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Preface

This is the first volume of Multiphase Science and Technology, a new international
series of books intended to fill an existing gap and bring together materials from different
fields such as nuclear energy, chemical processing, petroleum, meteorology, civil engineer-
ing, and energetics. The objectives of the series are to provide authoritative overviews of
important areas in multiphase systems. The chapters published in the series are systematic
and tutorial presentations of the state of knowledge in various areas. The editors hope
that the nonspecialist reader can gain an up-to-date idea of the present stage of develop-

. ment in a given area.

Chapter 1 deals with the spray cooling of hot surfaces and is coauthored by Professor
Léon Bolle and Doctor Jean-Claude Moureau. Professor L. Bolle has been with the
Catholic University of Louvain, Belgium, since 1972 and is currently working on indus-
trial energetics. A former student of Professor L. Bolle, Doctor J. C. Moureau received
his doctorate in applied sciences in 1978 and is now in charge of nuclear safety at the
Belgian Ministry of Health and Welfare.

The behavior of a droplet in a carrier stream is then examined in Chapter 2, by
Doctor George Gyarmathy, Manager of the Turbomachinery R & D laboratories in the
Brown Boveri Company, Baden, Switzerland. Doctor G. Gyarmathy has been involved
in the theory of wet steam turbine and condensation for the past twenty years and is
a recognized expert in these areas.

Chapter 3 is devoted to boiling phenomena in multicomponent fluids. Doctor
R. A. W. Shock, the author, works for Heat Transfer and Fluid Flow Service at Harwell,
UK. He is a specialist in the design of vertical thermosiphon reboilers and in crystalliza-
tion.

Wall nucleation depends upon contact angles and wettability phenomena, the sub-
ject reviewed by Doctor Jacques Chappuis, Ecole Centrale de Lyon, France, in Chapter
4. Doctor J. Chappuis is currently on a sabbatical year at the Department of Mechanical

- Engineering of the University of Toronto.

These four chapters constitute the first volume of Multiphase Science and Tech-
nology. We would like to thank all the authors and reviewers for their outstanding contri-
butions. And we would like also to express our special indebtedness to Mrs. Pauline
Wilkes, who did a careful and patient job in typing this book.

The Editors
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Chapter 1

Spray Cooling of Hot
Surfaces

L. Bolle and J. C. Moureau
Universite Catholigue de Louvain, Belgium

“

I INTRODUCTION
1.1 Main Uses of Liquid Sprays

A dispersion of small liquid drops in a continuous gaseous
phase is generally called a liquid spray. This dispersion has also
received various other names according to the dimensions of the
droplets produced. Some authors, such as Fortier (1967), distin-
guish between mist and_cloud. A mist is a dispersion including
drops smaller than 1071 um, whereas a cloud refers to a dispersion
of larger particles. Others call an aerosol a dispersion of
submicrometer particles and a mist much larger drops, for example,
drops with a diameter of 150 pym. It is therefore necessary to
make clear that, in this chapter, we consider as liquid spray a
dispersion of liquid particles with diameters ranging from about
*20 uym up to about 1 mm.

A process of disintegration of the liquid phase induces an
increase in the interfacial surface area between the liquid and
the medium into which it penetrates. This increase can be quite
important: in some instances, the initial interfacial surface
area can become several hundred times larger. Atomization can
thus intensify the physical or chemical processes occurring at
the interface, that is, mass, momentum, and energy transfers.
This advantage is used in several industrial applications.

Liquid spraying is common in various fields: air condition-
ing and ventilation, gas absorption, washing and cleaning, fire
protection, coating of surfaces, spray drying, combustion, cooling
of hot gases, cooling of hot surfaces. This chapter is devoted
to the study of this last application.

It is in the steel and metal works industry that one finds
the most numerous uses of atomization in order to cool hot walls:
cooling of slabs, rolled products, and cylinders in classical
mills, and cooling of incandescent metal immediately after its
exit from the mould in continuous casting units. In most instances,
the amount of heat to be extracted from the metal is large:
Fig. 1 shows, for the case of continuous casting, the variation
of heat flux density éw in the secondary cooling zone ot a
rectangular slab. i
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Fig. 1. Variation of the heat flux density as a function of
distance to the casting level, according to Weinreich
(1969) .

Let us consider the typical example of the runout table of a
hot strip mill. Between the last finishing stand and the coiling,
cooling can be divided into three zones (Fig. 2):

=
T1
TQ
=
3 T,
L
! L1 1 L2 I L SA‘

Fig. 2. (Cooling zones on the runout table of a hot srip mill.
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1. From the last mill to the beginning of the water cooling, the
metal is in contact with air. Heat transfer is governed
mainly by radiation with the environment, since the strip
temperature is high (800 to 900°C).

2. Spray cooling produces an important drop in temperature along
stretch L,. The liquid aspersion is performed differently on
the upper and lower sides of the strip. Above, water nozzles
are generally mounted along successive rows at a distance of
about 2 m from the strip: below, since the water must flow
between the supporting rolls, the nozzles are placed nearer
and usually have a lower flow rate. What kind of nozzles and
how many should be displayed in order to achieve the desired
cooling? At what pressure should they work? What is the
optimal length L,? To all these questions, the answer given
has sometimes beén too empirical and approximate. Indeed,
the fundamental problem — determination of the heat transfer
coefficient between a hot wall and a water spray — has not
been completely solved.

3. Between the end of the spray cooling and the coiling, the strip
is again in contact mainly with air: again, radiative heat
transfer is predominant.

From a metallurgical viewpoint, the velocity with which heat
is extracted from the metal during water cooling is essential in
order to obtain a good-quality product. It has been shown that,
for low-alloy steels, high strength can be achieved without reduc-
ing ductility or weldability provided that the size of the grains
can be reduced. One of the best ways to reach this goal is to
control cooling during the austenite-ferrite transformation
(Morgan et al., 1965, 1966).

For rolled wire rods, a drastic cooling without quenching is
desirable. Furthermore, when spraying, the surface temperature
risks being considerably lower than that of the center of the rod.
Therefore, in order to avoid superficially quenched structures, one
has to divide the spray cooling zone into several parts separated
by air cooling zones. Indeed, this setup facilitates uniformiza-
tion of the inside temperature of the rod. Figure 3 illustrates
the method for a wire rod with a 5.5 mm diameter. Moreover,
Couvreur (1971) insists on the necessity, in design calculations,
of taking into account a variation of the surface heat transfer
coefficient o with the temperature of the rod. If, instead, one
uses an averaged constant heat transfer coefficient, large
discrepancies can appear. In Fig. 3, one sees a difference of
about 100°C in the rod surface temperature when using constant and
temperature-varying coefficients. This proves the usefulness of
studies aiming to determine the exact parameters influencing heat
transfer in such applications.

In nuclear power plants, spray cooling is one of the safety
systems foreseen in case of accident. Schematically, two tech-
niques exist: top spraying, that is, liquid spray onto the core
from above; and bottom reflooding, that is, immersion from below.
In the latter case, drops can sputter from the upper liquid level
and impinge on hot walls. Many related publications — both
theoretical and experimental — have described the phenomena occurr-
ing in various core configurations and possible incidents.
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Fig. 3. Time evolution of the wire temperature, according to
Couvreur (1971).

Yamanouchi (1968), for instance, has proposed a model for the
evaluation of emergency spray cooling for a postulated loss of
coolant accident (loca) in a boiling-water reactor. This model
has been extended by several authors. Reviews of papers on spray
cooling of light-water reactor cores have been published, among
others, by Sawan and Carbon (1975). Moore et al. (1973) have
studied spray emergency cooling of heavy-water reactors. In many
of these texts, the liquid spray is considered only as a means to
produce a liquid film flowing over the hot wall. It is the heat
transfer between the film and the hot surface that is analyzed in
detail and not the transfer due to the impacts of very many
individual drops. Therefore, we shall not comment on these studies
any further.

Besides the steel-making and nuclear industries, the chemical
industry also uses liquid sprays in order to cool hot surfaces, for
example, in the cooling of hot vessels and tanks.

Moreover, we think that liquid sprays could also be used in
other fields. 1In 1973, Kawazoe and Kumamaru developed a new
technique of spray cooling in order to improve the performance of
the extrusion process of plastic-insulated telephone wires. New
applications of spray cooling of hot surfaces are to be expected.

1.2 Previous Experimental Studies of Spray Cooling

One can distinguish in the literature two types of experi-
mental work: results obtained in laboratories and measurements
performed directly on industrial equipments. Theoretical models
will be discussed later.

1.2.1 Laboratory Measurements

The main results published during the last 12 years are



