Bit-Slice
Design:
Controllers

Donnamaie E. White

Bit-Slice
Design:
Controllers

and ALUs

nnnnnnnnnnnnnn
Advanced Mncro Devices, Inc.

Copyright © 1981 by Garland Publishing, Inc.

All rights reserved. No part of this work covered by the copyright hereon may be
reproduced or used in any form or by any means—graphic, electronic, or mechanical,
including photocopying, recording, taping, or information storage and retri¢val
systems—without permission of the publisher.

Figures reproduced with the permission of Advanced Micro Devices.

15 14 13 12 11 10 9 8 7 6 5 4 3 2

Library of Congress Cataloging in Publication Data
White, Donnamaie E. 1942
Bit-slice design.

Includes index.

1. Bit slice microprocessors—Design and construction. I. Title.
TK7895.M5W49 621.3819'58'2 79-7465
ISBN 0-8240-7103-4

Published by Garland STPM Press
136 Madison Avenue, New York. New York 10016

Printed in the United States of America

_ Preface

This text has been compiled from the current and highly popular Cus-
tomer Education Seminar, ED2900A, ‘‘Introduction to the Am2900
Family,”” offered by Advanced Micro Devices. No attempt was made
to duplicate all of the material presented in the customer seminar. The
intent was instead to present a true ‘‘introduction’’ for the under-
graduate hardware or software student that could be covered in one
quarter or semester. The ED2900A seminar assumes that the attendee
either has a background in assembly level programming or has a back-
ground in SSI/MSI design. This text also makes this assumption.

The flow is an orderly evolution of a CCU design, adding one
functional block at a time. The material is presented in a dual approach,
referring to both the hardware and the firmware, or the software im-
pact, as each feature is discussed.

The controllers are presented first, followed by the RALUs and their
support chips. Interrupts are presented in two sections broken down by
the hardware evolution. The final chapter provides a ‘‘typical’’ config-
uration of an Am2900 state-machine architecture CPU.

Chapter 1 is an introduction to the reasons why microprogramming
should be selected as the means of implementing a control unit. This
chapter also presents a discussion of language interrelationships cover-

ix

x Bit-Slice Design

ing topics from the typing of the conventional programmer languages to
the functioning of the hardware through the microprogram. The basic
concept of what a control unit does is described using a primitive CCU
(computer control unit). The 2900 Family is also introduced and this
bipolar bit-slice family will be used throughout the text. The concepts,
however, apply to any microprogrammable system.

Chapter 2 begins the design evolution of a controller and introduces
timing considerations. The hardware-firmware duality of the design
decisions are stressed. In relation to the CCU used as an example, the
concept of a mapping PROM is introduced. Only PROMs are dis-
cussed, although DEMUX networks, gate arrays, and PLA (pro-
grommable logic array) and PLA-type logic units are often used to
perform the decode operation. Microprogram memory (control mem-
ory) is also presented. PROMs are referred to throughout the text
although ROMs, PROMs, EPROMs, WCS (writeable control storage),
and even parts of main memory may serve as the control memory. Only
single-level control memory is refered to in the text although some
designs exist which use two-level control stores (nanoprogramming).

Chapter 3 continues the evolution of the controller adding sub-
routines, nested subroutines, loops, and case statements to the tools
available to the microprogrammer. The concept of overlapping field
definitions in a microinstruction is introduced in relation to the
kranch-address and counter-value fields. This is an elementary form of
variable formatting, the use of which should be minimized for clarity.
The controller evolution leads to the microprogrammable sequencers—
the Am2909 and Am2911—and the next address control block, the
Am29811. (The letters A or B following a chip identification refers to
the latest version available and may vary over time.) The various ver-
sions are pin-compatible and differ usually in die size and speed.

The case statement introduces the Am29803A, a device which as-
sists in implementing up to a 16-way branch.

Microprogram memory implementation is briefly discussed, intro-
ducing the use of the Am27S27 registered PROM, dc¢ and ac loading,
and the effects on sequencer timing of excessive capacitive load.

Chapter 4 continues the evolution of the CCU, introducing interrupt
handling (the interrupt controller is discussed later). The interrupts are
introduced here to demonstrate the OE,,, requirement of the next
address control block. The evolution finishes with a detailed discussion
of the Am2910 instructions. The instructions are discussed in their
conventional usage. A number of instruction set variations are possible
by tying control lines to different instruction lines (CCEN to I, for
example) and by ignoring the PL, VECT, and MAP outputs of the
An\13910 and driving the output enables of these devices from the pipe-

Preface xi

line register (microinstruction) itself. The Am2914 interrupt controller.
is covered briefly.

Chapter S covers the RALUs—the Am2901 and Am2903—in a series
of evolving steps as were the microsequencers. Every conceivable
consideration cannot be discussed here, but enough is presented to
cover the architecture of the Am2901.

Chapter 6 covers some basic operations and presents their
microcodes to demonstrate microcode selection for these devices.
Two’s complement multiply is covered in some detail to highlight the
differences between the Am2901 and the Am2903.

Chapter 7 describes the ‘‘typical’’ CPU as suggested by Advanced
Micro Devices for the *‘typical’’ user. It covers the Am29705 two-port
RAM and the Am2904 *‘LSI Glue'’ multiplexer-register support chip.

An instructor’s manual of exercises and solutions has been prepared
and is available from Advanced Micro Devices.

Although the text is original, many of the drawings have appeared in
application notes and data sheets previously published by Advanced
Micro Devices and are reproduced with the permission of Advanced
Micro Devices. Those application notes written by the Bipolar Appli-
cations Department have served as the principal reference material.
Principal authors of these notes, to whom I am indebted for their assis-
tance and advice are:

John Mick, Engineering Manager, Systems and Applications, Digital
Bipolar Products.

the late Michael Economidis, Section Manager, Systems and
Applications, Bipolar Memory and Programmable Logic, Mr.
Economidis was an expert on the Am2914.

Jim Brick, Applications Engineer, Bipolar Microprocessors

Vernon Coleman, Senior Applications Engineer, Systems and
Applications, Bipolar Microprocessor Circuit Definition.

William Harmon, Manager, Systems and Applications, Bipolar
Microprocessing.

- __Contents

Preface

1

Introduction

Selection of the Implementation
Microprogramming

Advantages of LSI

The 2900 Family

Language Interrelationships
Controller Design

Simple Controllers
Sequential Execution

- Multiple Sequences

Start Addresses
Mapping PROM
Unconditional Branch
Conditional Branch
Timing Considerations

NN~ -

~

19
21
23
24
24
26
28
30

vi

Bit-Slice Design

3 Adding Programming Support to the Controller
Expanded Testing
Subroutines
Nested Subroutines
Stack Size
Loops
Am2909/11
CASE Statement (Am29803A)
Microprogram Memory

4 Refining the CCU
Status Polling
Interrupt Servicing
Implementation
Am2910
Am2910 Instructions
" Control Lines
Interrupt Handling
Am2914
Interconnection of the Am2914

5 Evolution of the ALU
Instruction Formats
Control Unit Function
PC and MAR
Improving ALU Speed
Adding Flexibility
Am2901

6 The ALU and Basic Arithmetic
Further Enhancements '
Instruction Fields
Instruction Set Extensions
Sample Operations
Arithmetic—General
Muitiplication with the Am2901
Am2903 Multiply

43
43
43
47
49
49
52
53
55

61
6!/
63
63
70
71
81
82
85
85

97
97
98
99
101
105
111

117
117
121
121
122
125
129
131

Contents vii

7 Tying the System Together 133
Expanded Memory for the Am2903 , 133
MUX Requirements 133
Status Register 136
Am2904 136

Glossary 141

Index 145

__Introduction

Over the years, there has been an evolution of the universal building
blocks used by logic circuit designers. In the mid-1960s, there were SSI
gates; NAND, NOR, EXOR, and NOT or INVERT. In the early 1970s,
MSI blocks, registers, decoders, multiplexers, and others made their
appearances. In the late 1970s, ALUs (arithmetic logic units) with on-
board scratchpad registers, interrupt controllers, microprogram se-
quencers, ROMs/PROMs, and other LSI devices up to and including a
complete one-chip microprocessor (control, ALU, and registers) be-
came readily available.

SSI (small scale integration) is defined here to include chips contain-
ing approximately 2-10 gates. MSI (medium scale integration) is used
for chips containing 20-100 gates. LSI (large scale integration) chips
contain 200-1000 gates, with the upper limit continually extending as
VLSI (very large scale integration) becomes a reality. The AmZ8000
CPU contains 17.5K gates; the M68,000 claims to contain 68,000 tran-
sistors.

Selection of the Implementation

Today, a designer is faced with three basic choices in implementation:
(1) SSI/MSI hardwired logic; (2) 9080A/8080A (8-bit) or AmZ8000-
In8086-M68000 (16-bit) MOS fixed instruction set (FIS) microproces-

1

2 Bit-Slice Design

sor; or (3) microprogrammable bit-slice architecture with the 2900

Family or other similar family. There are a number of factors which -
influence the decision as to which implementation is best for the appli-

cation.

Architecture

In terms of the design architecture, any FIS MOS microprocessor by
definition has its own predefined internal architecture, and this con-
strains the design options available. This fact is acceptable if the archi-
tecture provided by the selected MOS device satisfies the one desired
for the application. An SSI/MSI implementation allows the designer to
specify in complete, exact detail the architecture desired. With bit-slice
devices, some constraints are placed on the designer, but most of the
system architecture is left to user definition via the selected intercon-
nections and the microprogram.

Size

The real estate or board space (rack space, etc.) is often of concern
in a design because of space limitations. An FIS MOS microprocessor
may use 3-6 chips for a typical average control system, versus 100-500
chips for the same system implemented in SSI/MSI and 30-60 chips for
a compromise bit-slice design.

Word Length

The word length necessary for the system, whether a computer,
controller, signal processor, or whatever, is usually known in advance.
FIS MOS microprocessors can be used where their word length is
compatible with the design objective. MOS devices exist for 4-, 8-,-and
16-bit data word systems. Using SSI/MSI, any word length may be
accommodated. Using bit-slice (the 2900 Family is expandable in
multiples of¢4 bits), a wide variety of useful word size systems are
posdible. When bit-slice does not conveniently match, SSI/MSI can be
used to “‘patch’’ the basic bit-slice design.

Instruction Set
The instruction set that the system under design is to support has a
1ajor impact on the choice of implementation. The high dollar invest-
nent in software, which currently exceeds the hardware investments
i *W'kt?' ratio as high as 10 to 1, ofter results in the prime directive of
Q\sof;\ware compatibility: the new design must support the existing in-
struction set. FIS MOS microprocessors have a fixed instruction set. If
there is an MOS microprocessor whose instruction set supports the
design instruction set, then a microprocessor-based design can be

Introduction 3

used. The current FIS microprocessors support assembly level lan-
guages and have software to support BASIC, PL/1, FORTRAN, PAS-
CAL, and even COBOL. If the design has an unusual instruction set
requirement, it would require that a program written in the desired
instruction set be passed through an additional software process prior
to actual MOS device execution.

The two most widely known 16-bit devices are the In8086, with its
8080-based architecture and instruction set, and the AmZ8000, with a
general-register architecture and an instruction set based on the IBM
SYS/370 and the DEC PDP 11/45.

An SSI/MSI design can be customed tailored to support any desired
instruction set. A bit-slice design can be microprogrammed to support
any desired instruction set. The principal difference between these two
approaches is that one is done exclusively in hardware and the other
(bit-slice) is done in hardware and firmware.

Speed

Another design criterion or specification is the required speed of the
design. SSI/MSI using Schottky TTL and bit-slice (2900 Family) can
support systems with 125 ns cycle times. MOS microprocessors are
slower, with approximate cycle times of 1-2 us. The newer MOS de-
vices support 4-5 MHz clock speeds. The newer bit-slice devices are
targeted for 100 ns microcycle systems. When instruction times are
given for an MOS microprocessor, the instruction is a machine level
instruction. To properly compare this with bit-slice or SSI/MSI,
macroinstruction execution times must be used where a macroinstruc-
tion is a machine instruction which the microprogram supports. Bit-
slice designs exist with effective macroinstruction times of 320 ns
(HEX-29) and 200 ns (SUPER-16) for register-register operations
(Chapters 8 and 9 of AMD’s Bit-Slice Microprocessor Design Series).

Tradeoffs

Design tradeoffs are summarized in Table 1-1. Basically, where high
speed, long word lengths, or critical instruction sets occur, MOS FIS
cannot be used. If design time—parts count-board space restrictions
also exist, or if production volume does not support the effort required
to do an SSI/MSI design (considered the most difficult to do correctly),
the bit-slice devices are the best choice. It should also be noted that a
microprogrammed bit-slice design is upgraded or changed, usually
through a change of PROM or a reload or patch of writable control
store, more readily than is a hardwired SSI/MSI design.

Bit slice devices are applied to three basic areas: machines with
long words, machines with special instruction sets, and high-speed

4 Bit-Slice Design

‘1semon abues wnipeyy 1saybiH 150D
peuueidaid pesinbai ubisepal
auop Ajise3 aq ueo ‘auop Ajise3 Ny e 03 dn sapeibdn
uoipod weisboidosow pajepino
Jofew s| aremyos BIA P82104 ueyo ‘snolpa] uoneuswnooqg
sseo0id pie sseo0.d pie
swa)sAs yuewdojensq swesAs yuawdojaasq ynayiag Bngaq
A081100
1seq jse4 auop Ji ‘mo|s ‘Buoy awy ubiseq
s g-| Su 002-00}4 Su 002004 peedg
we|qo.d e pawwesboidoiow paim eq
paeds j paulensuo) 8q Aew paasep Auy Key ‘pasisap Auy 18S uoioNJSu|
9L '8y v ‘2 jo sejdniniy panseq Auy Wybus piom
. (leaidhy)
9-¢ 0S sdiyo 00 azis |eaishyd
paubisapaid 8|qix8|jopnasd pasiseq Auy aInpalyaIy
10s58004dORIN $80IA8(801S-Iig ISW/SS
SOW Sid

syospel] ubisaq |-| alqeL

Introduction §

machines. The best examples are signal processors, with a low volume
per particular specification and which require high speed and a long
data word, and emulators such as the one for the SIGMA 9 (32-bit
word) and the one for the GE 400 (24-bit word), where software com-
patibility to the existing system at increased throughput is mandatory.
Variable instruction set minicomputers have also been developed using
bit-slice which allow custom-tailored instruction sets to be micropro-
grammed around one fixed hardware implementation.

Microprogramming

Microprogramming is to hardware design what structured program-
ming is to software design. If a bipolar (Schottky TTL) machine is to be
built, in bit-slice or in SSI/MSI, its control should be micropro-
grammed. First suggested by Wilkes as a methodical way of handling
the control unit of a system, it is now recognized as the best approach.
Why?

First, random sequential logic circuits are replaced by memory
(writable control store or ROM [read-only memory] or PROM [pro-
grammable ROM] or related devices). This results in or forces a more
structured organization on the design.

Second, when a unit is to be upgraded, a field engineer can replace
the appropriate PROM considerably easier than hardwiring and patch-
ing new components onto a crowded printed circuit board (PCB) with
all of the associated pitfalls of such activity.

Third, an initial design can be done such that several variations exist
simply by substituting one or more PROMs (changing the micropro-
gram), and enhanced versions can be preplanned such that version B is
constructed by simply adding a PROM or two to version A, simplifying
production. The basic units would contain sparsely populated PCBs
with upgrades provided for in the etch and connections. In these cases,
simply adding PROMs (and changing others as required) expands the
system. This technique is also commonly used for RAM memory
(read-write memory) expansion.

The microprogram, documented in the definition file and in the as-
sembly source file, serves as the principle documentation of the firm-
ware. This, coupled with the modularity of the design as enforced by
the use of microprogram control, provides a better opportunity for
clearer documentation than multipaged schematics can provide.

Last, diagnostic routines can be included in the PROMs supplied
with the final system and can be called in by a field engineer through a
test panel and executed to aid debug. Some diagnostic routines could
be microprogrammed into the system such that they are routinely exe-
cuted in the normal running environment. For more severe testing, the

6 Bit-Slice Design

normal PROM memory could be swapped with a special test memory
simply by substituting PROMs.

Advantages of LSI

If bipolar has been chosen over MOS because of speed, LSI is prefer-
able to SSI/MSI for several reasons. ;

' First, costs are reduced. LSI requires fewer parts and therefore
fewer boards and less rack space. There is less etch and fewer pin
connections with LSI as more and more of the connections are moved
inside the package.

Second, using LSI improves reliability. Approximately 80% of the
failures of working systems are caused by broken etch or by bent pins
and other broken external connections. Using SS/MSI, a typical con-
troller might use 300 16-pin DIPs, for a total of 4800 pins. The same
controller done with LSI might use 30 40-pin DIPs, for a 1200 pin total;
the other connections having been moved inside of the package.

The 2900 Family is going to be introduced in this text. It is a
design rule that every design should use industry-standard parts. The
Am2900 family is considered to be the industry standard for bipolar
bit-slice devices. It is a microprogrammable family of LSI-level com-
plexity. Table 1-2 summarizes its advantages.

The Am2900 Family

The 2900 Family components include or will soon include (1) CPU-
ALU and scratchpad register units: Am2901, Am2903, and the new
Am29203; (2) microprogram sequencers and controllers: Am2909/
2911 and Am2910; (3) bipolar memory: various devices, including error
detection and correction controllers and support devices (Am2960 Se-
ries); (4) interrupt controller and support devices: Am2914, Am2913,
and Am2902; (5) bus I/O: Am2950 and support devices; (6) DMA sup-

Table 1-2 Microprogramming with LSI—Advantages

More structured organization

Field changes—may be as simple as replacing a PROM
Adaptions—may be as simple as replacing a PROM
Expansions —preplanned, may be as simple as adding a PROM
Better documentation

Hardware and firmware can be designed in parallel

LSI uses fewer parts

LS| has better'reliability y
. Diagnostic PROM can aid debug, maintenance

Introduction 7

CONTROL

CPU MEMORY

PERIPHERALS

Figure 1-1. Simplex system block diagram.

port: Am2940 and Am2942; (7) timing support via microprogrammable
microcycles: Am2925; (8) main memory program control: Am2930 and
Am?2932; and (9) the new 16-bit Am29116.

Consider a simplex block diagram of a basic computer, shown in
Figure 1-1. The essential blocks of this diagram are (1) the CPU (central
processing unit), containing the ALU and scratchpad registers, the PC
(program counter), and MAR (memory address register); (2) the main
memory, where active programs and data are stored; (3) peripherals,
including backup memory, input, and output; and (4) the CCU (com-
puter control unit), which supervises everything else and contains the
control logic instruction decode and the PROMs. The CPU is where
data is processed; the CCU is where instructions are processed.

From this simple overview, progress to Figure 1-2 and the general-
ized computer architecture blocked out to show the various members
of the 2900 Family and their applications.

Language Interrelationships

Programming classes relate source code—written by the user in some
programming language—to object code—the machine level, machine-

8 Bit-Slice Design

Lriewy
rZiswy
oviswy
Oci6wy
viiewy

cE6TWY
oz6zwy
816zwy
oe6zwy

ozezwy
6l6zTwy
1z6Twy
roszwy
coszwy
zo6zwy
1o6zwy

VLINOL/VSL/L0/90/5062WY

SHITTOHLINOD 30VId3LNI OL

*21n19311ydue 13Indwod pazijesduan g-f Mndig

1S3N03YH LdNUEILNI

VAN RN
y 1INA HOSS300Hd HIHLO
P ~ T0H1NOD 80
> 1dNEY3LNI 73NVd T0HINOD
Q
- cL6zwy
& viezuy SNOILIONOD
1 JNV8] 1831
. AHOWAW & o)
o
z
z o0z6zwy
. r 10H1NOD SS3HAaY 5.,_””““«
$32012 WYHDOHJOHIIN VeoRtziiiy
1x3N zz6zwy
oLezwy
& sz6zwy F|J
=
>
* L
(=
PETCILED] @
$S3HAAYV AHOWIW
aNv
Y3LNNOD KYHOOHd
(¥3LSID3H NOLLONKLSNIOHIIN
1INN
21907
oMLY] LINN TOHLNOD HILNAWOD lL_oEN.S
— 0E6ZwWY
SH315193Y J ¥31S193 L lszwy
ONINHOM NOILONHLSNI s062WY
ozezuy oL6zwy
slezwy

6162wy

