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Preface

This is an almost unchanged version of my 1988 Habilitations-
schrift at Regensburg. My original plan was to completely rewrite it for
publication; in particular I wanted to make it more readable for the
non—expert. Finally I chose to rather publish it like it is than turn it
into a long range project. So I have only made some minor corrections
and added three appendices. The first one reproduces a letter from S.
Bloch to me and the second one consists of an example by C. Schoen. I
thank both for the permission to publish this material, and the latter
for the effort of rewriting the example, which also figured in a letter to
me. The third appendix contains some remarks and complements
written in 1989.

Uwe Jannsen
Bonn, November 1989



Introduction

This text consists of three parts. In part I we define a
category of mixed motives in the setting of absolute Hodge cycles.
In part II we investigate, as general as possible, relations between
algebraic cycles, algebraic K-theory, and mixed structures in the
cohomology of arbitrary varieties. In part III we present some
conjectures on Chern characters from K-theory into ¢-adic cohomology
for varieties over finite fields or global fields, and prove these

in some (very) specific cases.

Background The concept of motives [Ma] ,[Kl] , [SR] was introduced
by Grothendieck to explain phenomena in different cohomology theories
of algebraic varieties in a coherent way, in particular those re-
lated to algebraic cycles and weights. For example in both the
/-adic and the Hodge theory the cohomology Hi(X) of a smooth
projective variety is pure of weight i, the class of an algebraic
cycle of codimension j can be interpreted as a morphism from the
trivial structure into sz(X)(j), and the parallel formulation of the
conjectures of Hodge and of Tate is that the functor sending a
motive to its cohomological realization is fully faithful.

All this only concerns cycles modulo homological equivalence and
does not cover singular or non-compact varieties, which often arise
in algebraic geometry. Concerning these, Deligne shows in [.D5 ]

§10 that cycles homologous to zero give rise to non-trivial ex-

tensions of pure structures of different weights - this is called
a mixed structure - and in his treatments of Hodge theory and
{-adic cohomology [D5] , [D9] shows that the cohomology of arbitrary

varieties gives rise to mixed structures, too. Indeed, both facts
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are directly related, and one expects a description of the whole

Chow group and a satisfactory treatment of arbitrary varieties in

the setting of a category of mixed motives [Bei 4] , [D10] . Finally,
work of Beilinson suggests that mixed motives are related to higher

algebraic K-theory, like cycles are related to Ko [Bei 1] , [Bei 2].

Grothendieck's definition of motives is 'quite simple, but only
gives a satisfactory theory together with the so-called standard
conjectures. Deligne has given a "working definition" of motives for
absolute Hodge cycles (the latter ones replacing the algebraic cycles
in Grothendieck's definition), which often suffices for the appli-
cations [DMOS] . An algebraic definition of mixed motives is
problematic, since Grothendieck's methods (algebraic correspon-

dences and idempotents) neither apply nor extend in an obvious way.

Part I In §1 we start with the simple but crucial observation that
- in the language introduced later - a subrealization of the reali-
zation of a motive for absolute Hodge cycles (AH-motive) is a direct
factor and hence a submotive. As a corollary we show that there are
natural AH-motives associated to modular forms, having as {-adic
realizations the representations constructed by Deligne [D1] (Re-
cently, Scholl [Sch 1] constructed these motives algebraically).
Another application is the construction of direct factors in the
£-adic cohomology.

In §2 we make a precise definition of a category Bk iq which the
realizations of AH-motives over a field k live, by defining a bigger

category MR of mixed realizations, in which also mixed structures

k
are allowed. These obviouslv are Tannakian categories, and we study
some of their formal properties.

In §3 we prove that for a smooth variety U over a field

k of characteristic zero its f%-adic, deRham and Betti cohomolo-
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gies define an object H(U) in ggk . The techniques applied here are
all taken from papers of Deligne, the main point consisting in
showing that one has a weight filtration in each theory which is
compatible with the comparison isomorphisms, and that the pure quo-
tients are AH-motives.

In §4 the category MM of mixed motives over k is defined as the

k
Tannakian subcategory of ggk generated by the H(U) . We prove
that Deligne's category &k can be identified with the Tannakian
subcategory generated by the realizations of smooth, projective
varieties, and can be identified with the full subcategory of pure
objects in g&k . This gives a simpler definition of M, than the ori-
ginal one, avoiding the processes of taking the pseudo-abelian
hull, inverting the Lefschetz object and changing the commutation
constraints. If G and MG are the associated "Galois groups" of
the neutral Tannakian categories Mk and ggk (for some fibre
functor given by Betti cohomology), then the embedding Mﬁ»ﬂ&k
defines a homomorphism MG -» G , and the above is reflected in an
exact sequence of pro-algebraic groups

1T ->0->MG >G> 1,
with connected, pro-unipotent U, identifying G with the maximal

pro-reductive quotient of MG

Part II §5 is, except for theorems 5.13 and 5.15 (comparing O(X)x
with Deligne cohomology H;(X,Z (1)) or étale cohomology H;t(x,z&(1))),
mainly motivational. The conjectures stated here for the smooth
case are contained in those formulated later for arbitrary varie-
ties.

In §6 a very important tool appears, the notion, due to Bloch
and Ogus [BO],of a twisted Poincaré duality theory, axiomatizing

the aspects of a cohomology theory and an associated homology theory.
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In this setting the "Poincaré duality" is an isomorphism

(0.1) H' (X,3) = H (X,d-3) , d=dim X ,

2d-1
between cohomology and homology for smooth X . We define a version
with values in a tensor category, also introducing the concept
of weights modeled after the situation for mixed Hodge structures
or mixed ¢-adic sheaves. After discussing ¢-adic, deRham and Betti-
cohomology we prove - extending the results in part I - that
there is a Poincaré duality theory with values in gﬁk .

In §7 we propose how to extend the conjectures of Hodge and
Tate to arbitrary varieties. The basic observation is that the right
setting is the homology, the classical formulations being reobtained
by (0.1). We show that this Hodge conjecture is true if and only
if the classical Hodge conjecture is, and that the same is basically
true for the Tate conjectures.

In §8 we recall some properties of Chern characters and Riemann-

Roch transformations assuring that the maps

©.2) B x,0m)80, - K (xx K0, (b)) har k # &

‘ " MO ¢ a Ry i char + L,
M _

(0.3) Ha(X,Q(b))—’ FHHa(X(C),Q(b)) , k =¢,
M

(where H is the motivic homology defined by Beilinson via K, (X)
and TH denotes the group of Hodge cycles), satisfy all functoriali-
ties of morphisms of Poincaré duality theories. We state conjectures
on the surjectivity of (0.2) and (0.3) and extend theorems 5.13 and
5.15 to arbitrary varieties, thus proving the conjectures for curves.
In §9 we discuss relations between extensions of realizations
and algebraic cycles homologous to zero. As a consequence we show
why a naive extension of the conjectures of Hodge and Tate to the
surjectivity of (0.2) and (0.3) for arbitrary a,b € Z 1is false. In
particular, this disproves a Hodge-theoretic conjecture by Beilinson
[Bei 2] . We deduce the counterexample from examples of Mumford on
the non-injectivity of the Abel-Jacobi map
23~

cnl (X), - H 1<x,¢)/sz'1 (X,%Z (3)) + F?
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Then we extend everything to the {-adic Abel-Jacobi maps

1 29-1

B
CH (x)o - Hcont(Gk’H

(Xx k, 2 (3)))
by using results of Bloch [Bl 1]

In §10 we extend Bloch's results to higher-dimensional varieties
and show that Abel-Jacobi maps are non-injective quite principally,
for any reasonable Poincaré duality theory - provided the base
field contains too many parameters. The main theme of our conjectures,
and of several conjectures of Bloch and Beilinson, is that the si-
tuation is different for finite fields, global function fields,
and number fields.

In §11 we recall some ideas of Beilinson on mixed motives [Bei 4].
We stress the fact that his philosophy of mixed motivic sheaves would
imply some quite explicit conjectures - extending earlier ones by
Bloch - on the structure of Chow groups of smooth projective
varieties over arbitrary fields., I think these should be regarded
as an extension of Grothendieck's standard conjectures to the whole
Chow group. We remark that they would follow from the injectivity
of some cycle mabn.

Part III Our basic conjecture for varieties over finite fields
is that here (0.2) is an isomorphism. In §12 we prove it in some
cases and show that it would follow from several "classical" con-
jectures on smooth, projective varieties, at least if we assume

a weak form of resolution of singularities. The conjecture would
imply a description of motivic homology of arbitrary varieties X
over arbitrary fields of positive characteristic, by writing

X = 1lim X , with varieties Xl over E‘p and flat transition maps,

i Xy

¢ M M i . .

since Ha(X,Q(b)) = 1;m HaAXu,Q(b)) . We explain this in more detail
o

for the case of a global function field k . Note that we need

non-proper Xa even for a smooth, projective X , and observe

the similarities and the differences to the approach of Artin and

Tate in [D.E.]



We don't have a similarly general conjecture for number fields,

but in §13 we discuss a conjecture on the bijectivity of

M ~et
(0.4) Ha(X,Q(b))QQZ S Ha (X,Qz(b)) ’
(where ﬁst is a certain modified étale homology) in the "stable

range" a > dim X + b . This is related to certain Galois cohomolo-
gical investigations in [J3]

The extreme counterpart of pure structures are mixed structures
whose pure pieces are as simple as possible, i.e., Tate objects, so
that only mixed phenomena remain. In §14 we define a class of
varieties (containing those stratified by linear spaces, like
Grassmannians or flag varieties) with this property, and prove most

of our conjectures for these varieties.

Final remarks and acknowledgements

I learnt about motives for absolute Hodge cycles in inspiring
lectures by G. Anderson (Harvard 1983/84), and my own investigations
were started by a question of N. Schappacher whether the realiza-
tions for modular forms come from such motives (see §1). A. Scholl
brought my attention to the paper by Bloch and Ogus, and communi-
cated to me some ideas on K-homology and extension classes (cf.
§6). It is a pleasure to thank them for this inspiration and the
latter two for further discussions.

The first four chapters exist in this form since end of 1985
and were communicated to a few mathematicians. It should be noted
that a construction similar to our category MR

k

in a recent paper by Deligne. It will be clear to the reader how

also appears

much parts II and III are influenced by work and ideas of Bloch
and Beilinson, but I would also like to stress the influence of
Deligne's work on 1-motives [D5] and his reinterpretation of
Beilinson's ideas in [D10] .
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PART I

MIXED MOTIVES FOR ABSOLUTE HODGE CYCLES

§1. Some remarks on absolute Hodge cycles

Let kX be a field of characteristic zero, which is em-
beddable in € . Fix an algebraic closure k of k and let
Gk = Gal(/k) . In the following we deal with motives for ab-
solute Hodge cycles as defined by Deliane in [D6], see also
[DMOS]II §6, in particular we use similar notations as in
these references. Then a motive M over k has realizations
HDR(M) - a k-vector space with a descending filtration FP

Hl(M) - (for each prime number 1) a Ql-vector space, on

which Gk acts continuously,

HG(M) (for each embedding o0: k<= €) a (Q-vector space
with a Hodge structure on HG(M) ® R, i.e., a 0O-
Hodge structure,

all of the same finite dimension. Furthermore, there are com-

narison isomorphisms

I, 5 @ Hy(M 8, €

13

HDR(M) ek,o C

and

I, - : HO(M) ®

1,5 0, 2

4
fa of
—
=

®

for each extension o : k< ¢ of o

If X is a smooth projective variety over k and n 2 0

an integer, the motive M = hn(x) is given by the realizations

— n -_— n >
HDR(M) = HDR(X) = HDR(X/k) (de Rham cohomology)
_ .n _.n o, = e
Hl(M) = Hl(X) = Het(hxkk,Ql) (1-adic cohomology)
n n .
H (M) =H_(x) =H (Xxk'OC,Q) (singular cohomoloay) .



The comparison isomorphisms are obtained from the canonical
ones between the cohomology theories of the variety oX =

X x ¢ over € . Namely I 5 1is given by

k,0 1,
H (k. €,00) 2L HD (xx, €,0,) Sou", (xx,F,0,)
k,0" "1 et " Uk,0 L T Hap X8
and leo is induced by
" (0X,¢) <S5 H] (0X/€)
dim X #
If we let h(X) = @ h'(X) , any motive M is a direct
n=o
summand of h(X) (m) , the m-fold Tate-twist of h(x) , for some

smooth projective X and some m € Z
The following lemma, which describes the possible summands,

is rather easy but very important for the following.

1.1. Lemma Let M be a motive over k . Suppose given a
k-subspace Upr € HDR(M) , for each 1 a Ql—subspace U1 <
Hl(M) , which is a Gk—submodule, and for each o0: k> C a
NO-subspace U0 < HO(M) , which is a sub-®-Hodge structure,
such that these subspaces correspond under the comparison iso-
morphisms. Then there is a decomposition M = M1 @ M2 in mo-

tives such that Ua = HQ(M1) < HQ(M) where o runs through

the indices DR, 1 and o .

Proof As the subspaces Ua are compatible with the weight
gradings (this is implicit in the statement that the UO are
sub-0O-Hodge structures), we may assume M pure of weight r ,

say. Then there exists a morphism of motives
v v
Y : M > M(-r) (M = dual of M)
giving rise to non-degenerate pairings for o € {DR,1l,0}

k a = DR
/B Ha(M) ® Ha(M) - Ha(l(-r)) = @l(-r) o =1

®(-r) a =g



which are compatible with the various structures like G, -—action

k
for o =1 and Hodge structure for o = o etc., and correspond
under the comparison isomorphisms. Moreover, the ¢ induce

o

polarizations of real Hodce structures.
Hy MR ® H (M)OR - R(-r)

In fact, to fix ideas we may assume - by twisting with powers
of the Tate motive and adding other motives - that M is
hr(X) for a smooth projective variety X of dimension d

over k . Then by using a very ample divisor and the hard Lefschetz

theorem one constructs an absolute Hodge cycle in Cig_r(XxX)

giving a homomorphism

o : WY x) - n24Tx) (-,

the motivic version of the "*-operator" in Hodge theory, see
[DMOS] II 6.2. The pairings wa above are then obtained by

combining with the Poincaré pairings

2d-r 2d tr
S (X) > Ha x) 2 Ha(l(—d))

HO(X) @ H
o
and twists by d-r ., Or: the Poincaré pairings give an iso-

morphism h2d_r(X)(d—r) > ht (x)V (-r) , whose composition with

¢ is VY .
Let VDR p Vl and Vo be the orthogonal complements of
UDR r Uy and U0 ; respectively, with respect to the pairings
] ;Y and y . By the compatibility of the these spaces
DR 1 o o

then correspond under the comparison isomorphisms. Also the

Va are substructures of the Hu(M) like the Ua : the G -

k
invariance of vl follows from the Gk—invariance of Ul and
wl , and Vo is a sub-0-Hodge structure, as wo is a polariza-
tion of ®-Hodge structures. This also shows that Uo n VU =0

(compare Deligne's argument [D4] p. 44, that any sub-structure
of a polarized Q-Hodge structure is a direct factor): one has

(ZTTi)rlJJO(x,Cx) >0 for all O+ x € H (M) ® R , where C is



the Weil operator: C =i € S(IR) = c” acting on every R -
Hodge structure, see [D4] (2.1.14). As C respects the sub-

1
Hodge structure U0 ® IR we conclude U0 ® nzn(UG@ R) =0 as

claimed. By the comparison isomorphisms we also get Uy n V1 =0
and UDR n VDR = O . The decompositions Ha(M) = Ua @ Va then
induce endomorphisms

rojection
) proj %

Py ¢ Ha(M Uu - Ha(M)

o
for o € {DR,1,0} , which are compatible with the various
structures and the comparison isomorphisms, as this is the
case for the U- and V-spaces. Therefore the family of the D,
gives an element p € End(M) (see [DMOS]II 6.7 (g) or 6.1

for M = h(X) , note that resnects the Hodge filtration

Ppr
as it is compatible with = and P is a homomorphism of
Hodge structures), which is a projector and gives the wanted
decomposition by taking M, = Im p and M, = Im(1-p) ; for

M = h(x) we have M, = (h(X),p) in the notation of [DMOS].

1.2. Corollary If X,Y are smooth varieties over k with X

projective, then for any morphism f: ¥ - X and g: X - Y the

kernel of

r X
£X: H (X) » H_(Y) a € {DR,1,0}

is represented by a motive Ker f* c hr(x) and the image of

r r
gy + H (Y) = H_(X) a € {DR,1,0}
is represented by a motive Im g* < h' (%) , and these are direct
factors of h'(X) .
Proof The cohomology groups HE(Y) have mixed Q®-Hodge structures,

and fg and gé are morohisms of mixed @®-Hodge structures

[D4] . So Ker f; and Im g; are (pure) sub-0O-Hodge structures



of the pure, polarized ®-Hodge structures Hi(x) . Ker fz and
Im ga in the other realizations correspond to Ker f; and

Im g; under the comparison isomorphisms, as these are functo-
rial and also exist for Y , and of course in the l-adic reali-
zations one gets Ck—invariant subspaces. So we can apply the

lemma (with U_ = Ker f* or Im g* ) .
o o a

In particular we get a result which should be true more
generally by a conjecture of Grothendieck-Serre on the semi-

simplicity of the action of G on the l-adic cohomology.

k

1.3. Corollary In the situation above, the kernel of

r

*
£ 1

Hi(x) - 1Y (v)

and the image of
r

r
g} & H{(Y) - H](X)

are direct factors of H{(X) as Gk—modules :

Of course, similar considerations apply to other natural

maps like Gysin maps or the canonical map
HO(U) = H(X)

of the cohomology with compact support of an open subvariety
U of X into the cohomology of a smooth projective variety

X . This is needed in the proof of the next corollary.

1.4. Corollary The realizations attached to an elliptic

modular form £ by Deligne ([D6] §7) belong to a motive

M(f) .

Proof Let f be a new form of weight k+2 (k =2 0) , conductor

N and character e for



a by o (] :) mod N} .

_ ab
r.(N) = {(Cd) € sLy(z) | (] 4 0

1
There is a smooth projective curve X1(N) over @O and an
open subvariety
Jr ¥, (N) & X, (N)

such that the C-valued points can be identified with

{i {} = compactification by
\\ ? -

r, T, adding the cusps ;i
where {? is the Poincaré upper halfplane.

Let N =2 3 ; then there is the universal elliptic curve
g: E = Y

and Deligne describes the realizations of M(f) as parts of

the "universal cohomology"
1 y K s
H (X1(N) r J4xSym (R g,0))

(i.e., one has to form the l-adic,de Rham and singular versions

of this cohomology), namely as kernel of Tn = an for all n

prime to N , where the Tn are the Hecke correspondences acting
on the cohomology and f(z) = X anqn , 9 = e2TTlZ . If the
n=1
a, are not in @ , one has to take the kernel in the following
sense: Let T be the ®-algebra generated by the Tn and E =
Q(a1,a2,...), then we have a morphism T % E by Tn ba . If
Ot is the kernel of this morphism, define the realizations of
M(f) as the part annihilated by or .
By the commutative diagram
1 k _1 1 i k, 1
H (Y, (N),Sym (R g,®)) —»H (X, (N),],Sym” (R g,Q))
N \
!
() P |
h N2
™ 1 k, 1
H (Y1(N).Sym (R g,®))

in which H; denotes cohomology with compact support and the



maps are the canonical ones, one can also define the realizations
of M(f) to be the kernel of the T, - a, in the parabolic

cohomology
1 k1 1 1
HL (Y, (N) Sym (Rg,0)) = Im(H (Y, (N),...) (v, m),..0).

k, 1 . .
Sym (R g,f) is a direct factor of (R1g*Q)Gk which in turn is

a direct factor of Rk( ) 40 , for

I
g B = E xg (N) * Xy (N)E - Y1(N)

the k-fold fibre product of g (relative version of the Kiinneth

formula), where by definition Eo = Y1(N) .

Finally the spectral sequence

#P (v, (%) ,RY (g ) ,0) = Hp+q<5k,@>

degenerates and moreover, as remarked by Lieberman, identifies
Hp(Y1(N),Rq(gk)*®) with the subspace of Hp+q(Ek,Q) , on which

m - id induces the multiplication by m? compare [D1]

Ey

p. 168. The same is true for the cohomology with compact support.
Altogether the realizations of M(f) are direct factors

of the cohomology
k+1 _ k+1 k+1
HY (Ek,Q) = Im(Hc (Ek,Q) - H (Ek,Q))

which are defined as the kernel of several algebraic correspon-
dences: the Tn are also defined as correspondences of E

and so of Ek , see [D1] (3.16), the subquotient of HE+1(Ek,Q)

which corresponds to

1 1 ®k 1 k
Ho (Y, (M), (R1gu® 1) € H (Y, (N) R (g)) 4®)

via the spectral sequence can be identified with the subspace

k+1 . . .
of Hp (Ek,Q) where the morphism m11dEx...xmK1dE (mi € Z)
induces the multiplication by My eee M, and the part correspond-

ing to Symk(R1g*Q) in (R1g*<D)ek can be identified by the action

of the symmetric group SK on EK s

If one likes - and in particular if one does not like to



