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FOREWORD

This is the second volume of the articles submitted by the participants in a
program on Harmonic Analysis held by the Nankai Institute of Mathematics from
March 1 to June 30, 1988. The first volume was a monograph due to Prof. Guy
David entitled ”Wavelets, Calderon-Zygmund Operators and Singular Integrals
on Curves and Surfaces”, which contains a series of lectures given by him in the
Nankai Institute of Mathematics in June, 1988.*

We wish to thank all the participants for their cooperation and those who offered
courses in the March, 1988 as the preliminaries to the graduate students for the
lectures. We are also very thankful to Prof. Rong Wu from Nankai University for
her fine arrangement for this volume. Our thanks are also due to Ms. He Li from

the Nankai Institute of Mathematics for her careful typewriting.

For the editors,

M.T.Cheng
X.W. Zhou
D.G.Deng

April, 1990

*Guy David ” Wavelets and Singular Integrals on Curves and Surfaces”, LNM 1465, 1991



TABLE OF CONTENTS

1. Nankai Lecture in 8-Neumann Problem 1
Der-Chen Chang
2. Duality of H' and BMO on Positively Curved Manifolds and Their Charac-

terizations 23
Chen Jie-Cheng and Luo Cheng

3. Oscillatory Integral with Polynomial Phase 39
Chen Tian-Ping and Zhang De-Zhi

4. On a Generalized Paraproduct Difined by Non-Convolution 46

Deng Dong-Gao and Han Yongsheng
5. H? Boundedness of Calderon-Zygmund Operators for Product Domains 54
Han Yongsheng

6. A, Condition Characterized by Maximal Geometric Mean Operator 68
Hu Wei, Shi Xianliang and Sun Qiyu

7. A Weighted Norm Inequality for Oscillatory Singular Integrals 73
Hu Yue

8. The Nilpotent Lie Group G%=? and a Class of Differential Operators with

Multiple Characteristics 82
Jiang Yapeng and Luo Xuebo

9. Characterization of BMO;? - Functions by Generalized Carleson Measure 84
Li Chun

10. Besov Spaces of Paley-Wiener Type 95
Lin Peng and Peng Li-zhong

11. The Weak HP Spaces on Homogeneous Groups 113
Liu He-ping



Vil

12. Applications of Hormander Multiplier Theorem to Approximation in Real

Hardy Spaces 119
Liu Zhixin and Lu Shanzhen

13. Weighted Norm Inequalities for the Restriction of Fourier Transform to

- sty 130
Lou Hongwei

14. Weighted Sobolev Inequality and Eigenvalue Estimates of Schrodinger Oper-

ator 131
Long Ruilin and Nie Fusheng

15. Convolution Singular Integral Operators on Lipschitz Curves 142
AlAn Mcintosh and Qian Tao
16. Multipliers from L; (G) to a Reflexive Segal Algebra 163

Ouyang Guangzhong

17. Weighted Norm Inequalities for Certain Maximal Operators with Approach

Regions 169
Pan Wenjie

18. The Hausdorff Dimension of a Class of Lacunary Trigonomitric Series = 176
Sun Dao-chun and Wen Zhi-ying

19. Hermitian Nilpotent Lie Groups: Harmonic Analysis as Spectral Theory of

Laplacians 182
Sun Li-min

20. Weak Coupling Asymptotics of Schrodinger Operators with Stark Effect 185
Xue-ping Wang

21. Set of Zeros of Harmonic Functions of Two Variables 196

Wen Zhiying, Wu Liming and Zhang Yiping



22. Ergodic Theorem for the Functions with Uniform Mean 204
Wu Liming
23. On the Structures of Locally Compact Groups Admitting Inner Invariant

Means 208
Chuan-Kuan Yuan

24. Harmonic Boundaries and Poisson Integrals on Symmetric Spaces 217
Zheng Xue An

25. On p-adic Cantor Function 219

Zheng Weixing



Nankai lecture in 9-Neumann problem

DER-CHEN CHANG

Department of Mathematics
The University of Maryland
College Park, Maryland 20742, USA

This article is based on a series of lectures presented by the author at Nankai Institute
of Mathematics from May 16, 1988 to June 8, 1988. The article which follows is an
attempt to give an exposition of some of the recent progress in the 8- Neumann problem:

Given a bounded domain 2 C C"*! with smooth boundary 8} and let f be a (0,1)-
form, find another (0.1)-form u such that

Ou= (08 +3 du=f

—

u € dom(g“), du € dom(d ).

In some respects, this field is not that new since in the early 1960’s the L?-estimates for
the d-Neumann problem were being investigated by Kohn [FoK| and others. However,
for many of the problems in this area that deeply depend on the techniques of Fourier
analysis and the real break through to the finite type domains in C? happened in 1988.

The exposition is divided into two parts. In the first, we introduce the technique
to construct the parametrix of the 9-Neumann problem. For the elliptic part of the
problem we actually construct the kernel to solve the boundary value problem. The
author believes this is the first time that this part of the kernel has been computed
precisely. For the subelliptic part of the problem we construct the parametrix as a
product of couple operators. The solvability of the 8-Neumann problem is equivalent
to the problem of inverting the Calderén operator Ot. We may also consider the 8-
Neumann problem on the complementary domain 2~ = €™\ 1. This problem also
gives rise to a first order pseudo-differential operator which we call 0J”. The miracle is
the following:

O o Ot = —Oy+ first order terms only involves “good” vector fields + zero order

terms.

Hence the inverse of 007 should be ((J;)~! - O~. When n > 2, {1 is strongly pseudo-
convex, we give the parametrix of the 8-Neumann problem. These method based on
the results of Greiner-Stein [GS|, Chang [C], etc. When n = 1, {1 is pseudoconvex but
finite type m, we also give the full parametrix for the 3-Neumann problem which is a
new result obtained by Chang-Nagel-Stain [CNS1] recently.

In the second part of this paper, we discuss the regularity properties for the Neumann
operator, especially the operator of Poisson type. The proof of the theorem involves
lot of techniques about singular integrals, pseudo-differential operators and oscillatory
integrals. The author thinks it is worthwhile to discuss this theorem, and then let the
audience see how real analysis plays the role in several complex variables. The reader
can also read the results in Greiner-Stein (GS|, Phong [P2] and Chang [C].



It gives me a great pleasure to thank Mr. Zhang Wen Ping for preparing the lecture
notes which greatly simplified the task of writing this paper. The author would also
like to thank Professor M.T. Cheng and Professor T.G. Deng, and Nankai Institute of
Mathematics for the very warm hospitality he received.

Much of this paper is an exposition of collaborated work with Alex Nagel, Eli Stein,
and Steve Krantz, as well as the mathematics the author learned from Eli Stein and D.H.
Phong. The author is particularly grateful to them for their many years of teaching,
stimulation, and encouragement.

Finally, as a beginner in mathematics as well as being Chinese, the author would
like to give his deep appreciation to Professor S.S. Chern who is the founder of Nankai
Institute of Mathematics which provided the best facilities to mathematicians in China.
The author would also like to express his respect to Professor Chern for his effort to
promote the mathematical level of China.

1. The Parametrix for the 8- Neumann Problem
Let us first consider the problem on the model domain

D= {(215 " y2ns 2n41) = (2, 2n41) € €1 Imznyy > |22},
Its boundary is the “paraboloid”
8D = {Imzp41 = |’ +-- -+ |2a]*}.
As usual, we can consider a real coordinate patch U on D near the obundary point (0,0).
Let (2',t;p) € U where 2’ = (21,--- ,2n) € C", t = Rezp41, and p = Imzpyy — |2|? is

the “height” function defined on U. Under this consideration, we may treat 3D as the
Heisenberg group H™ = C™ x R! under the group law:

(2',t) - (w',8) = (' + w',t + 8 + 2Im(2' - w')).
Hence we may consider a basis for T'(1,0) (ﬁ) as follows by using this coordinate system:

8 e e e
Z,—éz+tz,§, =152 uon and T= -

I de. -0
Zpyy = '—\/—i 5;4-!5 §
It is easy to see that {Z;,- - , Z,,T'} is a basis for the Lie algebra X" and {Z;,- - , Z, }

is a basis for the subbundle 7(1%)(3D) of the complex tangent bundle T(D). The
(1,0)-forms defined on U which is dual to this basis is

wj=dz;, 3=12,---,n
wnt1 = V2dp.

Now we define a Hermitian metrix ds® = E;-H'll w; ®@; (so call a Levi metric) on U. The

article by Folland-Stein [F'S] and the book by Beals-Greiner [BG] are good references



for the analysis on the Heisenberg group. They also explained the relationship between
it and the several complex variables.

Under the assumption that U equipped with a Levi metnc, let us consider the 8-
Neumann problem as follows. Given a (0, 1)-forms f = E, ! fi@;, find another (0, 1)-

formu=7Y.

J:I u;w; such that
(1.1) Ou= (90 +3 du=f
with two boundary conditions
(1.2) 4 € dom(d ) and Ju € dom(d").
We can rewrite (1.1) and (1.2) in terms of the vector fields {Zy,- - , Znt1} as follows,
(L1)  Ouw= Y7, (O%)@; + 0¥ (wng1)@nts
and

112 se€ dom(3") <= un+1|p=0and Ju € dom(3") <> Znt1jlp=0 = 0.
Here
ez B O -% S (2Z; +Z;2;) - iln — )T
i=1
O* = O - Zn41Z i1, O = O — AT,

So the problem (1.1°), (1.2’) breaks into two parts

y I=1,2,---,n

(1.3) { C*uj=f; inU

7,,.“11,- =0 whenp=0

(1.4) { O*upt1 = fagr inU

oty =0 when p = 0.

We will solve the problems (1.3) and (1.4) by different methods. Now we solve the
problem (1.4) first.
(I) The ellipti

Recall that

. - i 182
P {Z——(ZJZ, +Z ZJ) 2m—3nT}—§5E.

i=1



Let
Ap=2 {—% : (2;Z;+Z;Z;) - %% —iaT}
=1
then ; L
D* = EAQ - Egp—z‘

From the equation (1.4) we need to solve the following system:
{ [-;—Ao, - %g—:;] u=f(z',t;p) in D= {,t;p) €C" xR xR : p> 0}
u=0 on 3D = {z',t;0) € C" x R' x {0}}.
Taking the Fourier transform in p-variable, we have

1oy 2= ) G v)
(Fomvu)(2'stsv) = A, +2

etlp—p)v
el = /fA S = (2, t; p)dpdv

e—le—alay)?
fo(Z t; p)dp.

Plugging in the boundary condition, we have

: e~ +ilAy?
u(z ,t;p):/o ——17—2——f(z t;p)dp
oo —(;o—p)A"2

= 5 _Tf(zatvp)

Since we want to find the kernel G* of Green’s operator for the operator %Aa - % 8-%’32—,
we let

J(Z,4:0) = 6, (w') @ 6:(8) @ 8(p).
Then
e—lo—nla)?
G*((#'t;p), (0, 83 )) = —-——172——(5:'( w') ® 6i(s))
c—(p+u)A.‘,“
e (w) ® 8(s))-

1/2
Let 0(Aq) denote the symbol of A, and let A = [z Yt lo(Z)P + 72] with 7 =

o [;%;]. Then we have 0(4q) = A% + 2ar. In our case, a =n or n —2.

Before we go further, let us review the following theorem about the Kohn Nirenberg
formula for the composition of two left- invariant pseudo-differential operators on the
Heisenberg group:



Theorem:

Let a; and az be symbols of ¢dos Op(ay) and Op(az) respectively, both of them
depending on the symbols of the Heisenberg vector fields with constant coefficients.
Suppose Op(a) = Op(a;) - Op(a3), then the symbol a of Op(a) is also such an operator.
We have the following asymptotic expansion for a:

(1.5) am ;%{[%ral(m,ﬁ)- [(%]m az (2, 6)}

where

[8E] [aa] [E‘] bt

ifl<j<n

L%] e as,+n

@1 3
— | =—if1 <3<
{afﬁn] 351 d

The proof can be found in Chang [C].
Using this formula (1.5), it is easy to calculate the asymptotic expansion of the
following symbols:

() 0(AY?) = A+ 2 +--- (Since Ty o {[gg]’a-[%]'%}sm,
(u)a[—PA ]—e_PA[l_QAE.+...}
) o [Sppb] = 2 [1- [+ 5]+ )

Hence we have

and

My Lo
—ﬂr(&'(w ) ® ée(9))
1.6
Here we use zj = #; + i%j4n and wj = y; +iyj4n for y=1,--- ,n. i
(1.6) = (%%'T/pm [CZA] S ) G =0T ge g
= (27_;"_"7,[.““ o e [ ! A3] ‘[E o (@i=y) €+t ) dedr

+ terms with weaker singularity = I+ II + t.w.w.s.

Since A = {§ i, [(6 + 2i4n7)? + (€nts — 2%i7)%) + 72}, after change variables,
we hve the followmg
1 2" 10 (n)
L= == ith Cp, = ———(——
"2z — w2 + (t — 8 + 2Im(2' - w"))? + PP]" s antl




and
e ~Cy 1
T 2(n—1) [2]2' — w!|2 + (t — 8 + 2Imz’ - w')? + p2|n-1
Thus,
G*((,80), (@', 51))
=On =o'+ =+ 2me ) ¥ (o= DT
1

0 -
202 — w'2 + (¢ = o + 2Imz' - w')2 + (p+ )"

+t.w.w.s.

So the principal part of the solution for the problem (1.4) just involves two fractional
integrals. From the theory of standard singular integral operators, the solution u},.H =
No(frn+1) = fn41 * No will gain two in all directions, i.e.,

G* : L}(D) - L{,,(D) for 1 <p < oo and k € Z*.

Now we turn to construct the parametrix of the problem (1.3).
(I} The sub-elliptic part

The method in this part are basically follow the idea in Greiner- Stein [GS]. In the
paper by Chang-Nagel-Stein [CNS1] has a more elegant way to look at this method. First
of all we want to construct the Calderén operator [1* for the 8-Neumann problem. The
construction depends on the construction of the Dirichlet to Neumann operator. Under
the assumption that U is equipped with a Levi metric, the matrix-valued operator OF
becomes:

= —1i(z~7~+"z‘-z-)—lﬁ—i(n—z)T Le 1
= 2 e ah i T ST G 28p ("
PR bl o 3? :
={_§W_ 2 [;(Zij-f-Zij)-l-(—,’-t—z-] —1(n—2)T In
1 82
_{—aﬁ—A+B}In.

Here I, is the »n X n identity matrix. Hence we may treat [I* as a scalar operator.
We have the following theorem, the proof can be found in [CNS2|.

Theorem:
The Calderén operator OO is

Ot = —(-4)% - (-4)}B —iT.

Once we have this operator, the 3-Neumann problem (1.3) is equivalent to the problem of

solving
0% (v;)@; = —Rest(Zn1 G (£5)5)



i.e., the 3-Neumann problem is equivalent to the problem of inverting the operator Or It
we look at the symbol of (It.

o) =(r-0)+ -;-(2 -—n)é

where A = (2)7_, |o(Z;)|* + r?)%. The O is a first order pseudodifferential operator
double characteristic on half the line bundle 3 on the cotangent bundle T"(3U). So far
we have dealt exclusively with the 9-Neumann problem on the domain U. However, we
may also consider the 9-Neumann problem on the complementary domain U~ = C"*! \U.
This problem also gives rise to a first order pseudo-differential operator which we call O0~.
Then a calculation similar to the one above gives us

o07) = (r+8) — 52~ m) %

We can see (0~ is characteristic on the other half of }_ but elliptic on the characteristics
of 0. But the important phenomenon is that

O~ o Ot = -0, + zero order term

and
Ot o = -0, + zero order term.

Here O, = — % ?:1 (2;Z;+Z;Z;) —i(n—2)T is the complex sub-Laplacian on the (0.1)-
forms defined on the boundary @D. From the result of Folland-Stein [F'S], when n > 2, D
has an inverse K, given by a convolution operator on the Heisenberg group with kernel
W22\ 1):

s I'(n—1) 1
Kn-2(z',t) = 22=2npntl (|2/] - )" =1 (]2 + it)l'

Putting these results together, we have
(17) w;W; = G (f,-)w‘,- =t P(.Kn._z O~ Rest —Z—n-i-l at (fj))w]' +S_ (f])

where S_.. is a smoothing operator and P is a pseudo- differential operator of Poisson
type (we will discuss such operators in the following section).
Here
uj = G*(f;) + P([u;]s)
is a solution for the elliptic boundary value problem:
{ O*u; = f; inU
ujlau = [uj]b on U

From the discussion above, we can write down the paramatrix for the problem (1.3)
from (1.7). For n > 2, let Aj be the jth component of the fundamental solution (Neumann
operator N), then

(1.8) N;j = G* + P(&kp-20" RestZp41G ") + Smoothing operator.



From the results of Folland-Stein [F'S], Greiner-Stain [GS] and Rothschild-Stein [RS], we
know that this result not only true for the model domain D = {Imzn41 > |#’|*} but also
true for any bounded strongly pseudo-convex domain 2 ¢ C*t! (n 2 2) with smooth
boundary 802. We may transfer &,y the inverse of [, from a small neighborhood z € U
of the Heisenberg group to a small neighborhood of y € V' C 901 by using an admissible
Heisenberg coordinate system @(z,y). We may cover Q1 by coordinate sets Uy, - -+ ,U,, and
for each j we fix an orthonormal frame {Z{,---,Z.,,} of T(*9)(T;) and an admissible
Heisenberg coordinate system ®; with respect to the frame. Let ¢; be nonnegative C'°°
functions such that {¢?} is a partition of unity subordinate to the cover {U;}. We define
our parametrix, or first approximation Ng((2',¢,p), (w', s,p)) to the Neumann operator

by
N@((er t p)) (w') 8 ﬂ))
= Z {Z é; (z’a 4 p)Nk (j((z’v t; p), (w,’ 93”’)))
j=1 \k=1
- i (', 35 p)wl (', t; p) AT (', 5 1)
@ 6; (', 0)G* (@5 ((<', 8 0), (w', 95.1)))
- (v, s;/t)wf,_,_l ('8 p)A(T)'{,_,_l (w8 p)} .

Here Ni is given by (1.8) and G7 is the fundamental solution for the problem

.y ntl .y n4l
(1.4) Here {w;’c }k=l is the basis of A1) (U;) dual to {Z,’c }k=1 ;

For the case n = 1 (i.e., C% case). We are not only have the result for the model
domain D (hence the result for a bounded strongly pseudoconvex domain ) C C?) but
also have results for all pseudoconvex finite type domains in C2. Suppose (1 is a bounded,
pseudoconvex domain of finite type m. (In particular, when ( is strongly pseudoconvex
domain, then m = 2). We recall the results of Chang- Nagel-Stein [CNS1] as follows: First
we consider

(19) No(f) = PO+ KO Rest(Z; — 0)G* (£)) + G (1)

where P is the Poisson operator, I'; is a pseudo- differential operator of order zero whose
principal symbol equals 1 on the set

(o~ ~ T Zi]?) < go(~iT)},
and whose principal symbol equals 0 on the set

(o~ =T Zi]'7?) < 3o (=iT)},



K is a parametrix of . 8 is a smooth function given by 8@y = 8wy AWy. The we have
the following theorem:
Theorem:

the operator N, given by formula (1.9) is an approximation to N in the following sense.
Fix —w < k' < k < 00. Then there are error operators £; and &3, so that

N(f) = Nu(f) + e1(f) + e2(u).

Here &; is of the same kind as the operator N,, except that at least one of the following
replacements have been made: T'; has been replaced by a pseudodifferential operator of
order £ —1, K has been replaced by a NIS operator smoothing of degree > 3; and 00
has been replaced by a pseudodifferential operator of order £ 0. Moreover, the operator
2 maps L%, to L2.

Here the class of NIS operators of smoothing degree k (NIS means nonisotropic smooth-
ing are sutdied by [NRSW] and [CNS1]. Here we just write down its definition.
Definition

T is a NIS operator of smoothing degree k, if there exists a family T: (f)(z) = [, Te (2,
9)f (y)da(y) so that (i) Te(f) — T(f) in C°, as € — 0, whenever f € C*°(90); (ii) each
Te (2, y) is in G (90 x 80); and (iii) the following two conditions hold uniformly in ¢. (In-
writing these conditions we shall omit the subscript ¢.)

(a) T AT el L i

where |I| = &, |J| = &, 0 £ ¢, < co. Here we have used the abbreviation X! =
e Ay - Xie s where X;, = ReZ; or ImZ,. The subscript z in Xi indicates the variable
to be differentiated.

(b) For each £ > 0, there exists an N = N, so that whenever p is a smooth (bump)
function supported in B(zo,§), then

|(XIT () (20)| £ ceb*~C sup }: sYIIXT ),
* |JISNe

whenever |I| = £.

The p(z,y) is the non-isotropic metric studied by Nagel- Stein-Wainger in [NRS]. V (=, y)
is the volume of the ball centered at « with diameter p(x,y). The detail can be found in
[CNS2] and [NRSW], we will not go through it!

Now the regularity properties for the Neumann operator N reduce to look at the reg-
ularity properties for each operator. G*,07, K. Restriction operator and Poisson type
operator. The regularity properties for G*,00" and Rest follows from the theory of stan-
dard singular integral operator. The regularity properties for the operator K are discussed
by (NRSW], Fefferman-Kohn[FK]| and Christ [Ch|. So we just need to discuss operators of
Poisson type. In section 2, we use a different approach to consider the regularity properties
for Poisson type operators.

Remarks



10

(1) In the case @ = D = {Imzy > |z|*}, we can compute K precisely. Here K is a
convolution operator on the Heisenberg group H! induced by the kernel x(z,t):

|z|? - it] 1

1
—1 . .
ox? 8 P +it] R -t

(1.10) M b=

It is easy to see that x(z,t) in (1.10) is homogeneous of degree -2 in the Heisenberg
sense. From the result of [GS], we know that K is a NIS operator of smoothing degree
2. In the model case, the non-isotropic metric p(x,y) = |z-y~!| 2 0 for x,y € H" and
V(z,y) = |B(x,p(,y))l-

Hence we know, the parametrix for the problem (1.3} is
Ny =Gt + P(TYKO™ RestZ,G)

(2) Even though we consider the Levi metric defined on Q, but in fact all these re-
sults are true when we consider {1 equipped with an arbitrary Hermitian metric ds? =
E]"-,,c.___l ajxw;j ® Wi, where aji are smooth functions defined on (). The result can be found

in [C] and [CNSZ].'

2. Operators of Poisson type and the sharp estimates for the Neumann

Operator
When we discuss the coercive boundary value problem

p(z,D)u=0 in R+

2
( 1) [Qj(:t,D)u]gn:gj,]':1,2,”- y M

where p(x, D) is a strongly elliptic differential operator of order 2m with coefficients smooth
up the boundary, and ¢; are given functions on the boundary. Then operator P; mapping

O (R?) 10 O 'lﬁn-H can be constructed such that if « satisfies (2.1) then
+

m
(2.2) U= ZPng- + St

=1

where S_ is an infinitely smoothing operator. The operator P; which play an analogous
role to the Poisson Kernel in the case of the Dirichlet problem for the Laplacian.

Now we give the following definition:
Definition:

A function p(z,t;€) € C°(R" x [0,¢] x R™) is a symbol of Poisson type of order k if it
satisfies:

(1) p(x,t; &) has compact support in the (z,t) variables

(2) For all multi-indices o, 2 and integers v, there is a constant C = Cq g,4,s 50 that

7 At (7]
(5 5zl 512 6 )] < O+ e 1ot



