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FOREWORD

The subject of abstractly specifying software - before embarking upon
costly realizations - is presently being firmly established. Not just
in University Computer Science Curricula, but also as an engineering

practice in small and large corporations.

This volume records a number of software abstraction and desion methods,
their mathematical foundations and use. Common to the methods dealt with
in this volume is their reliance on mathematical foundations. This also

sets these methods apart from most other recorded means of software spe=

cification.

Most papers, with the exceptions being papers number 5, 10 and 15, cover
rather exactly lectures and shorter seminars given at the 1979 Copenhagen
Winter School on Abstract Software Specifications. Professors Liskov and
Plotkin . lectured on 'Abstractions in CLU', respectively 'Towards a Math=
ematical Theory of Concurrently Executing Programs'. Plotkins present pa=

per is an elaboration of only a part of his lectures at the Winter School.

The Winter School was held at the Technical University of Denmark, in

the period: January 22 - Februar 2, 1979.

BROAD CLASSIFICATION

Two main streams of definitional styles are identified: the constructive
methods based on the Scott-Strachey approach to Mathematical Semantics,

and the Algebraic Semantics methods. The papers by Stoy, Jones, Bjgrner,
Park and Plotkin belong to the former school; with the papers by Zilles,
Dahl, Burstall & Goguen, D&m6lki and Liskov, the latter indirectly, be=

longing to the latter school.

Two hitherto separate areas of application are identified: specification
of essentially deterministic, secuential, respectively non-deterministic,
parallel-process oriented systems. This is admittedly a rather gross de=
lineation. The papers by Dahl, Lauer et.al., Park and Plotkin address the
latter issues, while remaining papers primarily, if not exclusively, stay

within a simpler, non-power domain of discourse (!).



PAPER OVERVIEWS

The opening paper by ZEMANEK: "ABSTRACT ARCHITECTURE" relates the task

of the computer and software systems architects to that of 'conventional'
(i.e. building) architects; investigates the nature of design; of systems
and their components; analyzes the notions of in- & formality; etc.. It

is a thought provoking paper which, in very relevant terms, is a con=
tribution towards the philosophy- and the theory of science of computer
science and software engineering. Awareness of the manyv points brought

up by Zemanek should lead to better suited, more appropriatelv pronortioned

systems serving satisfied users.

STOYs paper on the "FOUNDATIONS OF DENOTATIONAL SEMANTICS" opens the part
on constructive definition methods. It provides an elementary introduction
to the mathematical theory underlying such constructive definition methods,
& thus, in particular, the papers by Jones and Bjdrner. The papers of
Park and Plotkin are more advanced treatises, extending & applyina these
foundations in the search for answers to and characterizations of crucial
notions in non-deterministic & parallel programs. Stoys paper also discus=
ses techniques for reasoning about denotational semantics definitions, and
for modelling GOTOs via the technique of so-called continuations. A section
of Jones' paper ('Escape Mechanisms') and Bjdrners 2nd paper (numbered:5)
deals with another way of modelling GOTOs - the so-called exit-mechanism.
Bjgrners paper (no.5) also combines exit & continuation modelling tech=

niques.

JONESs paper is an introduction to techniques, and a notation, for "MODEL=
LING PROGRAMMING LANGUAGE CONCEPTS". The paper unfolds the notation and
techniques required, by covering concepts in a stepwise, first orthogonal,
subsequently combined fashion.

BJPRNERs paper on "FORMALIZATION OF. DATA BASE MODELS" provides an alter=
native introduction, but now to techniques for modelling Data Base con=
cepts. Not that there is any significant difference! But the audience
might be different. Jones' paper emphasizes understanding the modelling
techniques and motivates (desired properties of) the notational constructs.
Bjgrners paper emphasizes the application of these techniques to other
than the 'classical' area (of programming languages). Jones' paper, in

a sense, assumes some familiarity of the exemplified (source) language

constructs; while Bjgrners paper can be read as an alternative intro=



IX

duction to Data Base concepts for persons not familiar with these, and

as an introduction to modelling techniques for Data Base professionals.

BJPRNERs paper on "EXPERIMENTS IN BLOCK-STRUCTURED GOTO LANGUAGE MODEL=
LING: EXITS VERSUS CONTINUATIONS" is a mere exercise in expressing GOTO
semantics. It starts with the so-called exit-based modelling techniques
motivated in Jones' paper. It then exemplifies 'corresponding' continu=

ation-based models; and finally 'merges' these styles!

Summarizing the papers by STOY, JONES and BJ@RNER, we can say that with
this volume two prominent variations on the theme of expressing mathema=
tical semantics has been brought together: The VDM (Vienna Development
Method) and the Oxford Styles of Denotational Semantics. Stoys paper
clearly points out some differences, but is otherwise a contribution to
a unified understanding of their foundations.

The mostly theoretical paper by ZILLES, "AN INTRODUCTION TO DATA ALGEBRA",
opens the part on Algebraic Semantics. It provides an advanced level in=
troduction to the mathematics underlying algebraic presentations of ab=
stract data types. It is a long expected paper from one of the first re=

searchers of this most fascinating and booming area.

DAHLs paper, "TIME SEQUENCES AS A TOOL FOR DESCRIBING PROGRAM BEHAVIOUR",
explores the (time) sequence concept of e.g. programming languages, u=
sing techniques akin to those treated by Zilles. The aim is to provide

a "tool kit" for speaking about 'operatcrs, functions and predicates

on sequences', aiding practicing programmers in program specification,
mechanization and proofs. Use of the established tools are then demon=
strated by applications to specification & proofs concerning semaphores,

mutual exlusion, deadlock, and the classical readers/writers problem.

"THE SEMANTICS OF CLEAR, A SPECIFICATION LANGUAGE", by BURSTALL & GOGUEN,
defines a basically algebraic specification language, CLEAR, CLEAR permits
the configurated, bottom-up, as well as the hierarchical, top-down, con=
struction of abstract models, put together, respectively derived from
models of constituent, respectively overall concepts. CLEAR is here de=
fined using 'a blend of denotational semantics with categorical ideas'.

DOMOLKIs paper, "AN EXAMPLE OF HIERARCHICAL PROGRAM SPECIFICATION", ap=

plies ideas of CLEAR to the development of a program: specification,
realization and correctness proofs.



"MORULAR PROGRAM CONSTRUCTION USING ABSTRACTIONS", by LISKOV, 'presents
a programming method in which modular decomposition is based on recogni=
tion of useful abstractions'. The paper is structured around a very in=

structive specification & implementation example.

LUCAS's paper "ON THE STRUCTURE OF APPLICATION PROGRAMS" is concerned
with the 'parameterization of programs with respect to factual inform=
ation'. It reports on 'software techniques which can be expected to fa=
cilitate programming and maintenance of commercial applications'. The
paper also 'sheds light on the role of formalization, and the rdles and

proper place of abstract data types'.

The joint paper by GERSTMANN & OLLONGREN has been included in this volume
since it attempts to analyze, from one viewpoint, basic notions of the
VDL-, the VDM- and the Algebraic Schools of Software Specifications.
The editor would here like to take the opportunity to warn the reader of a pos=
sible source of confusion. VDL is not VDM! The former stands for the notation
language used for the operational semantics definitions of the 1960s. The lat=
ter acronym for a whole development method starting with denotational semantics
definitions. VDL reads: Vienna Definition Language. VDM reads: Vienna Development

Method. The notational system, or the semantics definition meta-language of VDM
has been referred to by the acronym: META-IV.

'COSY' is a language for the "DESIGN & ANALYSIS OF iIGHLY PARALLEL & DI=

STRIBUTED SYSTEMS". It is based on Petri-net like concepts, and is derived
from regular expressions. In their paper, LAUER, SHIELDS & BEST, introdu=
ces the 'COSY' notation (Lauer), gives the net semantics of 'COSY' (Best),

and presents firing sequence- and adequacy properties of 'COSY' (Shields).

The last two technical papers, by Park and Plotkin, focuses on very sne=
cific, mathematical problems of dealing with parallellism and non-deter=

minism.

PARK applies the relational semantics variant of denotational semantics
in his paper "ON THE SEMANTICS OF FAIR PARALLELLISM". In it, he analyzes
fairness, or finite delay properties of processes, and 'unbounded, but
finite', and 'potentially infinite' attributes of parallel systems speci=

fications.
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Abstract (Machine, Abstract Operational) Non-deterministic State Trans=
formation Semantics explications of "DIJKSTRAS PREDICATE TRANSFORMERS"
have been provided by e.g. de Roever, de Bakker, Wand and Back. PLOTKINs
paper, whose title finishes with: "& SMYTHS POWER DOMAINS", 'regards this
by showing homo- and isomorhisms from the state transformation view to

the predicate transformer view!

As a prerequisite for more fully enjoving the closing "BANQUET TALK"
paper by ZEMANEK, the reader should be informed that (i) the above-men=
tioned winter school lectures took place in auditorium 81 of the Techni=
cal University of Denmark, and (ii) that "only" 50, out of a total of
more than 130 participants ('students', workshoppers and lecturers)

went to a mid-course Royal Danish Ballet evening which, in addition to
classical, retrospective, Danish Bournonville ballet, also featured the

more abstract 'Serenade' ballet by Balanchine.

CLOSING REMARKS

The 1979 Copenhagen Winter School on Abstract Software Specifications

had a final panel session of some 60 minutes duration. The editor regrets
being unable, at this time, to include an edited transcript of that most
clarifying and concluding event. He does hope, however, some day, to be

able to furnish such a written record; and invites readers to inquire.

At the banquet, where Professors Dahl and Naur entertained the more than
110 diners with several most enjoyable pieces of Bach (Naur: flute,
Dahl: a somewhat out of tune piano), participants had contributed to

a Winter School Song book. The editor also regrets to be likewise unable
to provide this as an apppendix to this volume. Since he varticularly
enjoyed the personal creations of Richard L.Wexelblat (of UNIVAC, Penn.,
USA), readers might likewise persuade the editor to nrovide a conv of
that songbook.

ines Bjgrner
Holte, Laster 1980
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INTRODUCTION

This is not a paper like the other papers of this winterschool. Its
intent is neither to teach a formal structure nor to give any lemmas or
proofs. Its aim is to make you, after all you have heard during these
two weeks, think of the purpose of abstract specification, to reconsider,
to contemplate the wonderful tools you have been confronted with - and
their use in the world. Which is a world of users, a world of people who

are very far from the abstraction we have cultivated.

Our computer is a great thing, as a device and as a mental concept. It

is so incredibly flexible, it can be made to do everything we want. But
actually nothing in this technology is there for itself. [t all has a
practical purpose, it all is here for service. It seems appropriate to
call this device computer. Because it shares with mathematics the property
of being at the same time the queen of science and technology and the most

humble servant.

We have developed our creation for more than 25 years - and what a world of
posssibilities, ef mechanisms - concrete and abstract - and of applications
has been added! We could be very proud of our achievements, did not there
arise the disquieting question: do we indeed master what we have got?

And this question has very many meanings - of which | will select only one:
do we master the design of our structures, hardware, software and appli-
cations? And | will ask it in a slightly different form: what makes a

design a good design?

The answer cannot be an algorithm and there is no intention to develop a
measure for quality or beauty. Design, in contrast to mathematical theories
and defined measurement, happens in a world of unremovable contradictions.
The engineer is supposed to make use of applicable theories and available
measurements - but his strength is where the parts covered by theories and
measurements have their rough edges against each other, where satisfying

the one means offending the other. In this situation, the engineer applies

his ability to find the compromise, to bring an entity to work in spite of



unresolved theoretical contradictions, to get the thing produced at accept-
able costs and delivered at the promised date. |If | have here properly des-
cribed the task of an engineer: s it not completely clear that software
design is an engineering activity with mathematics and measurement as
auxiliary tools? But then it is evident that there has not been done enough

to cultivate the engineering character of software technology.

The keyword which has triggered my thoughts and my research work is
computer architecture, a term which is now used very frequently. The goal
of my research and the intention of this paper are to clarify the meaning

of this term.



1. THE ORIGIN OF COMPUTER ARCHITECTURE

Both the term computer architecture and the idea of architectural design
were used, as far as | have found out, for the first time in 1962 by Fred
P. Brooks Jr. for his contribution to the book describing the development
of the IBM-Computer STRETCH, which contribution has the title Architectural
Philosophy [1]. This paper contains a definition which should have been

generally accepted:

Computer architecture, like any other architecture, is the art of
determining the needs of the user of a structure and then designing
is to meet those needs as effectively as possible within the economic

and technological constraints.

The spirit of this paper, the whole book and the development of STRETCH

were leading up to a revolution in computer design - to the development of
the IBM System/360. |Its three architects, Fred Brooks, Gerrit Blaauw and
Gene Amdahl, not only for the first time conceived a full spectrum of
computers - from 360/20 to 360/95 - but, moreover, the spectrum was a family
of models derived from a common concept, so that the design achieved what

architecture should achieve: a style.

In their description of the architecture, however, the definition of archi-

tecture is worded already a bit differently [2]:

The term 'architecture' is used here to describe the attributes

of a system as seen by the programmer, i.e. the conceptual structure
and functional behaviour, as distinet from the organization of the
data flow and controls, the logical design, and the physical implemen—

tation.

This sounds as if the authors had anticipated what would happen and tried
to inhibit it: the term architecture has, since then, lost its precise and
obliging meaning, and today it is almost as broad in its application as the

term structure. Authors do use the term architecture when they mean



