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PREFACE

Since its beginning in 1969 the British Combinatorial Conference has grown
into an established international meeting. This year the twelfth conference is
being held in Norwich under the auspices of the School of Mathematics at
the University of East Anglia. Participants come from a great number of
countries worldwide and represent a multitude of interests in combinatorial
theory. ‘

This volume contains the contributions of the principal speakers.They were
invited to prepare a survey paper for this book and to deliver a lecture in
an area of their expertise. In this way it is hoped to make available a
valuable source of reference to the current state of art in combinatorics. The
speakers have produced their papers well in advance so that they are now all
available in time for the conference.

This book has been produced to a tight schedule. I am grateful to the authors
for their cooperation and to the referees for their assistance and comments
about the papers. The British Combinatorial Conference is largely self-
financing but on behalf of the committee I would like to thank the London
Mathematical Society, Norwich Union and Peat Marwick McLintock for
their financial support.

Johannes Siemons
Norwich April 1989
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On the theory of designs

E. F. AssMmus, JR.

INTRODUCTION

Several years ago I was asked a seemingly innocuous question: What are the
minimal-weight vectors of the code of an affine plane? 1 thought the answer would
be that they were, just as in the projective case, simply the scalar multiples of the
lines; indeed, that may be true and the question is still open. I managed to prove
this (for arbitrary affine planes) only for those of prime order.

The question is deeper than it at first seems. If, for example, one could prove that
the minimal-weight vectors of the code of an arbitrary affine plane were simply the
scalar multiples of the lines, one would have a proof of the fact [15] that a projective
plane of order ten has no ovals; indeed, one would prove that no projective plane
of order congruent to two modulo four, except the Fano plane, could have an oval.
(The minimal-weight vectors of the code of a desarguesian affine plane are the
scalar multiples of the lines of the plane but the only known proof relies heavily on
algebraic coding theory.)

These considerations led J. D. Key (who asked the original question) and me to
what seems to be a fruitful approach to affine and projective planes and to what we
hope will be a fruitful approach to the theory of designs. The purpose of this paper
is to explain these matters. Much of the work we have done has already appeared
and thus the present paper will rely heavily on four joint papers : Arcs and ovals
in hermitian and Ree unitals, Affine and projective planes, Baer subplanes, ovals
and unitals, and Translation planes and derivation sets. A brief summary of some
of the material contained in these four papers can be found in [1].

In the first section the original definition of a symmetric design is given, the con-
gruence constraint explained, and some remarks on the layout of tables of designs
made. (These remarks are expanded on in the Appendix.) The second section
defines the hull of a design and the third explains the use of this notion in the in-
vestigation of affine planes. The Hamada-Sachar Conjecture and translation planes
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are then discussed and, following that, derivations are put into the current setting.

Finally a few concluding remarks are made.
THE CONGRUENCE CONDITION FOR A SYMMETRIC DESIGN

Tables of possible parameter sets of designs, together with a token design when
existence is known, appear from time to time. The layout of these tables usually
takes a form more suitable for the design of experiments than for theoretical anal-
ysis. Although I have no intention of producing yet another table I do want to
suggest a different layout that may throw more light on the theoretical aspects of
design theory. I do this here only for so-called symmetric designs but the Appendix
shows how to carry out a similar approach for more general designs.

A symmetric (v, k, \)-design, where v, k, and ) are integers with 1 < k < v—1,
consists of two disjoint v-sets, P and B, called points and blocks, with a regular,
bipartite graph of valency k imposed, P and B being the two parts. The graph
satisfies the further condition that given any two distinct points there are precisely
A paths of length two from one point to the other. It follows that the same property
holds for any two distinct blocks (hence the unfortunate term “symmetric design”).
Thus, one has no reason to call the elements of P points and those of B blocks for
it might as well have been the reverse. Moreover, the complementary bipartite
graph (eliminate the given edges (P, B) and introduce, instead, those (Q, C) which

weren’t originally edges) is also a symmetric design—with parameters

(v,0— &, %(k N (k=-A-1)).

So symmetric designs come in pairs, a design and its complement, and in fours if
one wishes (as I do) to distinguish (P, B) from (B, P), its dual.

Given a (v, k, \) design on (P, B) one can associate to each B € B the k-subset of
P given by {P € P|(P, B) is an edge} and these v k-subsets of P are (again) called
blocks. Because of the path condition, any two blocks meet in A points and any
two points are contained in A blocks. Moreover, the path condition immediately
implies that

Alv—1)=k(k-1), *

the congruence condition relating the parameters.

The most important parameter of a symmetric design has not yet appeared. It
is the order, namely k — ), of the design and it is denoted by n. Observe that *
implies that n(n — 1), clearly congruent to k(k — 1) modulo A, is congruent to 0

modulo A and, writing n(n — 1) = Au, the parameters are

2n+ A+ p,n+ A, 0),
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with the parameters of the complementary design being
2n+ A+ pyn+ p,pm).
This suggests listing the possible parameter sets for symmetric designs via the order

n, using the divisors, A, of n(n—1) in turn, possibly eliminating the complementary
divisor. Here’s how such a table would begin:

Order Parameter sets
2 (7,3,1), (7,4, 2)
3 (13, 4, 1), (13, 9, 6)
(11, 5, 2), (11, 6, 3)
4 (21, 5, 1), (21, 16, 12)

(16, 6, 2), (16, 10, 6)
(15, 7, 3), (15, 8, 4)

For each order the parameters of the possible projective plane and its complement
appear first and the parameters of the Hadamard designs (i.e., designs with A =
n—1 or n) last. Moreover, the organization suggested permits one easily to examine
the parameter sets for any particular order. Order twelve is interesting. Here,

omitting complements, one gets

(157,13,1),
(92,14,2),
(71,15,3),
(61,16,4),
(52,18,6),
(47,23,11).

The Bruck-Ryser-Chowla Theorem rules out A = 2 and A = 6, but Beker and
Haemers (7] have constructed a design with A = 3 and van Trung [18] one with
A = 4. Of course, the Hadamard design exists (presumably, an enormous number)
and hence only the plane of order twelve is in doubt.

Were one to list parameter sets by increasing order and sieve with the Bruck-
Ryser-Chowla Theorem, then (157,13,1) would be only the second question mark,
the first being the plane of order ten. Put another way, all symmetric designs
that could exist do exist through order twelve, excepting, possibly, the projective
planes of orders ten and twelve. It has been recently reported that the computer
calculation undertaken by Clement Lam et al has been completed and that the
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result is that there is no projective plane of order ten; the other two symmetric
designs of order ten that could exist, do exist; they are the Hadamard design and
the design with parameters (41,16,6).

The designs of orders two and three are unique and the precise number of designs
is known through order six. Roughly speaking, for a given order, existence gets
easier and more designs exist (if they can at all) as A grows (up to, of course, n—1).
For order four, for example, the plane is unique, there are three biplanes, and five
triplanes. And, more generally, it is conjectured that there are Hadamard designs
for every possible order.

THE CODE AND THE HULL OF A DESIGN

To bring algebraic coding theory into play notational compromises must be made.
The concern is with arbitrary designs (for a definition see the Appendix): |P|, the
cardinality of the point set, will be denoted by N (rather than v) and the cardinality
of a block will, generally, be denoted by d (rather than k). The number of blocks
through two points— A— and the difference between the number of blocks through
one point and the number through two—the order n of the design—will be denoted
in the standard way.

So, given D = (P, B), a design of order n, and any field F, let F” be the vector
space of all functions from P to F with, of course, point-wise addition and scalar
multiplication. For v € F”, denote the value of v at the point P by vy and, for
X a subset of P, denote by v* the characteristic function of X. Thus v} =1 if
P € X and 0 otherwise.

Now denote by

Cr(D)
the subspace of F” generated by all v where B is a block of D and call this
subspace the code of D over F. If the dimension of Cr (D) is k, then it is an
(N, k)-code in the language of algebraic coding theory, N being the length of the
code.

Moreover, its minimum weight is at most d. Here, the weight of a vector v € F” |
wgt(v), is [{P € P|vp # O}| or, in other words, the cardinality of the support of
the function v. The minimum wesight of any subspace C of F” is

Min{wgt(c)|c € C,c # 0}.

Equip F” with the standard inner product: [v,w] = ). vowg. For C a subspace
Qer

of F”, C* denotes the subspace orthogonal to C :
Ct ={veF’|v,c]=0forall c € C}.
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Finally, set
HU”F (D) = Cp' (D) n Cp (D)J.

and call this subspace the hull of D over F.

EXAMPLE: If D = AG;(F,), the affine plane of order four, then Hullg, (D) is the
(16,5) extended binary Reed-Muller code and Hullz (D) = {0} for any field F of
characteristic other than two.

To obtain non-trivial hulls one must choose fields with characteristic dividing n
[17]. The choice will always be F = F,, p a prime; Hullp (D) will be denoted by
Hull, (D) and referred to as the hull at p of D. Similarly, C, (D) will replace Cr (D)
and the subscript will be omitted if p is clear from the context.

If o is any permutation of P (i.e. if o € Sym(P)) then o acts naturally on F” via

(vo)r = vo(p)-

(Observe that o acts on P on the left and on F” on the right.) Clearly, if o is an
automorphism of D (which means that o(B) is a block whenever B is) then o leaves
the subspace C(D) invariant. It can very easily happen—and in non-trivial ways—
that the subgroup of Sym(P) leaving C(D) invariant is larger than the subgroup
leaving D invariant. Moreover, the subgroup leaving the hull invariant may be still
larger.

EXAMPLE: If ¥ is the unital on 28 points given by the unitary group U; (F3) then
the symplectic group Spe (F;) leaves C;(¥) invariant. If R is the Ree unital on 28
points the group leaving C;(R) invariant is the small Ree group PI'Ly(Fg) while

the group leaving the hull invariant is again the symplectic group.

This example was decisive in the genesis of the notion of the hull of a design, for
these two unitals have isomorphic hulls despite the fact that they are not isomorphic
as designs. See (2] for the details.

One of the reasons that it was not previously observed that the hull of a design
is as important as the code of a design was the fact that, for symmetric designs,
the hull is intimately related to the code. We end this section with a result that
substantiates this assertion.

THEOREM 1. Let D be a symmetric design and D,,,,, the complementary design.
Let p be a prime dividing n, their common order. Then, if p does not divide d,
the block size of D, Hull, (D) = C,(D:omp), it is of codimension one in C, (D), and
it consists of those vectors in C,(D) with ) vp = 0. If p does divide d, then

C,(D) C C,(D)* and Hull,(D) = C,(D).

PROOF: Let D’s parameters be (N,d,A). Nowd = A +n, N =2n+ A+ pu
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where n(n — 1) = Ap and D.omp’s parameters are (N,n + pu,u). Clearly, if p
does not divide d, it does not divide A and, since it must divide n(n — 1), it
must divide u. Hence p divides n + u, the block size of D,,pn,. This shows that
C(D.omp) C€ C(Deomp)* - Reversing the rdles of D,,,n, and D yields the last assertion

of the Theorem. Continuing the argument, we now have, since p does not divide

d, that
d! E v? =7,
Bes
where J is the all-one vector. It follows, since J € C(D), that C(D,,..,) C C(D).
Moreover, C(D) = C(D.omp) ® F,J, the sum being direct because [J,J] = N, a
non-zero element of F,. Thus C(Dcomp) is of codimension one in C(D) and, because
>~ vp =0 whenever v € C(Deomp),

PeP
C(Peomp) ={veEC(D)| X vp =0} = Hull(D).
PEP
REMARKS:
(1) Since (J —v®) — (J — v°®) = v° — v7 it follows easily, when p does not
divide d, that Hull(D) is generated by the vectors of the form v¢ — v?, B
and C being blocks of D.
(2) It can happen that p divides both A and u and hence all the parameters.
(This occurs, for example, for the (16,6,2) designs.) In this case it is easy
to see that C(D) = C(D,omp) if and only if J is in both codes and then

Hull(D) = C(D) = C(Deomp) = Hull(Dyromp)-

If J is in neither code then C(D) N C(D.omp) is of codimension one in the
code of each design. Moreover, this intersection is generated by vectors of
the form v® — v® where B and C are both blocks of D (or both blocks of
D.omp)- I do not have an example of this phenomenon. It would be very
interesting to know—even for p = 2—precisely when J is in the code of the
design.For example, were one to show that that J were in the code of a
design with parameters (2?™,2m~! —2m~1 22m-2 _2m-1) ap4 dimension
2m + 2 one would have the following improvement of a result of Dillon and
Schatz [11, Corollary 1].

A symmetric design has parameters (2?™,2?™ -1 —2m~1 22m-2 _ gm-1)
and code of dimension 2m+2 if and only if it can be obtained from the Reed-
Muller code of length 2*™ and a difference set in the elementary abelian
2-group of order 2°™ as the vectors of minimal weight in the code spanned
by the Reed-Muller code and the difference set.
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Were this result true it would characterize the designs of minimal 2-rank
with the given parameters and it could be viewed as a theorem of Hamada-
type (see Theorem 5 below) but one should be aware of the fact [12] that
the number of such designs goes to infinity with m —in contrast with planes
where, conjecturally, the design of minimum rank is unique.

(3) The Theorem gives the relationship between the codes of a symmetric de-
sign and its complement. The relationship between the codes of a symmetric
design and its dual has not been thoroughly investigated; obviously the di-
mensions are equal, but, beyond that, only fragmentary results are known
at present. An interesting example of what can happen is given by the two
triplanes of order four which are duals of one another: the weight distri-
butions of the two codes are identical but they are not isomorphic (see the

discussion preceding Theorem 4).
THE HULL OF AN AFFINE PLANE

The importance of the hull in design theory is best illustrated when the design
is an affine plane. Given such a plane 7 it determines a unique projective plane
IT and a line of that plane L. called the line at infinity. Both 7 and IT have the

same order, n say, and, as designs, their parameters are

(n*,n,1) and (> + n+1,n+1,1).

If the point sets of IT and 7 are P and A, respectively, then A is simply P \ L.
There is a natural linear transformation from F” to F4 given by simply restricting
the functions on P to A. This transformation relates the codes, the hulls, and their
orthogonals. Precisely, we have the following result:

PROPOSITION 1. Let m be an affine plane of order n and II its projective com-
pletion with L, the line at infinity. Then, for a prime p dividing n, both C,(r)
and Hull,(m)* are, respectively, the images of C,(II) and Hull,(IT)* under
the natural transformation of F” onto F*. Further, Hull,(x) is the image of the
subcode {¢ € Hull,(II) | ¢q = 0 for Q on L, }, dim Hull,(x) = dim C,(7) — n,
and Hull, (r) is generated by all v* —v™ where £ and m are two parallel lines of .

A proof of this result can be found in [3|. One important point here is that the
orthogonal of the hull of II has minimum weight n + 1 and the minimal-weight
vectors are all of the form av® where L is a line of IT and « a non-zero element
of F,, but the orthogonal of the hull of = (although it has minimum weight n, as
expected) has minimal-weight vectors that are not necessarily, in fact not usually,
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of the form av® where £ is a line of 7. They are of the form avX , however, where X
sometimes has a nice geometric interpretation. Vectors of the form av* are called
constant vectors and are referred to, by an abuse of language, as scalar multiples
of X.

A second important point is the fact that, of the codes involved, the affine hull
is the one of smallest dimension and it is generated by the differences of parallel
lines and hence easily computable. The nature of its minimal-weight vectors is of
crucial importance: for example, were it always true that the minimum weight of
the affine hull were 2n and that the minimal-weight vectors were precisely the scalar
multiples of the above generators, then one would recover the projective plane from
the affine hull for p odd and the theory we are sketching would probably be useless.
For desarguesian affine (or projective) planes it is true that the minimum weight of
the hull is 2n and that there are no unexpected minimal-weight vectors; moreover,
to establish these results one makes heavy use of algebraic coding theory. More
generally, the hull of an affine translation plane has minimum weight 2n (a fact
that follows easily from Proposition 3 below) but it is not, in general, true that
there are only the expected minimal-weight vectors; for example, the hull of the
non-desarguesian affine translation plane of order nine has unexpected minimal-
weight vectors and the plane cannot be recovered from the hull. It is to be noted
that an arbitrary affine plane of prime order can be recovered from its hull; perhaps
this could be viewed as evidence that such a plane is desarguesian although my
own view is that it is too early to speculate. The following result, whose proof can
be found in [3], details part of the story:

THEOREM 2. Let 7 be an affine plane of order n and p a prime dividing n. Then
the minimum weight of Hull, (7)* is n and all minimal-weight vectors are constant.

Moreover,

(1) If n = p, then the minimal-weight vectors of Hull,(w)* are precisely the
scalar multiples of the lines of # and the hull uniquely determines the plane.
(2) Ifn = p?, then the minimal-weight vectors of Hull,(r)* are scalar multiples

of either lines or Baer subplanes of .

In the desarguesian case the minimal-weight vectors of C, (AG; (F,)), where ¢ = p®,
are scalar multiples of the lines of AG,(F,) and the minimal-weight vectors of the
hull are precisely the scalar multiples of vectors of the form v¢® — v™ where £ and

m are two parallel lines.

In general one cannot say a great deal about the dimension of the code of an
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affine plane, but the dimension is known if the plane is desarguesian: if ¢ = p°%, pa

prime, then the dimension of the code of the desarguesian affine plane of order q is

(3
2 .
A conjecture, due independently to Hamada and Sachar, states that the code of
any affine plane of order ¢ has at least this dimension, with equality only if it ss
the desarguesian plane. The next Section will discuss this matter further.

What one can say in general is that whenever p but not p? divides the order
of the plane, 7 say, then dim C, () is ;n(n + 1) and hence, by Proposition 1
and Theorem 2, the classification of planes of prime order p is tantamount to the

classification of certain [p?, 7 p(p — 1)]-codes.

THE HAMADA-SACHAR CONJECTURE AND TRANSLATION PLANES

Let 7 be an affine plane of order n.and H its hull at p for some prime p dividing
n. Then, as indicated above, H' usually contains many more minimal-weight
vectors than simply the scalar multiples of lines. Thus if n = p?, we have the Baer
subplanes appearing and, if n is even and p = 2, the hyperbolic ovals. (A hyperbolic
oval of 7 is a set of n + 2 points with two at infinity and no three collinear.) Many
other configurations arise as well (see [5]).

The collection of supports of these constant vectors (the support of a vector v
is {P € Plvp # 0}) may very well contain affine planes other than the one with
which one started. For example, Hull, (AG, (F,)) is the (16,5) binary Reed-Muller
code with weight distribution 1+30X® + X'® and Hull,(AG; (F,))* is the (16,11)
binary extended Hamming code with 140 weight-4 vectors. These vectors form a
Steiner quadruple system but, as a two-design, they contain 112 subdesigns which
are affine planes of order four, all of which have the same hull. The 20 vectors
forming an affine plane of order four having been chosen, the remaining 120 are
Baer subplanes of that plane. Of course, no new affine planes occur in this simple
example, but in the next possible case, order nine, interesting things do occur:
there are four projective planes of order nine and seven affine planes of order nine;
the two translation planes of order nine each have an affine part that yields the
other in the way indicated—and the other two projective planes do likewise.

In order to discover and perhaps classify planes of order n one should have at
one’s disposal linear codes of length N = n? over F, (where p divides n). The
minimum weight should be n, and there must be a sufficiently rich structue of
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minimal-weight vectors to accommodate C,(7)’s for various affine planes ». Of
course, given an affine plane r, B = Hull,(r)"* is such a code. Fortunately, for n =
p® there are very standard choices for such codes B and, more importantly, these
codes have been intensively studied by algebraic coding theorists, in particular, by
Philippe Delsarte [8] and Delsarte et al [9]. The results contained in these two
papers were crucial to the development of the ideas here presented. In particular,
without the dimensions of what are here called the standard chosces no bounds on
the ranks of the incidence matrices of translations planes would be available and,
without the results on the minimal-weight vectors of these standard choices, the
notion of tame would not have surfaced and the weak version of Hamada-Sachar
would not have been proved. These papers are rather difficult to read—especially
for finite geometers; a brief outline of the results one needs is contained in Appendix
I of [3].

In order to properly discuss these linear codes and the affine planes connected
with them it is best to make a few definitions.

DEFINITION 1. Let B be an arbitrary code of length n? over F, (where p divides

n) with minimum weight n.

(1) An affine plane 7 of order n is said to be contained in B if C,(7) is code
isomorphic to a subcode of B.

(2) An affine plane 7 of order n is said to be linear over B if C,(r) is code
isomorphic to a subcode C of B where B C C + C*+.

EXAMPLE: If one takes the Veblen-Wedderburn plane ¥ of order nine and a “real”
line R and sets ¥y = U#, the affine plane with R its line at infinity, then the vectors

in Hull($)* of the form v5, where S is a line or Baer subplane of 1, generate

L
dua

an [81,48] ternary code B over which 1 is linear. Moreover, w = Q1% , is also
linear over B where (1 is the non-desarguesian translation plane of order nine,
Q4ua: its dual, and L a line through the translation point. Both Hull (¢)* and
Hull(w)* are [81,50] ternary codes containing B. They are not code-isomorphic
since Hull()* contains 2 x 306 'minimal-weight vectors while Hull(w)* contains
2 x 522. The 2 x 306 weight-9 vectors are the scalar multiples of the 90 lines and
the 216 Baer subplanes of t; that 1) has 216 Baer subplanes follows from an easy
counting argument and the facts contained in [10]. A similar situation obtains for
w. By properly choosing subcodes of B isomorphic to the codes of ¥ and w one

gets the following Hasse diagram.
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/ F:l
Huu(‘I’R ).L \ Hu'"(n:ual)l
7
C(¥") +C(uar)*
—— ~
C(‘I’R) C(nct;ual)
e -

c(¥*) nl C(0%.a1)

/B\

Hull(TF) Hull(0f, .,

The code B of the above example is not a standard choice and we turn now to
such codes. Set ¢ = p® and let F be an arbitrary subfield of F,. Let V be a 2-
dimensional vector space over F, and consider V as a vector space over F. It will,
of course, have dimension 2[F, : F|, where [K : F| denotes the degree of K over F.
Set m = [F, : F| and consider the collection, Lg, of all m-dimensional subspaces
over F and their translates under the addition in V, i.e., all the m-dimensional
cosets in the affine space of V, AG,,, (F).

Now FV is a ¢>-dimensional vector space over F,. Each X € L is a subset of V
of cardinality ¢ and defines a vector v* of F}, . Let B(F,|F) be the subspace of F}/
spanned by {v* | X € Ly }. B(F,|F) is a code of length ¢* over F, with minimum
weight g, its minimal-weight vectors are scalar multiples of the vectors v*, and
its dimension is computable. Let E(F,|F) be the subcode of B(F,|F) generated

X — v¥ where X and Y are translates of the same m-

by vectors of the form v
dimensional subspace of V, viewed as a vector space over F. Once again, the
minimal-weight vectors are scalar multiples of these generators and the dimension
is computable.

If F and K are two subfields of F,, ¢ = p®, with F C K, then clearly, B(F,|K) C
B(F,|F). At one extreme, F = F,, Ly consists of the lines of the affine plane
AG,(F,) and B(F,|F,) = C,(AG,(F,)). At the other extreme, F = F,, Ly
consists of all s-dimensional subspace and their translates, where V is viewed as a
2s-dimensional vector space over F,,.

The mapping F — B(F,|F) establishes a Galois correspondence between the
subfields of F, and certain subcodes of F,‘,'; moreover, this correspondence neatly

places the translation planes in their proper place according to the size of their

11



