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PREFACE

The aim of this book is to provide a straightforward introduction to the
characters of a finite group over the complex field. The only prerequisites
are a knowledge of the standard facts of Linear Algebra and a modest
acquaintance with group theory, for which my text [11] would amply
suffice. Thus the present volume could be used for a lecture course at the
third-year undergraduate or at the post-graduate level.

The computational aspect is stressed throughout. The character tables
of most of the easily accessible groups are either constructed in the text or
are included among the exercises, for which answers and solutions are
appended.

It goes without saying that a book on group characters must begin with
an account of representation theory. This is now usually done in the
setting of module theory in preference to the older approach by matrices.
Ifeel that both methods have their merits, and I have formulated the main
results in the language of either medium.

In this book I confine myself to the situation where representations are
equivalent if and only if they have the same character. As soon as this
fundamental fact is established, the empbhasis shifts from the representa-
tions to the characters. Admittedly, some information is thereby sac-
rificed, and I had to be content with somewhat weaker versions of the
theorems of A. H. Clifford [4] and G. W. Mackey [13]. However,
character theory is sufficiently rich and rewarding by itself, and it leads to
the celebrated applications concerning group structure without recourse
to the underlying representations.

In the same vein, I have concentrated on the characters of the symmet-
ric group rather than on its representations. The latter are expounded in
the monographs of D. E. Rutherford [17] and G. de B. Robinson [16].
The cornerstone of our treatment is the generating function for the
characters, due to Frobenius [9], whence it is easy to derive the Schur
functions and their properties. On returning to Frobenius’s original
memoirs after many years I came to realise that familiarity with recondite
results on determinants and symmetric functions that were common
knowledge around 1900, could no longer be taken for granted in our
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PREFACE

time. I therefore decided to expand and interpret the classical master-
pieces so as to make them self-contained without, I trust, spoiling the
flavour of the creative power that permeated the early writings on this
subject. In order to avoid unduly long digressions I relegated some of the
auxiliary material to the Appendix.

There is a fairly extensive literature on representation theory, to which
the reader may wish to turn for further instruction. Some of these books
are listed in the References (p. 172). The substantial works of C. W.
Curtis and I. Reiner [5] and L. Dornhoff [7] contain excellent biblio-
graphies, which I do not wish to duplicate here. D. E. Littlewood’s
treatise [12] furnishes a great deal of valuable information, notably about
the symmetric group.

My own interest in the subject goes back to an inspiring course by Issai
Schur which I attended in 1931. This was subsequently published in the
‘Ziirich Notes’ [18a]. Occasionally, Schur would enliven lectures with
anecdotes about his illustrious teacher Frobenius, and I may be forgiven if
I have succumbed to a bias in favour of an ancestral tradition.

My thanks are due to the Israel Institute of Technology (The
Technion) at Haifa for permission to use a set of lecture notes prepared by
their staff following a course I gave at their invitation in the spring of
1972.1am indebted to the University of Sussex for allowing me to include
some examination questions among the exercises.

Finally, I wish to record my appreciation of the courtesy and patience
which the Cambridge University Press has shown me during the prepara-
tion of this book.

W.L.
July, 1976
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1

GROUP REPRESENTATIONS

1.1. Introduction

One of the origins of group theory stems from the observation that certain
operations, such as permutations, linear transformations and maps of a
space onto itself, permit of a law of composition that is analogous to
multiplication. Thus the early work was concerned with what we may call
concrete groups, in which the ‘product’ of two operations can be com-
puted in every instance.

It was much later that group theory was developed from an axiomatic
point of view, when it was realised that the structure of a group does not
significantly depend upon the nature of its elements.

However, it is sometimes profitable to reverse the process of abstrac-
tion. This is done by considering homomorphisms

6: G-T,

where G is an abstract group and I is one of the concrete groups
mentioned above. Such a homomorphism is called a representation of G.
Accordingly, we speak of representations by permutations, matrices,
linear transformations and so on.

One of the oldest examples of a permutation representation is fur-
nished by Cayley’s Theorem, which states that a finite group

G:x1(=1),x2,...,xg

can be represented as a group of permutations of degree g, that is by
permutations acting on g objects. In this case, the objects are the
elements of G themselves. With a typical element x of G we associate the
permutation

rw=(B B n), (00

X1X  XoX ... XX

this is indeed a permutation, because the second row in (1.1) consists of all
the elements of G in some order. More briefly, we shall write

mx): xi»>xx (i=1,2,..., g).

1



GROUP REPRESENTATIONS

If y is another element of G, we have analogously

w(y): xi»>xy (=1,2,...,¢).

In this book the product of permutations is interpreted as a sequence of
instructions read from left to right. Thus 7 (x )7 (y) signifies the operation
whereby a typical element x; of G is first multiplied by x and then by y on
the right, that is

m(xX)m(y): ;> (xx)y (=1,2,...,¢8).

Since this is the same operation as

w(xy): x;=>x;(xy) (i=1,2,...,8),

we have established the crucial relationship

m(x)m(y) = m(xy), (1.2)
which means that the map
m G->S,

is a homomorphism of G into the symmetric group S,, the group of all
permutations on g symbols. This homomorphism, which is the content of
Cayley’s Theorem, is called the right-regular representation of G.

A given group G may have more than one representation by permuta-
tions, possibly of different degrees. Suppose that H is a subgroup of G of
finite index n, and let

G=HtUHt,U...UH:t,

be the coset decomposition of G relative to H. With a typical element x of
G we associate the permutation

Hi ... H,
Hzt, [ £, ) (1.3)

a(x)=<Ht1x Ht,x ... Htx

in which the permuted objects are the n cosets. As before, it can be
verified that
o(x)a(y)=a(xy),
which proves that the map
og.G->S,

is a homomorphism of G into S,,.



INTRODUCTION

These examples serve to illustrate the notion of a permutation rep-
resentation. For the remainder of the book we shall be concerned almost
exclusively with homomorphisms

A: G- GL, (K), (1.4)

where GL,,(K) is the general linear group of degree m over K, that is the
set of all non-singular m X m matrices with coefficients in a given ground
field K. The integer m is called the degree (or dimension) of the represen-
tation A. We describe the situation formally as follows:

Definition 1.1. Suppose that with each element x of the group G there is
associated an m by m non-singular matrix

A(x)z(aij(x)) (iajzlyz"'-vm),
with coefficients in the field K, in such a way that
AX)A()=A(xy) (x,yeG). (1.5)

Then A (x) is called a matrix representation of G of degree (dimension) m
over K.

A brief remark about nomenclature is called for: in Analysis we
frequently speak of a ‘function f(x)’, when we should say ‘a function (or
map) f which assigns the value f(x) to x’. We are here indulging in a
similar abuse of language and refer to ‘the representation A (x)’ instead of
using the more correct but clumsy phrase ‘the homomorphism A: G -
GL,,(K) which assigns to x the matrix A (x)’. When it is convenient, we
abbreviate this to ‘the representation A’

Some consequences of (1.5) may be noted immediately. Let x =y = 1.
Then we have that

{AY=A0).

Since A (1) is non-singular, it follows that
AMN=1,

the unit matrix of dimension m. Next, put y =x'. Then

AX)Ax H=1I,
so that

AT =AMX)™" (1.6)
3



GROUP REPRESENTATIONS

We emphasise that a representation A need not be injective (‘one-to-
one’), that is it may happen that A (x) = A (y) while x # y. The kernel of A
consists of those elements u of G for which A (u) = I. The kernel is always
a normal, possibly the trivial, subgroup of G [11, p. 67]. The representa-
tion is injective or faithful if and only if the kernel reduces to the trivial
group {1}. For the equation A (x) = A(y) is equivalent to

AXNAQY) =AMy =1,

and for a faithful representation this implies that -y~ =1, that is x = y.

When m =1, the representation is said to be linear. In this case we
identify the matrix with its sole coefficient. Thus a linear representation is
a function on G with values in K, say

1

A:G->K
such that
AOA(y) =A(xy). (1.7)

Every group possesses the trivial (formerly called principal) representa-
tion given by the constant function

Alx)=1 (xeqG). (1.8)

A non-trivial example of a linear representation is furnished by the
alternating character of the symmetric group S, (for each n > 1). This is
defined by

1 ifxiseven

{bx)= {—1 if x is odd.

The eqtiation
{(x)¢(y)=L(xy)

expresses a well-known fact about the parity of permutations [11, p. 134].
Let A(x) be a representation of G and suppose that

B(x)=T 'Ax)T, (1.9)

where T is a fixed non-singular matrix with coefficients in K. It is readily
verified that

B(x)B(y) = B(xy),

so that B(x), too, is a representation of G. We say the representations
A(x) and B(x) are equivalent over K, and we write

A(x)~B(x).
4



G-MODULES

In the relationship (1.9) the exact form of T is usually irrelevant, but it is
essential that its coefficients lie in K. As a rule, we do not distinguish
between equivalent representations, that is we are only interested in
equivalence classes of representations.

1.2. G-modules

The notion of equivalence becomes clearer if we adopt a more geometric
approach. We recall the concept of a linear map

a: VoW

between two vector spaces over K. Under this map the image of a vector v
of V will be denoted by ve, the operator being written on the right. The
map is linear if for allw, ve V and h, k € K we have that

(hu+kv)a =h(ua)+k(va). (1.10)

The zero map, simply denoted by 0, is defined by vO=0 for allve V.

The idea of a linear map does not involve the way in which the vector
spaces may be referred to a particular basis. However, in order to
compute the image of individual vectors, it is usually necessary to choose
bases for V and W. In this book we shall be concerned only with
finite-dimensional vector spaces.

Let
dim V=m, dim W =n,
and write
VZ[PI’PZ,---,Pm], W=[q17q25'--7qn] (111)
to express that py, p,,...,p,, and q;, qs, . . ., q, are bases of V and W
respectively.

The image of p; under « is some vector in W and therefore a linear
combination of the basis vectors of W. Thus we have a system of
equations

pa=3 ayq; (=1,2,...,m), (1.12)
j=1

where a; € K. This information enables us to write down the image of any
ve V by what is known as the principle of linearity ; for if

V.= % hipl"
i=1

5



GROUP REPRESENTATIONS

the linearity property (1.10) implies that

Vo = .Zl h,-p,a = Z Zl hiai]'qj'

i= i=1j=
Hence we may state that the m X m matrix
A= (aij)

describes the linear map « relative to the bases (1.11).
If we had used different bases, say

V=[p,ps---.Pnl, W=[qi,q...,q.] (L.13)
the same linear map a would have been described by the matrix

B = (bAp.)y

whose coefficients appear in the equations

pra = Zlbmq,: A=1,2,...,m). (1.14)
=
The change of bases is expressed algebraically by equations of the form

p: =A§1 tpr (=1,2,...,m)
(1.15)
q; = i Si.q. (G=1,2,...,n)
=1
where T=(t,) and S =(s;,) are non-singular (invertible) matrices of

dimensions m and n respectively. Inverting the first set of equations we
write

pizztj\lpl (/\=172,'-'5m)9
i=1

where T '= (t:\,»). The relationship between the matrices A and B can
now be obtained as follows (for the sake of brevity we suppress the ranges
of the summation suffixes):

pra = Z t‘,’\ipia = Z ;Aiaijqj = Z t:‘iaijsju.q;’:.,
i %] (S A7)
whence on comparing this result with (1.14) we have that
B=T"'AS. (1.16)
6



G-MODULES

In the present context we are concerned with the situation in which
V=W and « is invertible. Such a linear map

a:V->V

is called an automorphism of V over K. The matrix which describes a
relative to any basis is non-singular; and any two matrices A and B which
express « relative to two different bases are connected by an equation of
the form

B=T'AT. (1.17)

The set of all automorphisms of V over K forms a group which we
denote by

‘SﬂK(V)’

or simply by #/(V), when the choice of the ground field can be taken for
granted. If a; and «, are two elements of #/(V), their product a,a; is
defined by operator composition, that is, if ve V, then

v(aiaz) = (va)as.

We now consider representations of G by automorphisms of a vector
space V. Thus we are interested in homomorphisms

G > A (V). (1.18)

This means that with each element of x of G there is associated an
automorphism

alx): V>V
in such a way that
aX)a(y)=alxy) (x,yeq). (1.19)

We call (1.18) an automorphism representation of G, with the under-
standing that a suitable vector space V over K is involved.
In order to compute a(x) we refer V to a particular basis, say

V:[ppr,'-'apm]- (120)

Applying (1.12) to the case in which V = W we find that the action of « (x)
is described by a matrix

A(x) = (a;(x))
over K, where

pa®)=3 ayp (=12...,m) (1.21)

j=

7



GROUP REPRESENTATIONS
By virtue of (1.19) the matrix function A (x) satisfies
A(x)A(y)=A(xy).
When the basis of V'is changed, « (x) is described by a matrix of the form
Bx)=T'A(x)T,

where T'is a non-singular matrix over K which is independent of x. Thus a
representation a/(x) gives rise to a class of equivalent matrix representa-
tions A (x), B(x), . . .. Conversely, if we start with a matrix representation
A(x) we can associate with it an automorphism representation a (x) by
starting with an arbitrary vector space (1.20) and defining the action of
a(x) by means of (1.21).

Summing up, we can state that the classes of equivalent matrix
representations are in one-to-one correspondence with automorphism
representations of suitable vector spaces.

It is advantageous to push abstraction one stage further. In an
automorphism representation each element x of G is associated with an
automorphism a (x) of V. We shall now denote this automorphism simply
by x; in other words, we put

vx =va(x), (1.22)

and we say that G acts on V in accordance with (1.22). Formally, this
defines.a right-hand multiplication of a vector in V by an element of G. It
is convenient to make the following s

Definition 1.2. Let G be a group. The vector space V over K is called a
G-module, if a multiplication vx (ve V, x € G) is defined, subject to the
rules :
(i) vx e V;
@) (hv+kw)x = h(vx)+k(wx), (v,weV;h ke K);
(i) v(xy)=(vx)y;
(iv) vi=v.

Let us verify that, in an abstract guise, this definition recaptures the
notion of an automorphism representation. Indeed, (i) states that multi-
plication by x induces a map of V into itself; (i) expresses that this map is
linear; (iii) establishes the homomorphic property (1.19); finally, (iii) and
(iv) imply that x and x ' induce mutually inverse'maps so that all these
maps are invertible.

If Vis a G-module, we say that V affords the automorphism represen-
tation defined in (1.22) or else the matrix representation A (x) given by

8
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(1.21), except that we now write p;x instead of pia(x), thus

p,~x = Z a,,(x)p] (l = 1, 2, ooy m) (1.23)
j=1

Representation theory can be expressed either in terms of matrices, or
else in the more abstract language of modules. The foregoing discussion
shows that the two methods are essentially equivalent. The matrix
approach lends itself more readily to computation, while the use of
modules tends to render the theory more elegant. We shall endeavour to
keep both points of view before the reader’s mind.

1.3. Characters

Let A(x)=(a;(x)) be a matrix representation of G of degree m. We
consider the characteristic polynomial of A (x), namely

A—ay(x) —ap(x) cow  —@imi(X)
det(A=A(p) = | ") AT e )
_aml(x) —am2(x) ‘A—amm(x)

This is a polynomial of degree m in A, and inspection shows that the
coefficient of A™ ' is equal to

d(x)=a;(x)+anx)+.. . +au,.(x).

It is customary to call the right-hand side of this equation the trace of
A (x), abbreviated to tr A (x), so that

d(x)=tr A(x). (1.24)

We regard ¢ (x) as a function on G with values in K, and we call it the
character of A (x). If

Bx)=T'Ax)T (1.25)
is a representation equivalent to A (x), then
det(Al —B(x)) =det(AI — A(x)), (1.26)
because
M—=B(x)=T '(AI-Ax))T,

whence (1.26) follows by taking determinants of each side. In particular,
on comparing coefficients of A™ " in (1.26) we find that

b11(x)+bop(x)+. ..+ by (x) = ay1(x)+an(xX)+. . .+ Gum(x),

9



GROUP REPRESENTATIONS

that is, equivalent representations have the same character. Put in a
different way, we can state that ¢ (x) expresses a property of the equiva-
lence class of matrix representations of which A (x) is a member; or again,
¢(x) is associated with an automorphism representation of a suitable
G-module. It is this invariant feature which makes the character a
meaningful concept for our purpose.

Suppose that x and y = ¢~ 'xt are conjugate elements of G. Then in any
matrix representation A (x) we have that

A(y)=(A@)"TAX)A({).

On taking traces on both sides and identifying A (¢) with T in (1.25) we
find that

trA(y)=tr A(x),

that is, by (1.24), ¢ (x) = ¢ (y). Thus, in every representation, the charac-
ter is constant throughout each conjugacy class of G. Accordingly, we say
that ¢ is a class function on G.

For reference, we collect our main results:

Proposition 1.1. Let A(x) be a matrix representation of G. Then the
character
d(x)=tr A(x)

has the following properties
(i) equivalent representations have the same character;
(i) if x and y are conjugate in G, then ¢(x)=¢(y).

1.4. Reducibility

As often happens, we gain insight into a mathematical structure by
studying ‘subobjects’. This leads us to the distinction between reducible
and irreducible representations.

Definition 1.3. Let V be a G-module over K. We say that U is a submodule
of Vif

(i) U is a vector space (over K) contained in V, and

(ii) Uis a G-module, that is ux € U for all ue U and x € G.
Every G-module V possesses the trivial submodules U =V and U =0.
A non-trivial submodule is also called a proper submodule.

Definition 1.4. A G-module is said to be reducible over K if it possesses a
proper submodule ; otherwise it is said to be irreducible over K.
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