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in purpose of this book is to present and compare various ways to introduce
gue integration. The underlying observation is that the usual methods (catch-
Carath&odory, Bourbaki, Daniell) from a certain point on follow similar
-ybes. We shall show that these methods can in fact go together a considerable
of the way.
‘This common part can be roughly described as follows. In.each of the méthods
sbtains somehow a space B of basic functions on a set S, together with a posit

r functional I on B that has a certain continuity property. Then one enlarges

space B and the appropriate functional I are readily constructed. Then one has
aki's point of view, here denoted by T. In this case B consists of the real-
ued continuous functions of compact support on a locally compact Hausdorff spacé:
nd I is assumed to be given from the outset as a positive linear functional on B
thout further requirements). Finally, in Daniell's method as extended by Stone
h B and I are assumed to be given a priori. As noted before, I must satisfy some
tinuity condition. There are two feasible possibilities for this condition; they
denoted by D or D', where D' is the stronger of the two. It turns out that R
ds to D, and T to D', so in a way the first two methods are concrete, and the

ast one is an abstraction of the first two.

pose we have a class B of basic functions on S with a positive linear functionalf“
an appropriate continuity condition D or D', how do we get at L? As said beforei
ust be completed and I suitably extended. For this completion we use a norm :
ined on the class ¢ of the IR'-valued functions on the underlying set S. One of 2
requirements for such a norm is that it coincides with I for the non-negative
ﬁbers of B, and another is that it satisfies a strong triangle inequality. A

tuation where we have B, I and a suitable norm |||l is called a station N(B,I,ll-Il),

r N. (There will appearlmany such stations; they always consist of function classes;‘; %

‘unctionals, and certain relationships between these objects. The reason for using

term "station'" will be clarified later.)




AGB,I,A,3) > NGB,1,1-I)

~tional I, we are given a class A of auxiliary functions (certain non-negative

valued functions on S) together with a positive functional J on A. Such a sit

V.must be connected in some way with B and I, and cannot be chosen arbitrarily
f the restrictions is that the values of the norm and the functional I should
‘ide for non-negative basic functions. The dotted arrow in the diagram indicat.

- in some situations the pair (A,J) may be derived from the pair (B,I). In the

non-negative members of B, and J must be a restriction of I. This is equivalen
: ell's original approach. Since D' is stronger than 0, so that any station D'(.
lso a station D(B,I), the same procedure may be applied in the D'-case. In thL'
» however, there is a second pOSSlblllty (an abstraction of part of the Bourb:
ion of integration theory), which quite often furnishes a bigger class of
ciliary functions and a richer theory of integration.
‘ ﬁeparting from N, the class of integrable functions is defined: it consists o

real-valued functlons on S that can be approx1mated arbltrar11y closely (with

R+ D(B,1)

T D’(B,I)/

A(B,I,A,J) » N(B,I,ll-ll) » L(L,I)




This is not the whole truth, however, for it w111 turn out that ew
L is also a D, that is, an arrow may be added from L to D. The new diagram

ins the following substructure:

/\
¢ g

way it is drawn suggests the name "circle line" for this structure and the term
ation" for D, A, N and L.
The name "circle line" itself suggests several questions. For instance, one :
rt from D and develop the theory by means of D > A > N > L. What happens if one
kes the transition L » ?, and repeats the process? The answer is simple: nothing
anges. In particular, if one starts from T or R and makes the transitions indical
the arrows, then the class of integrable functions and the integral w111 be def

ively fixed at the first confrontation with L.

we give a short description of the contents of each of the seven chapters.
bter O contains some preliminary material: the fundamental notion of a Riesz
ction space, enough topology to read the chapter on integration on locally compa
1sdorff spaces, something about Riemann-Stieltjes integration, and unordered summa:
on. Most of this will be familiar to most readers. In Chapter 1 the stations of th
cle line are developed, the connections between stations are described, and some
estions are studied that arise from the possibility of travelling more than once 1
e circle line. In Chapter 2 the theory is further developed; here L or N is the
arting point; one meets measurability, LP-spaces and local null functionms. The ne
pter is devoted to measure theory. It contains the description of R and the con-
;'lon between R and D. Since R has more structure than D (or A, N, or L), there ar
re refined results connected with approximation of integraﬁle or measurable func-—
ions and sets. Since there is also a simple comnection L -~ R, the circle line is'
resent in this chapter, too. Chapter 4 is about station T and the connections T + D
" > D'. The results of the two ways to derive a norm are compared, and the theory i
eloped further for the Bourbaki method. As in the R-case, there are approximatl'
results for integrable or measurable functions. Moreover, the important Riesz
epresentation theorem is discussed, which establishes a connection between T and P
The final two chapters are not related to the circle line. Chapter 5 is about
signed measures. The main result is the Radon-Nikodym theorem; an important anplica-
ion of this theorem is the 1dent1f1cat10n of continuous linear functionals on =

i's p < ®). Classical questions about the relationship between differentiation and




gether with product measures to a question about stochastic processes

d not know anything about stochastic processes, though.)

‘the contents of this book is standard, and can be found in many other text:
as well (except, perhaps, the section about the relation between differenti.
d integration, and Section 6.5). It is the presentation of the material,
us to describe and compare the various approaches to Lebesgue integration,
‘1ngu1shes this work from many other books. The central idea of relatlng
approaches to 1ntegrat10n in the circle line is due to N.G. de Bruijn.

nmtes by him were the starting point for this book.




> @, IR and € have their usual meaning, denoting the sets of natural numb

rs, rational numbers, real numbers and complex numbers, respectively.’Thé;
gl IR denotes the set of extended real numbers, that is IR together w1th ®
while IR and n& denote the non-negative members of IR and IR respective

means "is defined by". For instance, p := X defines p as the square of x.

and T be non-empty sets, and let f : S > T be a function. For any subset B o:

jection (that is, if f is one-to-one), then the inverse function of f, whicl

‘ hed on the range of f, is also denoted by £, x

defines a function f : S > T. We write f := Tse
ned to be that function that takes at S the value f(s). (Note that the range
ce T need not be mentioned explicitly.) For instance, we may write s := T

defines s on IR as the squaring function, or cos := TerR z:=0 (-1)n

defines the cosine function on IR.

position of functions is denmoted by means of o. Thus f o g := Tses f(g(s)), if

ie he domain of g and g maps S into the domain of f.




CHAPTER ZERO
PRELIMINARIES

ing presented is necessary for each of the following chapters. We indicate
ly what the reader should minimally do.

The first section tells what a vector space is, and in particular what a Riesz
ion space is. Every reader should know the contents of this section. The secon&
on is about topology. Except for the notion of completeness, its contents are

needed before Chapter 3, and the product topology is used only in Section 6.3.

. there is a short section giving the definition of a normed space and of an inn'

1on deals with summation. In a certain sense it exemplifies what happens in
er 1, but only the facts about change of order of summation in series are real
ssary; these may as well be taken on faith. The final section, about Riemann and
n-Stieltjes integration, may be read through quickly. In order to follow our
lopment of integration the knowledge of calculus is almost sufficient. What one

ther needs is knowledge of the real numbers, and pencil and paper.

Algebraic preliminaries

t readers will meet only one new concept in this section, namely that of a Riesz
ction space in 0.1.6. Since this concept is fundamental in our approach to integ

on, one should at least read its definition.

In integration theory it is convenient to extend the set IR of real numbers
the symbols ® and -«; the resulting set is denoted by r* and called the
nded real number system. The algebraic operations are partially extended to R
an obvious way, roughly by thinking of = as a very large positive number. For
ance, if x € IR, then x + © = © + x = ®, and if in addition x > 0, then :
®=® s+ x =o yhile if x <0, then x * © = ® « x = -, Moreover, we use the con—
M0 » o=+ 0=0¢ (-») = (=) « 0= 0, and this will turn up quite often in
ollowing. Expressions like w — remain undefined, because there seems to be no
to handle them consistently. The notions of order, and of supremum and infimum
sxmllarly extended. For instance, if S is a subset of IR which is not bounded

ve (so there is no a ¢ IR such that s < a for all s ¢ S), then we write sup S =




lement (x,y) € V x V into the sum x + y ¢ V, while scalar multiplication take

ent (a,x) € IR ¥V into the scalar multivle ax ¢ V. These operations are asst
4 ¥ v

satisfy the following conditions. If x,y,z € V and o,B ¢ IR, then

G Sk i (0 + B)x = ax + Bx ,
x+y)+z=x+(y+2z2), alx +y) = ax + ay ,

a(Bx) = (aB)x ,

le there is a unique element O ¢ V such that u + 0 = u for all u e V. Thls eleme
whlch behaves neutrally with respect to addition, is called the zero element of V

QllOWS that -x, which is an abbreviation for -I-x, satisfies x + (-x) = 0, and

What we have defined is commonly called a real vector space, because the scal:
taken from IR. In one or two places in the following we shall have occasion to

'complex vector spaces, where € acts as the scalar field, that is, where multi—

Let V be a vector space (real or complex). A linear subsnace W of V is a
n-empty subset W of V such that x + y € W and ax € W for all x,y ¢ W and all sca
Obviously, W is a vector space in its own right with the operations inherited

om V.

1.4. The nicest functions on a linear space are the linear functions. Let V and W
- vector spaces (both real or both complex). A mapping f : V > W is called Zinear i
ox + By) = af(x) + Bf(y) for all x,y € V and all scalars a,B. Since the field of

alars is itself a vector space, it may be taken in the role of W, and in this parﬁ

ular case f is called a linear functional.

1.5. Most vector spaces that we shall consider are of a special kind, which we
now describe. Let S be a non-empty set, and let W be a vector space (real or comple:
Denote the scalar field of W by K. Let f and g be two functions from S into W. The
sum function £ + g is defined by

£+g =1 _(£(s) + g(s)) ,

seS

?dnﬂ if o € K, then of is defined by




,'ﬂy set of functions from S into W such that f + ghelVy af €V
e V and o € K, then V is called a function svace. It is a little b1t
ut noc difficult, to check that with these operatlons V is a vector space

~ The most important function spaces in the sequel consist of real-valued

ons, and have additional structure. Once again, let S be a non-empty set. If
~are real-valued functions on S, then the functions sup(f,g), inf(f,g), |fl| are*
vd'by

sup(f,g) seg Sup(£(s),g(s)) ,

inf(f,g) := seg Inf(£(s),g(s)) ,

= Yseslf(s)l ;

ction space V over IR is called a Riesz function space if sup(f,g) € V and

g) € V for every Eigtie Ve
If V is a function space over TR and f e V, then [f| € V, since |f] = sup (£,-£)

ely, if V is a function space over IR, and |f| ¢ V for every £ eV, then Vi
liesz function space, as one sees by noting that
sup(a, b) i(a +b) + }la - bl ,
inf(a,b) = §(a + b) - i|a - b|
all a,b € TR.
If f and g are elements of a Riesz function space V, then we write f > g (also
£) if sup(f,g) = f. For any W c V we put Woge {£cw.| £ 0} In particular,
> 0} A linear functional I defined on V is called positive if
0 for all £ e V. A subset W of the Riesz function space V is said to be
ted if for every f,g ¢ W there is an h ¢ W such that h > sup(f,g). Obviously,
1,fz,...,f } is a finite subset of the directed set W, then there exists h € W 4

. that h > sup(fl,fz,...,f 58




\S“P“'I(‘b)l | 0<¢ <ol <w

¢ € B+. Show that I can be decomposed as I = I+ =7k liwhere I, and I_ are

sitive linear fundtionals on B. Use the following steps.
For ¢ € Bt put
I,(9) := sup{I(¥) | 0 <¢ <o},
I_(¢) := sup{-I(¢) | 0 < ¢ < o}
aw that I is a non-negative function on B satisfying I (u¢] # Bmz) =

aI (wl) + BL (mz) for a,8 20,9,,0, € B" , and that I (ml) > I+(¢2) if 9, 20
30y € B*. Ditto for I_.

i) Show that I(¢) = I,(p) - I_(p) for o ¢ B'. (Hint. Use that I(o) + I_(p) =
sup{I(p - ¢) | 0 < ¢ < g}.)

) For ¢ € B put 9, := sup(9,0), ¢_ := sup(-9,0), I+(¢) i= I+(¢+) - I+(¢_),
) :=1_ (9,) - I_(g_). Show that both I, and I_ are positive linear functionals
B and that I(g) = I+(¢) - I_(o) for ¢ € B. (Hint. Show first that

+ +
'((P‘l) 7 I_,_(‘Pz) 5 I+((P3) i I+(¢l‘) if ¢1a¢2,®3s¢4 € B and 91 T (Pz i ¢3 = ‘Pa')

B (=T has the following extremal property. If I = I' = Tiifor p051t1ve 11neat
unctionals I} and I', then WECpDrT (m), I_(p) < I'(g) for all ¢ ¢ Bt

Topological preliminaries

section contains what we need from general topology. The simpler proofs have

uniform convergence in 0.2.12, Urysohn's separation lemma in 0.2.16, and the theorem

~ on the existence of partitions of unity in 0.2.17) are proved in full.

0.2.1. A metric space (S,d) is a non-empty set S and a function d : S x S » R' s
'1phat d(x,y) = d(y,x), d(x,y) < d(x,z) + d(z,y) for all x,y,z ¢ S, and such that
(x,y) = 0 if and only if x = y. The function d is called a metric on S. Sometimes

peak of the metric space S, with metric d. In a metric space (s,d) one has a noti




o be a seééencé in '8, !
qm»,‘d-(xn,x) = 0. Then the sequence (xn)neIN 1s said to be convergent to x

to x or converges to x), and that x is limit of the sequence. Notation:

e a sequence has at most one limit, so we can speak about the limit of a con-
nt sequence.

If x € S and § > 0, then the oven ball with center x and radius 8, is the set
= {yie 8 | dx,y) < 6). It is easy to prove that x = 1:i.mn_’m x if and only if ;
very 6 > 0 one has X, € Bx.d for all but finitely many n ¢ IN. A subset of S is
2d bounded if it is contained in some open ball.

A sequence (xn)n N is called a fundamental sequence or a Cauchy seauence if
‘xm) f 0 (n> =
d(xn

» m > ®); that is, if for every e > 0 there exists N ¢ IN such

,xm) < € whenever n > N, m > N. A convergent sequence is a fundamental

uence, but a fundamental sequence need not converge. If in a metric space every

mental sequence is convergent, then it is called complete. Important examples
complete metric spaces are the spaces r"

ity - (Zi=1 x; - yi|2)£

(where n ¢ IN) with the usual metric d

for x = (xl,...,xn) € IRn, y = (yl,...,yn) e ®R"

. A topological space (S,T) is a non-empty set S with a collection T of subsets

> satisfying the following conditions:
Pie T, 'S e T,
LU Vo e T, ‘then U n-V ¢ .T.

191) If {Ua [B5ie &Y 955 a collection of members of T, then UaeA Ua o U8

~members of T are called open sets, and T is called a tovology for S. The com-
lements in S of open sets are called closed sets.

The conditions for a topology
ly that the intersection of any collection of closed sets is closed, and that the
n of finitely many closed sets is closed.

If A is a subset of the topological space S, then its closure A is the smallest
sed set containing A; that is,
tain A.

A is the intersection of the closed sets that

The interior A° of A is the largest open set contained in A, or also, A°
the union of the open sets contained in A. A neighborhood U of a point x € S is a
set of S such that x ¢ U°, A subset A of S is called dense in S if A = S. A

ological space is called separable if it has a countable dense subset.

In a topological space (S,T) convergence of sequences is defined as follows.
,;_\(xﬂ)ne]N be a sequence in S and x a point of S. We say that the sequence (xn)ne]N

convergent (converges or tends) to x (with respect to the topology T) if for
ry neighborhood U of x we have x, € U for all but finitely many n ¢ IN. Again, x

~called Zimit of the sequence.

e

(It may occur that a sequence has more than one
imit, see Exercise D:258Ci1)s5)



. Any metric space is aisa”a'iopélbgical space. For

let (S,d) be a metri
e. Call a subset 0 of S open if for every x € O there exists an open ball

s < 0 (the & may of course depend on x). It is now not difficult to see that th

lection of open sets thus defined is a topology for S; it is called the metrie
ology. The open balls are open sets for the topology.

Different metrics can give rise to the same topology. For examole, the usual
ric for ®" generates what we call the usual topology for IRn, but this topologj

'.also generated by the metric d'(x,y) := max{lxk - ykl | 1 <k <n}, or by

@y) 2= Ry I = vl .

In a metric space convergence of a sequence in the metric sense is equivalent

|

convergence in the topological sense.

T
AeB

a metric space the collection of open balls is a base for the metric topology.
A topological space is said to satisfy the second axiom of countability if its

pology has a countable base.

2.5. 1If (S,T) is a topological space, and A is a non-empty subset of S, there is
natural topology on A: just take {A n U | U e T} as the collection of open sets.
his topology is called the relative topology induced on A; it is denoted by T|A.

points x € S, y € S, there exist neighborhoods U of x and V of y such that U n V = .

n a Hausdorff space a sequence has at most one limit. A metric space is a Hausdorff

ace.

+2.7. Let A be a subset of the topological space (S,T). An oven covering of A is a

ollection of open sets whose union contains A. We call A commact if every open

‘union still contains A).
In R® with the usual topology we have the important theorem of Heine-Borel: a

subset of IR" is compact if and only if it is closed and bounded (see Exercise
'-U. 2—]0) .




sed ub&et of S. Then CnF is compact.

%f< Exercise 0.2-9.

.9. Compact subsets of a topological space behave more or less like finite sets.

éxample of this phenomenon is the following result, which will be needed in the
roof of Urysohn's lemma.

)

position. Let (S,T) be a Hausdorff space, C and D disjoint compact subsets of S.

there exist disjoint open sets U and V in S with C < U, D < V.

First assume that D consists of one point only, x say. For every y € C there

st disjoint open sets Uy and Vy such that y € Uy’ X € Vy' Now O := {Uy | iy e G}
an open covering of the compact set C. Hence Q contains a finite subcovering

yeb -y yeE 'y

| ¥y € E}, where E is a finite subset of C. Now U := U U and V := N v, are
open sets that are clearly disjoint, and they cover C and {x}, respectively.

To handle the general case, apply the result just proved as follows. For every

€ D there exist disjoint open sets Ux and Vx with C < Ux’ X € Vx. Now {Vx | ‘= < p}

an open covering of the compact set D, which therefore contains a finite sub-

ering {V_ | x € F} where F is a finite subset of D. The sets U := N U_ and
X xeF x

=U V_ satisfy the conditions.
xeF 'x

It is worth noting that the first part of the preceding proof shows that in_‘

§2+:10.

L :
‘Hausdorff space compact sets are closed.

e Tet (S, T) and (S',T') be topological spaces. A mapping ¢ : S - S' is called
%ﬁontmnuous if ¢ (U) e T for every U e T'. If (S",T") is a third topological space,

@ ¢ S>8' and ¢ : S' > S" are both continuous, then the composite function

o ¢ is continuous.

If the topology T on S is generated by a metric d, then continuity of

S > S', where S' is a topological space, is equivalent to the following condi-

n: for every x € S and every sequence (xn) in S with x > X, one has

3 neIN
x) > o(x).

Let (S,T) be a topological space, and let ¢ : S > IR. The support of ¢ is the

Q212

The next result is known as Dini's theorem.

ieorem (Dini's theorem). Let (S,T) be a topological space. Let (tpn)nEIN be a

sequence of continuous real-valued functions on S that decreases to zero nointwise,



