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Foreword

The discovery of fractal growth phenomena has been, among all the sci-
entific developments of recent years, one of the most rewarding. As a complete
surprise, rules of random growth which are so simple as to seem trivial are in
fact capable of generating an unimaginably rich variety of fractal shapes! The
finding has immediately fired many skillful and ardent-investigators worldwide,
and soon proved to involve a fascinating interface between the roughness asso-
ciated with fractals and the smoothnéss associated with the Laplace equation.
By now, we have moved beyond the necessary and even unavoidable first stage,
when the main task was to sort out the newly discovered riches. For example,
some critical features of diffusion limited aggregates have now been explained.
But the topic is beautifully alive, and will stay with us for a long time. Thus,
a study born in the context of carbon deposits on the cylinder walls of Diesel
engines promises to become part of a great new stream of mathematical physics.

What has been lacking is a broad survey of the field. It is our very good
fortune that this gap is being beautifully filled by the present book. Professor
Vicsek has taken full advantage of the unusual combination of circumstances
that surrounds his life and work. He is in close professional interaction with all
other workers in the field, therefore the book is very much up to date. On tlieg
other hand, he has achieved a degree of objectivity, detachment and balance
‘that was indispensable, but might have been hard to achieve in the scientific
“downtowns”. It is good, also, that the book is self contained, thanks to its
introductory chapters. But the author stresses, and I agree, that the survpys

_in these cBapters.da not. claim. to psavide a complete-intsoduckory-trestizg. -

Personally, I have taken no direct part in this great adventure, though, -
of course, I have provided in advance its tools, namely the fractal sets and the
multifractal measures! Hence, I feel free to express my enthusiasm.
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The present book will hasten the pace of progress in the study of fractal
aggregates, and will help interest in this topic to spread everywhere.

Benoit B. Mandelbrot
Physics Department, IBM T.J. Watson Research Center,

Yorktown Heights, NY 10598 and
Mathematics Department, Yale University, New Haven, CT 06520



Preface'.

Evén bearing in mind that we live in an era of explosive :dvances in
various areas of science, the investigation of phenomena involving fractals -
has gone through a spectacular development in the last decade. Many phys-
ical, technological and biological processes have been shown to be related to
and described by objects’ with non-integer dimensions — an idea which was

originally propoéed and beautifully demonstrated by Benoit B. Mapdelbrot
in his classic books on fractals.

The physics of far-from-equilibrium growth phenomena represents one
of the main fields in which fractal geometry is widely applied. Du.ing the
past couple of years considerable experimental, numerical and theoretical
information has accumulated about such processes, and it seemed reasonable
to bring together most of this knowledge into a separate book, in addition

to the numerous conference proceedings and reviews devoted to irreversible
growth.

My intention was to provide a book which would summarize the basic
concepts born in the studies of fractal growth as well as to present some of the
_most important new results for more specialized readers. Thus, it is hoped
that the book will be able to serve as a textbook on the geometrical aspects
of fractal growth and will also treat this area in sufficient depth to make it
useful as a reference book. It follows from the nature of this approach that
the emphasis is on presenting results in a reproducable manner rather than
on briefly reviewing a large number of contributions. Obviously, the field
of fractal growth phenomena is too broad to enable all of the related topics
to be included. Among the important aspects not treated are, for 'éx-ax.rhble,' h
cellular automata or the physical properties (elasticity, conductivity, etc.) of
growing fractals.

Collaboration with many colleagues has greatly helped me in gaining
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an insight into the processes discussed in this book. For the last ten years

my closest colleague and friend J4nos Kertész and I have worked together

at the Institute for Technical Physics of the Hungarian Academy of Sciences

on a number of problems related to fractals. We have had many stimulating

di cussions in the past and we have a welth of interesting new ideas to study-

together in the future. A considerable amount of my activity in the field of
aggregation was realized during my visit to Emory University, Atlanta, where
I was working with Fereydoon Family. With him, and with Paul Meakin of
du Pont, Wilmington, or fruitful cooperation has become regular and now
spans the ocean. I am also grateful to A. Buka, D. Grier, V. Horvath, L.
J. Montag, H. Nakanishi, D. Platt, Z. Ricz, G. Radnéczy, L. M. 3ander, A.
Szalay, B. Taggett, T. Tél and Y. Zhang for their kind collaboraticn.

I should also like to thank a number of colleagues who greatly stim-
ulated my work by showing interest in my investigations. Discussions with
Gene Stanley and Dietrich Stauffer have helped me to be involved in the
most interesting current problems of the physics of fractals. I have learned
much about fractals from long conversations with Benoit Mandelbrot. At
the suggestion of Gyorgy Marx and Péter Szépfalusy became involved into
the teaching of growth phencmena. I thank Taméis Geszti and Tivadar Siklés
for their numerous helpful suggestions.

- It was Len Sander who encouraged me to write this book. Janos
Kertész and Tamas Tél read parts of the preliminary version and I am grate-
ful for their useful comments and suggestions. My thanks to Harvey Shenker
for a number of last-minute linguistic corrections. Many of the figures were
reproduced from works by other authors and here I thank these colleagues for
granting me the necessary permissions and for providing the corresponding
originals. The rest of the'il‘l'ustrations were made and reproduced by Mihaly
Hubai and Séra Téth.

Finally, this Preface provides me with a good'opportunity to express
my gratitude to my wife, Méria Strehé. She, a specialist in numerical anal-
ysis, has helped me in many ways in the writing of this book.

Tamdés Vicsek

[~
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Chapter 1
INTRODUCTION

_ '

During the last decade it has widely been recognized by physicists
working in diverse areas that many of the structures common in their expes-
iments possess a rather special kind of geometrical complexity. This aware=
ness is largely due to the activity of Benoit Mandelbrot (1977, 1979, 1982,
1988), who called attention to the particular geometrical properties of such
objects as the shore of continents, the branches of trees, or the surface of
clouds. He coined the name fractal for these complex shapes to express that
they can be characterized by a non-integer (fractal) dimensionality. With
the development of research in this direction the list of examples of fractals
has become very long, and includes structures from microscopic aggregates
to the clusters of galaxies.

An important field where fractals are observed is that of far-from-
equilibrium growth phenomena which are-common in many fields of science
and technology. Examples for such processes include dendritic solidification
in an undercooled medium, viscous fingering which is observed when a viscous
fluid is injected into a more viscous one, and electrodeposition of ions onto an

“electrode. Fig. 1. demonstrates the complexity of possible patterns growing
under a wide variety of experimental conditions. In the experiments leading
to the structures shown in Fig. 1. quasi two-dimensional samples were used
and the motion of the interfaces was determined by the spatial distribution
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2 Fractal Growth Phenomena

Figure 1. Examples for complex geometrical structures observed
in various experiments on growth of unstable interfaces. The three
major types of patterns found in the experiments on i) crystalliza-
tion (a, b and c), ii) viscous fingering (d, e and f), and iii) elec-
trodeposition of zinc (g, h and i) are grouped in sepafate columns.
The fractal dimension of the structures shown in the middle column
is close to 1.7. (This set of pictures is reproduced from Vicsek and
Kertész (1987). The individual pictures are from: (a) Ben-Jacob
et al (1986), (b) Radndczy et al (1987), (c) Bentley and Humpreys
(1962), (d) Buka et al (1986), (e) Daccord et al (1986), (f) Ben-
Jacob et al (1985), (g and i) Sawada et al (1986) and (h) Matsushita
et al (1984); For details see References to Part III.)

of a quantity which satisfies the Laplace equation with moving boundary
conditions. )

In addition to interfacial growth, aggregation of similar particles repre-
sents another important class of growth phenomena producing complicated
geometrical objects. Aggregation may take place particle by particle, while
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in other cases (for example during the formation of aerogels) the aggregates
themselves are also mobile and are joined together to form larger clusters

during their motion.

A broad class of growing patterns is characterized by an open branch-
ing structure as is illustrated by the middle column of Fig. 1. Such objects
can be described in terms of fractal geometry. In the present case this means
that the growing structures are self-similar in a statistical sense and the vol-
ume V (R) of the region bounded by the interface scales with the increasing

linear size R of the object in a non-trivial way
V(R) ~ RP. (1)

Here D < d is typically a non-integer number called the fractal dimension
and d is the Euclidian dimension of the space the fractal is embedded in.
Naturally, for a real object the above scaling holds only for length scales
between a lower and an upper cutoff.

~ There are a number of reasons for the recent rapid development in the
research of fractal growth. The interest is greatly motivated by the fact that
fractal growth phenomena are closely related to many processes of practical
importance. Here we shall mention only two examples. The internal texture
of alloys due to the dendritic structures developing during their solidification
is largely responsible for most of their mechanical properties. Another area
of application is secondary oil recovery, where water pumped into the ground
through one well is used to force the oil to flow to the neighbouring wells. The
effectiveness of this method is influenced by the fractal structure of viscous

fingers corresponding to the water-oil interface.

The internal evolution of physics as a discipline has also given rise
tu an increased interest in the investigation of structures growing under far-
from-equilibrium conditions. In the. 1970’s most of the researchers v;'orking in
the field of statistical mechanics were involved in problems related to phase
transitions in equilibrium systems. These studies led to many important
theories and methods including renormalization based on the scale invariance

of thermodynamical systems at their eritical point.
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Since growing fractals are also scale-invariant objects (this property
is equivalent to their self-similarity), the knowledge which had accumulated
during the investigations of second order phase transitions was particularly
useful in making a step forward and investigating scaling in growth processes.
Thus the fields involving fractals were developing fast and it has become
evident that multifractal acﬁh'ng, which is the generalization of simple scaling,

répresents an important characteristic of many growth phenomena.

Most of the already large amount of new results on fractal growth
(and fractals in general) can be found in conference and school proceedings
(Family and Landau 1984, Shlesinger 1984, Stanley and Ostrowsky 1985,
Pynn and Skjeltorp 1985, Boccara and Daoud 1985, Pietronero and Tosatti
1986, Engelman and Jaeger 1986). Some aspects of growth phenomena are
discussed in the recent books by Jullien and Botet (1987) on aggregation, and
by Feder (1988) on fractals. Finally, a number of review papers have been.
published recently about processes related to fractal growth (e.g., Herrmann
1986, Sander 1986, Witten and Cates 1986, Meakin 1987a, Meakin 1987b,
Jullien 1987).

Here, I concentrate on the geometrical aspects of fractal growth. My
intenton was to give a balanced account of the most important results in a
pedagogical style. The material is divided into three parts, viz. I: Fractals,
II: Cluster Growth Models; III: Fractal Pattern Formation. References are

provided at the end of each part.

Part I. introduces the basic definitions and concepts related to fractal
geometry in general. The major types of fractals are discussed and a few use-
ful rules for the estimation of fractal dimensions are given. Fractal measures
are treated in a separate chapter since many recent results demonstrate their
important role in physical processes. The last chapter of the first part con: )
tains a collection of methods which are commonly used to determine fractal
dimensions of various objects including experimental samples and computer
generated clusters. Throughout this part examples are given to illustrate the

principles introduced in the text.

Computer models based on growing clusters made of identical par-
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ticles have proven to be a particularly useful tool in the investigation of
“fractal growth. The main advantage of such models is that they provide a
possibility to determine the most relevant factors affecting the geometrical
properties of objects developing in a given kind of growth phenomenon. Ac-
cordingly, in Part II. important results concerning a wide variety of it cluster
growth models are discussed. First those models (called local) are examined
in which the probability of adding a particle to the growing cluster depends
only on the immediate environment of the given position. In the models of
diffusion-limited growth (Chapter 6.) the probability of adding a particle to
the cluster is determined by the structure of the whole cluster; consequently,
these processes are truly non-local. In some cases both local and non-local
models may lead to corpact structures with self-affine surfaces which are
treated in Chapter 7. The last chapter of Part II, discusses results obtained
in the numerical and experimental studies of cluster-cluster aggregation. An
important aspect of the aggregatibn of clusters is that the time is well defined
in such processes. This fact allows for the development of a dynamic scaling
theory for the cluster size distribution.

Part IIl. deals with fractal pattern formation, where the term pattern
formation is used for interfacial growth phenomena in which the motion of
the unstable interfaces is dominated by the surface tension. Diffusion-limited
growth processes may lead to a variety of structures (see Fig. 1.), and in a
number of cases it is still not known which are the conditions for the develop-
ment of a given type of the possible interfaces. The answer to the questions
about the relevance of the factors affecting the growth of complicated paf—
terns could unambiguously be provided if it were possible to solve directly the
corresponding non-linear equations. However, this approach does not seem
to be feasible at present, because of the instability and the extreme complex-
ity of the solutions. Thus, fractal pattern formation has mainly been studied
by numerical simulations and model experiments which are reviewed in the
two chapters of this part.

The field of fractal growth phenomena is still growing quickly, and
there are many new results which could not be included into this book.
Those readers who are interested in the developments not trepted here are
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advised to consult the already mentioned literature or to look for the numer-

ous conference proceedings and reviews which are currently in a preparatory
stage.
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