reports on 'software techniques which can be expected to fa=
cilitate programming and maintenance of commercial applications'. The
paper also 'sheds light on the role of formalization, and the rdles and

proper place of abstract data types'.

The joint paper by GERSTMANN & OLLONGREN has been included in this volume
since it attempts to analyze, from one viewpoint, basic notions of the
VDL-, the VDM- and the Algebraic Schools of Software Specifications.
The editor would here like to take the opportunity to warn the reader of a pos=
sible source of confusion. VDL is not VDM! The former stands for the notation
language used for the operational semantics definitions of the 1960s. The lat=
ter acronym for a whole development method starting with denotational semantics
definitions. VDL reads: Vienna Definition Language. VDM reads: Vienna Development

Method. The notational system, or the semantics definition meta-language of VDM
has been referred to by the acronym: META-IV.

'COSY' is a language for the "DESIGN & ANALYSIS OF iIGHLY PARALLEL & DI=

STRIBUTED SYSTEMS". It is based on Petri-net like concepts, and is derived
from regular expressions. In their paper, LAUER, SHIELDS & BEST, introdu=
ces the 'COSY' notation (Lauer), gives the net semantics of 'COSY' (Best),

and presents firing sequence- and adequacy properties of 'COSY' (Shields).

The last two technical papers, by Park and Plotkin, focuses on very sne=
cific, mathematical problems of dealing with parallellism and non-deter=

minism.

PARK applies the relational semantics variant of denotational semantics
in his paper "ON THE SEMANTICS OF FAIR PARALLELLISM". In it, he analyzes
fairness, or finite delay properties of processes, and 'unbounded, but
finite', and 'potentially infinite' attributes of parallel systems speci=

fications.

X

Abstract (Machine, Abstract Operational) Non-deterministic State Trans=
formation Semantics explications of "DIJKSTRAS PREDICATE TRANSFORMERS"
have been provided by e.g. de Roever, de Bakker, Wand and Back. PLOTKINs
paper, whose title finishes with: "& SMYTHS POWER DOMAINS", 'regards this
by showing homo- and isomorhisms from the state transformation view to

the predicate transformer view!

As a prerequisite for more fully enjoving the closing "BANQUET TALK"
paper by ZEMANEK, the reader should be informed that (i) the above-men=
tioned winter school lectures took place in auditorium 81 of the Techni=
cal University of Denmark, and (ii) that "only" 50, out of a total of
more than 130 participants ('students', workshoppers and lecturers)

went to a mid-course Royal Danish Ballet evening which, in addition to
classical, retrospective, Danish Bournonville ballet, also featured the

more abstract 'Serenade' ballet by Balanchine.

CLOSING REMARKS

The 1979 Copenhagen Winter School on Abstract Software Specifications

had a final panel session of some 60 minutes duration. The editor regrets
being unable, at this time, to include an edited transcript of that most
clarifying and concluding event. He does hope, however, some day, to be

able to furnish such a written record; and invites readers to inquire.

At the banquet, where Professors Dahl and Naur entertained the more than
110 diners with several most enjoyable pieces of Bach (Naur: flute,
Dahl: a somewhat out of tune piano), participants had contributed to

a Winter School Song book. The editor also regrets to be likewise unable
to provide this as an apppendix to this volume. Since he varticularly
enjoyed the personal creations of Richard L.Wexelblat (of UNIVAC, Penn.,
USA), readers might likewise persuade the editor to nrovide a conv of
that songbook.

ines Bjgrner
Holte, Laster 1980

Vol. 49: Interactive Systems. Proceedings 1976. Edited by A. Blaser
and C. Hackl. VI, 380 pages. 1976.

Vol. 50: A. C. Hartmann, A Concurrent Pascal Compiler for Mini-
computers. VI, 119 pages. 1977.

Vol. 51: B. S. Garbow, Matrix Eigensystem Routines - Eispack
Guide Extension. VIIl, 343 pages. 1977.

Vol. 52: Automata, Languages and Programming. Fourth Colloquium,
University of Turku, July 1977. Edited by A. Salomaa and M. Steinby.
X, 569 pages. 1977.

Vol. 53: Mathematical Foundations of Computer Science. Proceed-
ings 1977. Edited by J. Gruska. XII, 608 pages. 1977.

Vol. 54: Design and Implementation of Programming Languages.
Proceedings 1976. Edited by J. H. Williams and D. A. Fisher. X,
496 pages. 1977.

Vol. 65: A. Gerbier, Mes premiéres constructions de programmes.
XIl, 256 pages. 1977.

Vol. 56: Fundamentals of Computation Theory. Proceedings 1977.
Edited by M. Karpinski. XIl, 542 pages. 1977.

Vol. 57: Portability of Numerical Software. Proceedings 1976. Edited
by W. Cowell. VI, 539 pages. 1977.

Vol. 8: M. J. O'Donnell, Computing in Systems Described by Equa-
tions. XIV, 111 pages. 1977.

Vol. 59: E. Hill, Jr., A Comparative Study of Very Large Data Bases.
X, 140 pages. 1978.

Vol. 60: Operating Systems, An Advanced Course. Edited by R. Bayer,
R.M. Graham, and G. Seegmiiller. X, 593 pages. 1978.

Vol. 61: The Vienna Development Method: The Meta-Language.
Edited by D. Bjerner and C. B. Jones. XVIIl, 382 pages. 1978.

Vol. 62: Automata, Languages and Programming. Proceedings 1978.
Edited by G. Ausiello and C. Bohm. VIII, 508 pages. 1978.

Vol. 63: Natural Language Communication with Computers. Edited
by Leonard Bolc. VI, 292 pages. 1978.

Vol. 64: Mathematical Foundations of Computer Science. Proceed-
ings 1978. Edited by J. Winkowski. X, 551 pages. 1978.

Vol. 65: Information Systems Methodology, Proceedings, 1978.
Edited by G. Bracchi and P. C. Lockemann. XII, 696 pages. 1978,

Vol. 66: N. D. Jones and S. S. Muchnick, TEMPO: A Unified Treat-
ment of Binding Time and Parameter Passing Concepts in Pro-
gramming Languages. IX, 118 pages. 1978.

Vol. 67: Theoretical Computer Science, 4th Gl Conference, Aachen,
March 1979. Edited by K. Weihrauch. VII, 324 pages. 1979.

Vol. 68: D. Harel, First-Order Dynamic Logic. X, 133 pages. 1979.

Vol. 69: Program Construction. International Summer School. Edited
by F. L. Bauer and M. Broy. VII, 651 pages. 1979.

Vol. 70: Semantics of Concurrent Computation. Proceedings 1979.
Edited by G. Kahn. VI, 368 pages. 1979.

Vol. 71: Automata, Languages and Programming. Proceedings 1979.
Edited by H. A. Maurer. IX, 684 pages. 1979.

Vol. 72: Symbolic and Algebraic Computation. Proceedings 1979.
Edited by E. W. Ng. XV, 557 pages. 1979.

Vol. 73: Graph-Grammars and Their Application to Computer
Science and Biology. Proceedings 1978. Edited by V. Claus, H. Ehrig
and G. Rozenberg. VIl, 477 pages. 1979.

Vol. 74: Mathematical Foundations of Computer Science. Proceed-
ings 1979. Edited by J. Betvat. IX, 5680 pages. 1979.

Vol. 75: Mathematical Studies of Information Processing. Pro-
ceedings 1978. ‘Edited by E. K. Blum, M. Paul and S. Takasu. VI,
629 pages. 1979.

Vol. 76: Codes for Boundary-Value Problems in Ordinary Differential
Equations. Proceedings 1978. Edited by B. Childs et al. VIIl, 388
pages. 1979.

Vol. 77: G. V. Bochmann, Architecture of Distributed Computer
Systems. VIII, 238 pages. 1979.

Vol. 78: M. Gordon, R. Milner and C. Wadsworth, Edinburgh LCF.
VIIl, 159 pages. 1979.

Vol. 79: Language Design and Programming Methodology. Pro-
ceedings, 1979. Edited by J. Tobias. IX, 255 pages. 1980.

Vol. 80: Pictorial Information Systems. Edited by S. K. Chang and
K. S. Fu. X, 445 pages. 1980.

Vol. 81: Data Base Techniques for Pictorial Applications. Proceed-
ings, 1979. Edited by A. Blaser. XI, 599 pages. 1980.

Vol. 82: J. G. Sanderson, A Relational Theory of Computing. VI,
147 pages. 1980.

Vol. 83: International Symposium Programming. Proceedings, 1980.
Edited by B. Robinet. VII, 341 pages. 1980.

Vol. 84: Net Theory and Applications. Proceedings, 1979. Edited
by W. Brauer. XIIl, 537 Seiten. 1980.

Vol.85: Automata, Languages and Programming. Proceedings, 1980.
Edited by J. de Bakker and J. van Leeuwen. VI, 671 pages. 1980.

Vol.86: Abstract Software Specifications. Proceedings, 1979. Edited
by D. Bjerner. Xlll, 567 pages. 1980

CONTENTS

% Dedication

. Acknowledgement
% Foreword

. Contents
PRELUDE:

1. H.Zemanek

Abstract Architecture
CONSTRUCTIVE DEFINITIONS

2. J.stoy
Foundations of Denotational Semantics

3. C.B.Jones
Models of Programming Language Concepts

4. D.Bjgrner
Formalization of Data Base Models

Se D.Bjgrner
. Block-structured GOTO Modelling:exits vs. Continuations

ALGEBRAIC SEMANTICS

6. S.N.Zilles
Introduction to Data Algebra

7. 0.-J.Dahl
Time Sequences as a Tool for Describing Program Behaviour

8. R.M. Burstall & J.A. Goguen
The Semantics of CLEAR, A Specification Language

9 B.DSmS1ki
An Example of Hierarchical Program Spectfication

PROGRAM SPECIFICATIONS

10. B.Liskov
Modular Program Comstruction Using Abstractions

11. P.Lucas
On the Structure of Application Programs

AN INTERLUDE

12. H.Gerstmann & A.Ollongren
Abstract Objects as Abstract Data Types

PARALLELLISM & NON-DETERMINISM

13. P.E. Lauer, M.W. Shields & E. Best
Design & Analysis of Highly Parallel & Distributed Systems

14. D. Park
On the Semantics of Fair Parallellism

15. G.D. Plotkin
Dijkstras Predicate Transformers & Smyth's Power Domains

POSTLUDE

16. H.Zemanek
Banquet Talk

LIST OF PARTICIPANTS

43

100

144

216

248

273

292

333

354

390

439

451

504

527

554
564

ABSTRACT ARCHITECTURE

General Concepts for Systems Design

by
Heinz Zemanek
IBM Fellow

Professor at the University of Technology, Vienna
Paper for the Winterschool on Abstract Software Specification
at the

Danish University of Technology

Copenhagen, 2 February 1979

CONTENTS

Introduction 2

—

The Origin of Computer Architecture

2. The Nature of Design

3. The System 10
L. The Transition from Informal to Formal 14
5. System Information 1.7
6. Four Phases of Technical Design 20
7. Three Levels and Three Objects of Design 23
8. Five Types of Information Treatment _ 28
9. Some General Concepts 32
10: Errors, Failures and Perturbations 37

Conclusion 40

INTRODUCTION

This is not a paper like the other papers of this winterschool. Its
intent is neither to teach a formal structure nor to give any lemmas or
proofs. Its aim is to make you, after all you have heard during these
two weeks, think of the purpose of abstract specification, to reconsider,
to contemplate the wonderful tools you have been confronted with - and
their use in the world. Which is a world of users, a world of people who

are very far from the abstraction we have cultivated.

Our computer is a great thing, as a device and as a mental concept. It

is so incredibly flexible, it can be made to do everything we want. But
actually nothing in this technology is there for itself. [t all has a
practical purpose, it all is here for service. It seems appropriate to
call this device computer. Because it shares with mathematics the property
of being at the same time the queen of science and technology and the most

humble servant.

We have developed our creation for more than 25 years - and what a world of
posssibilities, ef mechanisms - concrete and abstract - and of applications
has been added! We could be very proud of our achievements, did not there
arise the disquieting question: do we indeed master what we have got?

And this question has very many meanings - of which | will select only one:
do we master the design of our structures, hardware, software and appli-
cations? And | will ask it in a slightly different form: what makes a

design a good design?

The answer cannot be an algorithm and there is no intention to develop a
measure for quality or beauty. Design, in contrast to mathematical theories
and defined measurement, happens in a world of unremovable contradictions.
The engineer is supposed to make use of applicable theories and available
measurements - but his strength is where the parts covered by theories and
measurements have their rough edges against each other, where satisfying

the one means offending the other. In this situation, the engineer applies

his ability to find the compromise, to bring an entity to work in spite of

unresolved theoretical contradictions, to get the thing produced at accept-
able costs and delivered at the promised date. |If | have here properly des-
cribed the task of an engineer: s it not completely clear that software
design is an engineering activity with mathematics and measurement as
auxiliary tools? But then it is evident that there has not been done enough

to cultivate the engineering character of software technology.

The keyword which has triggered my thoughts and my research work is
computer architecture, a term which is now used very frequently. The goal
of my research and the intention of this paper are to clarify the meaning

of this term.

1. THE ORIGIN OF COMPUTER ARCHITECTURE

Both the term computer architecture and the idea of architectural design
were used, as far as | have found out, for the first time in 1962 by Fred
P. Brooks Jr. for his contribution to the book describing the development
of the IBM-Computer STRETCH, which contribution has the title Architectural
Philosophy [1]. This paper contains a definition which should have been

generally accepted:

Computer architecture, like any other architecture, is the art of
determining the needs of the user of a structure and then designing
is to meet those needs as effectively as possible within the economic

and technological constraints.

The spirit of this paper, the whole book and the development of STRETCH

were leading up to a revolution in computer design - to the development of
the IBM System/360. |Its three architects, Fred Brooks, Gerrit Blaauw and
Gene Amdahl, not only for the first time conceived a full spectrum of
computers - from 360/20 to 360/95 - but, moreover, the spectrum was a family
of models derived from a common concept, so that the design achieved what

architecture should achieve: a style.

In their description of the architecture, however, the definition of archi-

tecture is worded already a bit differently [2]:

The term 'architecture' is used here to describe the attributes

of a system as seen by the programmer, i.e. the conceptual structure
and functional behaviour, as distinet from the organization of the
data flow and controls, the logical design, and the physical implemen—

tation.

This sounds as if the authors had anticipated what would happen and tried
to inhibit it: the term architecture has, since then, lost its precise and
obliging meaning, and today it is almost as broad in its application as the

term structure. Authors do use the term architecture when they mean

