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FOREWORD

The traditional approaches to risk analysis are based on the premise that proba-
bility theory provides the necessary and sufficient tools for dealing with the
uncertainty and imprecision which underlie the concept of risk in decision
analysis.

The theory of fuzzy sets calls into question the validity of this premise. More
specifically, it suggests that much of the uncertainty which is intrinsic in risk
analysis is rooted in the fuzziness of the information which is resident in the
database and, more particularly, in the fuzziness of the underlying probabilities.
Viewed in this perspective, then, it is the failure of classical probability theory to
come to grips with the issue of fuzziness of data that limits its effectiveness in
dealing with a wide variety of problem areas—including risk analysis—in which
some of the principal sources of uncertainty are nonstatistical in nature.

In applying the theory of fuzzy sets to the analysis of real-world problems, it is
natural to adopt the view that imprecision in primary data should, in general,
induce commensurate imprecision in the results of the analysis. It is, basically,
this view that motivated the introduction of the concept of a linguistic variable,
that is, a variable whose values are not numbers but words or sentences in a
natural or synthetic language. The theory of fuzzy sets provides a framework for
dealing with such variables in a systematic way and thereby opens the door to the
application of the linguistic approach in a wide variety of problem areas which do
not lend themselves to precise analysis in the classical spirit.

Professor Lance Hoffman and his associate Don Clements were the first to
explore the application of the theory of fuzzy sets—and, more particularly, the
linguistic approach—to privacy, security and risk analysis. The present mono-
graph is an outgrowth of this effort. It serves to introduce the reader to the theory
of fuzzy sets and explains clearly and with many examples the use of the linguistic
approach. Mr. Schmucker deserves to be complimented for presenting a coher-
ent and self-contained account of a body of concepts and techniques which are of
considerable relevance to risk analysis and natural language computations, and
for contributing many insights which facilitate their application to the solution of
practical problems.

L. A. Zadeh
Berkeley
April 1982



AUTHOR’S PREFACE

The intellectual task of analyzing the risk present in any large undertaking is an
endeavor that abounds both with inherent imprecision and with a scarcity of
historical data. Traditional mathematical and computational methods offer little
to aid the analyst in work beset with either of these two difficulties, let alone work
that is plagued by both of them. This is because the basic philosophical system
upon which our mathematics and computer science is based is discrete and
adheres strictly to the principle of the excluded middle: a statement must either
be true or false. Unfortunately, this is rarely the case in risk analysis.

Fortunately, there is an alternative to this philosophy. This alternative, fuzzy
set theory, is aimed at the development of tools for the solution of problems too
complex or too ill-defined to be susceptible to analysis by conventional methods.
This text provides the reader with an introduction to fuzzy set theory and
explains one example of the use of that theory in risk analysis: the use of natural
language expressions for the estimation of risk. An existing experimental auto-
mated risk analyzer which embodies these techniques is also described in some
detail and future research directions are outlined.

This text will be useful to both students and professionals in a variety of
disciplines and occupations: to the computer scientist it presents a readable
introduction to a current topic in computer security and risk analysis and
presents an application of the principles of abstract data structures considerably
more involved than the stacks and queues usually presented in introductory
courses; to the mathematician it presents an application of the results of an
esoteric branch of mathematics, fuzzy set theory, to a practical problem that is
becoming increasingly more important today; to the linguist it presents an
application of the “linguistic approach” to a problem traditionally the forte of
numerical scientists, as well as presenting a technique for the modeling of natural
language expressions—a modeling which is both theoretically sound and experi-
mentally verified. The common theoretical underpinning of these diverse fields is
mathematics, and it is assumed that all readers will possess the mathematical
maturity that is gained, for instance, from an undergraduate education in engi-
neering or the physical sciences.

It is hoped that this text will be an introduction to the idea of automatic risk
analysis utilities for those who require only an overview of this current research
area, as well as a gentle introduction to the supporting literature for those who
would extend the research frontiers. Both groups need to see “the big picture.”
Hopefully, this little text presents such a view.

K.J.S.
Washington, D.C.
November 1982
Xi
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INTRODUCTION

The rigorous determination of the amount of risk associated with a particular
proposed endeavor is a topic of both great practical and theoretical interest. It is
of theoretical interest because it is an unsolved and difficult problem. It is of
practical interest because the risks associated with many important projects are
potentially serious and have ramifications throughout our society. Two exam-
ples where the determination of risk is both difficult and important are: (1) the
risk to human life in a space launch and (2) the risk of compromise of personal
data stored ina computer system. To be able somehow to reasonably estimate the
risk to human life associated with as complex and multi-faceted an undertaking
as a space launch would aid technicians and managers alike in evaluating
tradeoffs for safety that must be made both before and during the launch.
Similarly, to be able to meaningfully estimate the risk of compromise to confi-
dential personal data in a computer system is essential in deciding on the security
measures to be installed on the system and the security practices to be followed by
its users.

At first glance, the determinations needed in these two examples appear
extremely difficult, if not impossible. This difficulty lies in two completely
separate phenomena: overall complexity and inherent imprecision. In the space
launch problem, for example, suppose that you have been asked to estimate the
risk associated with the launch in toro and that afterwards you have to decide
how much safety equipment to purchase. The overall environment of a space
launch is a complex arrangement of dependent interlocking events. The cognitive
overload on a person who must estimate some important quantity based on data
for the entire system is staggering. More often than not, a human is forced to
neglect many facets of the total problem in order to delimit a manageable set of
the data. Unfortunately, this can result in the ignoring of data ultimately impor-
tant to the overall result, thereby providing a suboptimal (or even a totally
wrong!) estimate. Such a suboptimal estimate can resultin a considerable danger
being overlooked or, alternatively, can force the use of unnecessary and costly
safety equipment and procedures.

Even if the complexity problem was solved, the other problem of inherent
imprecision remains to complicate the task of estimating risk. Suppose in the
computer security example mentioned above that you have been asked to
estimate the probability of one specific type of security failure: the unauthorized
access of an intruder to the main computer room—a room whose only entrance is
equipped with a cypher lock. (For those unacquainted with such a device, a
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xiv Introduction

cypher lock is a mechanical device consisting of an array of ten buttons or toggle
switches which, when a certain sequence of five buttons is pressed, opensadoor.
Such a device is used to limit access to a restricted area that has a heavy flow of
traffic in and out. It is functionally similar to the more common key lock with the
advantage that it is much easier to change the combination of a cypher lock than
it is to change the key for a key lock.) If one forgets for a moment the case where
one of the authorized individuals knowingly lets an intruder into the facility, the
only case you have to consider is that in which somehow the intruder was able to
get by the electro-mechanical device controlling access, the cypher lock. Since the
cypher lock has 10 buttons, and since any combination that activates the cypher
lock (thereby opening the door) is a certain sequence of five buttons, you could
estimate that there are 100,000 possible combinations and that, therefore, the
probability that an outsider might guess the right combination in one try is
1/100,000, in two tries 2/ 100,000, etc. Since your particular cypher lock allows
only two incorrect tries before covering the presumed imposter in seven gallons
of indelible yellow foam and sounding an alarm that would wake the dead, you
feel pretty secure. Unfortunately, this estimate (and this entire methodology for
estimating) neglects the time when someone spilled a Coke into the cypher lock
and any combination opened the door, as well as the time when a disgruntled
computer operator, having been covered in yellow foam the week before, painted
the correct combination on the wall just above the lock and it took your ever
vigilant security office more than two weeks to notice it!

The problem with your precise estimate of the probability of an intruder
gaining access is that it possesses only a pseudo-accuracy—it looks great to the
casual observer, but it fails to take into account perturbations thatare possible in
the real world—perturbations that are in some sense likely, taking into account
Murphy’s Second Law! (“If things can possibly go wrong, they will; if they can’t
possibly go wrong they still will—and in spades!” (This is also known as the
Titanic effect.)) These real-world events are ignored in the “precise” analysis
because it is unrealistic to calculate the probability of an intruder gaining
access—there just isn’t sufficient data for such a mathematically precise estimate.
All one can reasonably estimate is the possibility or the plausibility of such an
event taking place, given the information that you can have on hand or can
reasonably assemble. Realizing this inherent lack of precise and complete data, it
would seem (at least at first glance) that rather than estimating the probability of
an intruder gaining access to your facility as .00162, it is really more accurate to
say that the intruder’s chance of success is‘EXTREMELY LOW’. In making this
replacement of ‘EXTREMELY LOW?’ for .00162, we are sacrificing the “preci-
sion” of the numerical estimate to gain the believability and confidence of an
inexact, “fuzzy” estimate that is both more realistic and easier to interpret.

These two limitations to risk analysis, overall complexity and inherent impre-
cision, can be overcome to some degree if one has access to an automated risk
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analysis utility that allows estimates of risk to be stated in natural language terms
like ‘VERY LOW, ‘MEDIUM TO HIGH,’ or ‘SOMEWHAT HIGH. Both
problems of overall complexity and inherent imprecision then become manage-
able. The automation present in this utility allows one to “simultaneously”
consider a very large number of factors, something that would not be possible if
you had to keep everything “in your head” or if you had to work by hand with the
2000 estimates for the risks associated with each of the 2000 components of the
system. Thus, the apparent overall complexity of the risk analysis task is reduced
to the job of estimating the risk of the individual components and then allowing
the utility to combine these many estimates to produce the risk of the entire
system. The other feature of the utility, that of accepting estimates in natural
language terms, allows one to avoid the false precision that numerical estimates
can provide, and it also allows one to form more reasonable estimates even with a
paucity of data.

All of these benefits require that the automated risk analysis utility deal in an
algorithmic fashion with natural language expressions in a way that is consistent
with their use in ordinary discourse. This text describes such an automated risk
analysis tool and provides the reader with the mathematical background neces-
sary to understand the algorithms used to manipulate the natural language
expressions. With this background and with the knowledge that psychological
studies have demonstrated the “reasonableness” of thisapproach, the reader will
then be prepared to knowledgeably use this automated risk analyzer.
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Chapter 1

REVIEW OF SET THEORY

The theoretical foundations for the automated risk analysis utility that is to be
described are in a rather specialized branch of modern mathematics: the theory
of fuzzy sets. While one can study this theory at a very deep and mathematically
sophisticated level, it is also possible to gain a great deal of useful insight at a
more introductory and expository level. At this more elementary level, one can
consider fuzzy set theory to be a generalization of ordinary set theory: the theory
of collections of things. Much of the fundamentals of ordinary set theory are (or
were!) the basis for the so-called “modern math” approach in elementary and
secondary education and, therefore, are familiar to large numbers of people and
can be grasped without much effort. For those who may have been away from
such concepts for some time, as well as to gracefully ease into what will be for
most a new topic, let us review some of the basic terms and ideas of ordinary set
theory.

As is now known to most students of mathematics, one can consider the notion
of a ser as one of the most basic in modern mathematics. For our purposes we
need only recall that a set is a collection of objects from some universe, U. If the
universe is the natural numbers, we can form a set, A, composed of the numbers,
6, 222, and 376458. We would then write A = {6, 222, 376458} and it would be
exactly clear which numbers in the universe were in the set A (the elements of A)
and which were not. When we specify a set by listing out all its elements as we did
above for the set A, we have specified the set by roster. The only alternative is to
specify the set by rule, i.e., to describe all its elements by some property or
formula. A rule description of the set 4 would be the set of numbers that describe
the length of this text in terms of the number of chapters, the number of pages,
and the number of characters in the original manuscript. The rule method of
specification is usually preferred in the case of infinite sets.

We could lump together the elements of two sets, taking their union, or we
could examine the elements held in common by two sets, taking their intersec-
tion. We could also consider all the elements not in a set by taking its comple-
ment. It is assumed that the reader is quite familiar with such notions and with

the conventional Venn diagrams for depicting these operations shown in Figure
1.1.
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O O

{1,3,6,9, 11} {2,3,5,6,7,8, 11}
A B
COMPLEMENT INTERSECTION UNION

{2, 4,5,7,8,10,..} {3,6, 11} {1,2,3,5,6,7,8,9, 11}
A’ ANB AUB

Figure 1.1 Set Union and Intersection.

One idea that may not be so familiar to the reader is a particularly precise
specification for a set and the manner in which this specification can link set
theory and logic. “It is common for logicians to give truth conditions for
predicates in terms of classical set theory. ‘Johnis tall’ (or ‘TALL(})’) is defined to
be true just in case the individual denoted by ‘John’(or‘/’) is in the set of tall men”
[Lakoff, 1973]. Hence, questions concerning logical reasoning can be reduced to
a determination of set membership. The question of whether something is in a
particular set can be answered through the use of a set specification method
different from both the roster and the rule methods. We can, for any set, A4,
describe a function which determines for any element of the universe, whether
that element is a member of A. Such a function is called the characteristic
Jfunction of A, and is defined by:

0 if x is not in the set A
chara (x) = .
I if x is in the set 4

This function is defined for all the elements of the universe. It is a function
mapping the whole of the universe U to the set of two elements {0, 1}. (We usually
write this as chara (x): U — {0 1}.)

With an identification of {0, 1} and {false, true}, this characteristic function can
also play a role in assigning truth values to statements about 4. The most
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elementary statement about A4 is one of the form “x is an element of 4.” In this
case, the characteristic function also acts as a truth function: if x isan element of
A, then chars (x) = | = true = truth_value (“x is an element of A™).

These notions from set theory form the basis of modern mathematics, yet they
seem rather inappropriate to our needs in risk analysis: they require too much
precision - precision which we do not have and cannot obtain. It would also seem
that any mathematical tools built upon this foundation would also inherit these
deficiencies. We must use theories built on an entirely different base.






Chapter 2

FUZZY SET THEORY

With these preliminaries of set theory reviewed, let us propose a generalization of
that theory. This generalization will be accomplished by suitably modifying the
notion of membership ina set. What if an element was not completely in a set and
was also not completely our of a set, but rather was half in and half out? Consider
the following example:

A = {x | x is a natural number and
Mary’s car can hold x adult passengers}

and suppose that Mary’s car is a Pinto. Then it seems safe to state that 0, 1,2, and
3 are all elements of 4 and it seems equally safe to state that 7, 8,9, ... are not
elements of 4. But what about 4, 5, and 6? Intuitively, 4 is more in A than6 is, or
more precisely, it is more plausible that 4 is an element of A than itisthat6isan
element of 4. This notion of the plausibility of set membership (as distinguished
from the probability of set membership [Kaufmann, 1977], [Zadeh, 1980]) leads
to the generalization of the degree of membership in a set, and from this
generalization comes a variant of the set theory discussed earlier; this variant is
called fuzzy set theory.

A fuzzy subset of some universe U is a collection of objects from U (the set
part) such that with each object is associated a degree of membership (the fuzzy
part). The degree of membership is always a real number between zero and one,
and it measures the extent to which an element is in a fuzzy set, or in ordinary
set-theoretic terms, it measures the plausibility of an element being in a particular
set. A degree of membership of 0 for an element of a fuzzy set corresponds to an
element that is not in an ordinary set, and a degree of membership of 1 corres-
ponds to an element which is in an ordinary set. Therefore, if the universe is the
set {a, b, ¢, d, e, f}, then a fuzzy subset, A, of this universe could be defined as

a is present with degree of membership 1.0
b is present with degree of membership .9

¢ is present with degree of membership .2

5
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d is present with degree of membership .8
e is present with degree of membership 1.0
/'is present with degree of membership 0

Equivalently, 4 could be written
{1/a, 9/b, 2/c, 8/d, 1]e}

where the degree of membership is juxtaposed next to each element and elements
with 0 degree of membership are omitted.

The exact relationship of the notion of a fuzzy set to that of an ordinary set can
be seen most clearly when one recalls the definition of the characteristic function
of a set. For an ordinary set 4, the characteristic function is of the form

chara (x) : U — {0, 1}
but for a fuzzy subset A4, it is
charq (x): U — [0, 1]

where here the degree of membership function is the characteristic function. The
characteristic function of a fuzzy subset, instead of mapping to the set of two
elements (a binary choice of either being in or out of a set), is a mapping to a
portion of the real line, allowing a continuum of possible choices. If the range of
the characteristic function of a fuzzy set, A4, (i.e., its degree of membership
function, char4 (x): U—[0, 1]), is in fact restricted to just the two values of 0 and
1, then this function reduces to an ordinary characteristic function and 4 reduces
to an ordinary, non-fuzzy set. We see then that fuzzy set theory contains ordinary
set theory as a special case.

Before we continue in our discussion of the principles of fuzzy sets and in the
extension of results from ordinary set theory to fuzzy set theory, it is worthwhile
to examine the motivation for making this extension. While it is certainly
sufficient in this regard to say that fuzzy sets are studied for the same reason
n-dimensional, non-Euclidean geometry or any other branch of higher mathe-
matics is studied, because it is there, the manipulation of fuzzy sets represents
something more than mental gymnastics. The originator of the notion of fuzzy
sets, Lotfi A. Zadeh, has stated:

One of the aims of the theory of fuzzy sets is the development of a methodology for
the formulation and solution of problems which are too complex or ill-defined to be
susceptible to analysis by conventional techniques [Zadeh, 1980].



