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Preface

In recent years, two (at first glance) quite different fields of mathematical
interest have attracted my attention.

e Elliptic variational problems with linear growth conditions. Here the no-
tion of a “solution” is not obvious and, in fact, the point of view has to be
changed several times in order to get some deeper insight.

e The study of the smoothness properties of solutions to convex anisotropic
variational problems with superlinear growth.

It took some time to realize that, in spite of the fundamental differences and
with the help of some suitable theorems on the existence and uniqueness of
solutions in the case of linear growth conditions, a non-uniform ellipticity
condition serves as the main tool towards a unified view of the regularity
theory for both kinds of problems.

This is roughly speaking the background of my habilitations thesis at the
Saarland University which is the basis for this presentation.

Of course there is a long list of people who have contributed to this mono-
graph in one or the other way and I express my thanks to each of them.
Without trying to list them all, I really want to mention:

Prof. G. Mingione is one of the authors of the joint paper [BFM]. The valu-
able discussions on variational problems with non-standard growth conditions
go much beyond this publication.

Prof. G. Seregin took this part in the case of variational problems with
linear growth.

Large parts of the presented material are joint work with Prof. M. Fuchs:
this, in the best possible sense, requires no further comment. Moreover, I am
deeply grateful for the numerous discussions and the helpful suggestions.

Saarbriicken, April 2003 Michael Bildhauer
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1

Introduction

One of the most fundamental problems arising in the calculus of variations
is to minimize strictly convex energy functionals with respect to prescribed
Dirichlet boundary data. Numerous applications for this type of variational
problems are found, for instance, in mathematical physics or geometry.

Here we do not want to give an introduction to this topic — we just refer
to the monograph of Giaquinta and Hildebrandt ([GH]), where the reader
will find in addition an intensive discussion of historical facts, examples and
references.

Let us start with a more precise formulation of the problem under consid-
eration: given a bounded Lipschitz domain 2 C R™, n > 2, and a variational
integrand f: R™ — R of class C?>(R™Y) we consider the autonomous mini-
mization problem

J[w] := /Qf(Vw) dz — min (P)

among mappings w: @ — RY, N > 1, with prescribed Dirichlet boundary
data ug. Depending on f, the comparison functions are additionally assumed
to be elements of a suitable energy class K. In the following, the variational
integrand is always assumed to be strictly convex (in the sense of definition),
thus we do not touch the quasiconvex case (compare, for instance, [Ev], [FH],
[EG1], [AF1], [AF2], [CFM]).

The purpose of our studies is to establish regularity results for (maybe
generalized and not necessarily unique) minimizers of the problem (P) under
linear, nearly linear and/or anisotropic growth conditions on f together with
some appropriate notion of ellipticity: if u denotes a suitable (weak) solution
of (P), then three different kinds of results are expected to be true.

THEOREM 1 (REGULARITY IN THE SCALAR CASE)
Assume that N = 1 and that f satisfies some appropriate growth and ellipticity
conditions. Then u is of class CH*(2) for any 0 < a < 1.
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According to an example of DeGiorgi (see [DG3], compare also [GiuM2],
[Ne] and the recent example [SY]), there is no hope to prove an analogous
result of this strength in the vectorial setting. Here we can only hope for

THEOREM 2 (PARTIAL REGULARITY IN THE VECTOR-VALUED CASE)
Assume that N > 1 and that f satisfies some appropriate growth and ellip-
ticity conditions. Then there is an open set Qo C Q of full Lebesgue measure,
i.e. | —Qo| =0, such that u € CH*(Qo; RY), 0 < a < 1.

Finally, an additional structure condition might improve Theorem 2 to full
regularity (see [Uh], earlier ideas are due to [Ur]):

THEOREM 3 (FULL REGULARITY IN THE VECTOR-VALUED CASE WITH
SOME ADDITIONAL STRUCTURE)

Suppose that in the vectorial setting the integrand f satisfies in addition
f(Z) = g(|Z|?) for some function g: [0,00) — [0,00) of class C? (plus some
Hélder condition for the second derivatives). Then u is of class C1@(;RY),
0<a<l.

As the essential assumptions, the growth and the ellipticity conditions on
f are involved in the above theorems. Hence, in order to make our discussion
more precise and to summarize the various cases for which Theorems 1-3 are
known to be true, we first introduce some brief classification of the integrands
under consideration with respect to both growth and ellipticity properties. We
also remark that in the cases A and B considered below the existence (and
the uniqueness) of minimizers in suitable energy spaces is easily established.

Before going through the following list it should be emphasized that we
do not claim to give an historical overview which is complete to some extent.

A.1 POWER GROWTH

Having the standard example f,(Z) = (1 + |Z|?)?/?, 1 < p, in mind, let
us assume that the growth rates from above and below coincide, i.e. for some
number p > 1 and with constants c;, ¢z, C, A\, A > 0 the integrand f satisfies
for all Z, Y € R™ (note that the second line of (1) implies the first one)

c|ZP —ex < f(2) <C(1+|zP), )

A(1+12Z12) T Y < DF(Z)(Y,Y) < A(1+12P)"T |YP2.

With the pioneering work of DeGiorgi, Moser, Nash as well as of Ladyzhen-
skaya and Ural’tseva, Theorem 1 is well known in this setting and of course
many other authors could be mentioned (see [DG1], [Mos], [Na] and [LU1] for
a complete overview and a detailed list of references).

As already noted above, the third theorem in this setting should be mainly
connected to the name of Uhlenbeck (see [Uh], where the full strength of (1)
is not needed which means that also degenerate ellipticity can be considered).
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Without additional structure conditions in the vectorial case, the two-
dimensional case n = 2 substantially differs from the situation in higher di-
mensions: a classical result of Morrey ensures full regularity if n = 2 (here
we like to refer to [Morl], the first monograph on multiple integrals in the
calculus of variations, where again detailed references can be found).

Finally, Theorem 2 is proved in any dimension and in a quite general
setting by Anzellotti/Giaquinta ([AG2]), where the whole scale of integrands
up to the limit case of linear growth is covered (with some suitable notion of
relaxation). In addition, the assumptions on the second derivatives are much
weaker than stated above, i.e. their partial regularity result is true whenever
D?f(Z) > 0 holds for any matrix Z.

To keep the historical line, we like to mention the earlier contributions
on partial regularity [Mor2], [GiuM1], [Giul] (compare also [DG2], [Alm], a
detailed overview is found in [Gial]).

A.2 ANISOTROPIC POWER GROWTH

The study of anisotropic variational problems was pushed by Marcellini
([Ma2]-[Ma7]) and is a natural extension of (1). To give some motivation we
consider the case n = 2, 2 < p < ¢q and replace f, by

foa(2) = 0 +1ZP) 5 + (14120}, z2=(21,Z) e RV,

hence f is allowed to have different growth rates from above and from below.
The natural generalization of the structure condition (1) is the requirement
that f satisfies (again the growth conditions on the second derivatives imply
the corresponding growth rates of f)

Z|P — Z cC(1+1Z2]9),
clll o<  f(2) < (+||)q_ @

A(1+1212)"7 |V < D*A(2)(Y,Y) < A(1+|2[%)"F v ]?

for all Z, Y € R*™, where, as usual, ¢;, co, C, A, A denote some positive
constants and 1 < p < gq.

If p and ¢ differ too much, then it turns out that even in the scalar case
singularities may occur (to mention only one famous example we refer to
[Gia2]). However, following the work of Marcellini, suitable assumptions on p
and q yield regular solutions (compare Section 3.5 for a discussion of these
conditions). Note that [Ma5] also covers the case N > 1 with some additional
structure condition.

In the general vectorial setting only a few contributions are available,
we like to refer to the papers of Acerbi/Fusco ([AF4]) and Passarelli Di
Napoli/Siepe ([PS]), where partial regularity results are obtained under quite
restrictive assumptions on p and ¢ excluding any subquadratic growth (again
see Section 3.5).
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If an additional boundedness condition is imposed, then the above results
are improved by Esposito/Leonetti/Mingione ([ELM2]) and Choe ([Ch]). In
[ELM2] higher integrability (up to a certain extent) is established (N > 1,
2 < p) under a quite weak relation between p and q. A theorem of the third
type is found in [Ch].

B.1 GROWTH CONDITIONS INVOLVING N-FUNCTIONS

Studying the monograph of Fuchs and Seregin ([FuS2]) it is obvious that
many problems in mathematical physics are not within the reach of power
growth models — the theories of Prandtl-Eyring fluids and of plastic materials
with logarithmic hardening serve as typical examples. The variational inte-
grands under consideration are now of nearly linear growth, for example we
have to study the logarithmic integrand

f(Z2) = 12| In(1+|2])

which satisfies none of the conditions (1) or (2).

The main results on integrands with logarithmic structure are proved by
Frehse/Seregin ([FrS]: full regularity if n = 2), Fuchs/Seregin ([FuS1]: par-
tial regularity if n < 4), Esposito/Mingione ([EM2]: partial regularity in any
dimension) and finally by Mingione/Siepe ([MS]: full regularity in any dimen-
sion).

B.2 THE FIRST EXTENSION OF THE LOGARITHM

As a first natural extension one may think of integrands which are bounded
from above and below by the same quantity A(|Z|), where A: [0, 00) — [0, 00)
denotes some arbitrary N-function satisfying a A,-condition (see [Ad] for the -
precise definitions). Although this does not imply some natural bounds (in
terms of A) on the second derivatives, (1) and (2) suggest the following model:
given a N-function A as above, positive constants ¢, C, A and A, we assume
that our integrand f satisfies

cA(Z) < f(Z)  <CA(Z)), o
A1+122) 5P < DEH2)(Y,Y) < A(1+|22) 7 Y]

for all Z, Y € R*N and for some real numbers 1 < p, 1 < ¢ < 2, this choice
being adapted to the logarithmic integrand which satisfies (3) with 4 =1 and
g = 1+ ¢ for any € > 0. Note that the correspondence to (1) and (2) is only
of formal nature: since we require p > 1, the p-ellipticity condition, i.e. the
first inequality in the second line of (3), does not give any information on the
lower growth rate of f in terms of a power function with exponent p > 1.

A first investigation of variational problems with the structure (3) under
some additional balancing conditions is due to Fuchs and Osmolovskii ([FO]),
where Theorem 2 is shown in the case that u < 4/n.
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Theorems of type 1 and 3 are established by Fuchs and Mingione (see
[FuM]) — their assumptions on p and ¢ are discussed in Section 3.5.

C LINEAR GROWTH

It remains to discuss the case of variational problems with linear growth.
On account of the lack of compactness in the non-reflexive Sobolev space
W (;RY), the problem (P) in general fails to have solutions. Thus one ei-
ther has to introduce a suitable notion of generalized minimizers (possibility
i)) or one must pass to the dual variational problem (possibility 4i)).

ad 7). Since the integrand f under consideration is of linear growth, any

o
J-minimizing sequence {um}, um € uo+ W;1(Q;RY), is uniformly bounded
in the space BV (€;RY). This ensures the existence of a subsequence (not
relabeled) and a function u in BV (Q;RY) such that u,, — u in L'(Q;RY).
Thus, one suitable definition of a generalized minimizer u is to require u € M,
where the set M is given by

M = {u e BV(QRY) : uis the L'-limit of a J-minimizing sequence
from uo+ V‘ID/II (Q;RN)} .

Another point of view is to define a relaxed functional J on the space

BV (;RY) (a precise notion of relaxation is given in Appendix A). Then
generalized solutions of the problem (P) are introduced as minimizers of a
relaxed problem (P).
Remark 1.1. We already like to mention that these formally different points
of view in fact lead to the same set of functions. Moreover, the third approach
to the definition of generalized minimizers given in [Sel], [ST] also leads to
the same class of minimizing objects.

ad ii). Following [ET] we write

Jw] = sup l(w,7), w€up+ W} (Q;RN) ,
TEL>®(;R™N)

where [(w, T) denotes some natural Lagrangian (see Section 2.1.1). If we let
R: L*®(R™) 5 R,
—00 , ifdivr #0,
R(r) = inf l(u,7) =

u€uo+ Wi (QRN) l(ug,7), ifdivr=0,

then the dual problem reads as
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to maximize R among all functions in L (Q; R™V) , (P*)

where the existence of solutions easily is established.

In any of the above definitions the set of generalized minimizers of the
problem (P) may be very “large”. In contrast to this fact, the solution of the
dual problem is unique (see the discussion of Section 2.2). Moreover, the dual
solution ¢ admits a clear physical or geometrical interpretation, for instance
as a stress tensor or the normal to a surface. Hence, in the linear growth situ-
ation we wish to complete the above theorems by analogous regularity results
for o.

C.1 GEOMETRIC PROBLEMS OF LINEAR GROWTH

One of the most important (scalar) examples is the minimal surface case
f(Z) = \/1+|Z|?. A variety of references is available for the study of this
variational integrand, let us mention the monographs of Giusti ([Giu2]) and
Giaquinta/Modica/Soucek ([GMS2]) at this point.

At first sight, ellipticity now is very bad since the inequalities in the sec-
ond line of (3) just hold for the choices © = 3 and ¢ = 1. On the other hand,
this rough estimate is not needed because it is possible to benefit from the
geometric structure of the problem (see Remark 4.3). A class of integrands
with this structure is studied, for instance, in [GMS1] following the a priori
gradient bounds given in [LU2]. It turns out that in the minimal surface case
generalized J-minimizers are of class C1'*(2) and that we have uniqueness
up to a constant.

C.2 LINEAR GROWTH PROBLEMS WITHOUT GEOMETRIC STRUCTURE

The theory of perfect plasticity provides another famous variational in-
tegrand of linear growth. In this case the assumptions of smoothness and
strict convexity imposed on f are no longer satisfied. Nevertheless, the ex-
ample should be included in our discussion since we will benefit in Chapter
2 from the studies of Seregin ([Sel]-[Se6]) on this topic (compare the recent
monograph [FuS2]).

The quantity of physical interest is the stress tensor o, which is only known
to be partially regular (compare [Se4]). Even in the two-dimensional setting
n = 2 we just have some additional information on the singular set (see [Se6])
and the model of plastic materials with logarithmic hardening (as described
in B.1) serves as a regular approximation.

It is already mentioned above that the vector-valued linear growth situa-
tion is covered by [AG2], provided that we restrict ourselves to smooth and
strictly convex integrands. Anzellotti and Giaquinta prove Theorem 2 for gen-
eralized J-minimizers, hence the same regularity result turns out to be true
for any u € M (see Section 2.3.1 for details). It remains to study the proper-
ties of the dual solution which (as noted above) for linear growth problems is
a quantity of particular interest.
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Before we summarize this brief overview in the table given below, we like
to mention that of course there is a variety of further contributions where the
class of admissible energy densities is equipped with some additional structure
(see [AF4], [Lie2], [UU] and many others).

SOME KNOWN REGULARITY RESULTS IN THE CONVEX CASE

N=1 N>1

(1) DeGiorgi, Moser, Nash,
Al Ladyzhenskaya/Ural’'tseva
< ‘65

(2) Anzellotti/Giaquinta ‘88
(3) Uhlenbeck, ‘77

2)2<p<gqg<...
A2(1)1<p§q<... B2 gpsa
: Acerbi/Fusco ‘94,

Marcellini ~ ‘90
(3) bounded ..., Choe ‘92

(3) n = 2: Frehse/Seregin ‘98
(2) n < 4: Fuchs/Seregin ‘98
(2) Esposito/Mingione ‘00
(3) Mingione/Siepe ‘99

B.l|see N > 1

() p<1+2/n, qg< (2) p < 4/n, “balanced”
© ’

B.2 Fuchs/Osmolovskii ‘98
Fuchs/Mingione ‘00
(3) [FM] (see N =1)

(1) ; Giaquinta/Modica/
Soucek ‘79

C1

C.2 _ (2); [AG] (see A.1, N > 1)
(P)

Seregin ~ ‘90

a,pl

(1), (2), (3): Theorems 1-3, respectively
(1) j, (2)j: corresponding results for generalized J-minimizers

(P)U,pl: partial regularity for the stress tensor in the theory of perfect plasticity
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In the following we are going to

have a close look at linear growth problems;

unify the results of A and B by the way including new classes of integrands;
discuss the substantial extensions which follow in cases A, B and C from
a natural boundedness condition.

Our main line skips from linear to superlinear growth and vice versa: in
spite of the essential differences, these two items are strongly related by a
non-uniform ellipticity condition (see Definition 3.4 and Assumption 4.1), by
the applied techniques and to a certain extent by the obtained results. In
particular, this relationship becomes evident while studying scalar variational
problems with

e mixed anisotropic linear/superlinear growth conditions.

As the first center of interest, the discussion starts in Chapter 2 by con-
sidering the general linear growth situation. Here no uniqueness results for
generalized minimizers can be expected and we concentrate on the dual solu-
tion o which, according to the above remarks, is a reasonable physical point
of view. The main contributions are

1) uniqueness of the dual solution under very weak assumptions;
i) partial C'1**-regularity for weak cluster points of J-minimizing sequences
and, as a consequence, partial C%®-regularity for o;
iit) a proof of the duality relation ¢ = V f(V?u*) for a class of degenerate
variational problems with linear growth. Here V®u* denotes the absolutely
continuous part of Vu* with respect to the Lebesgue measure.

ad ). Standard arguments from convex analysis (compare [ET]) yield the
uniqueness of the dual solution by assuming the conjugate function f* to be
strictly convex. We do not want to impose this condition since it is formulated
in terms of f*, hence there might be no easy way to check this assumption. In
fact, using more or less elementary arguments, it is proved in Section 2.2 that
there is no need to involve the conjugate function in an uniqueness theorem
for the dual solution (see [Bil]).

ad 7). Following the lines of [GMS1], any weak cluster point u € M
minimizes the relaxed problem (P) associated to the original problem (see
Appendix A.1). Alternatively (and as outlined in [BF1]), a local approach is
preferred in Section 2.3.1 (see Remark 2.16 for a brief comment). In any case,
the results of Anzellotti and Giaquinta apply and u is seen to be of class C1®
on the non-degenerate regular set 2, (see (23), Section 2.3). As a next step,
the duality relation o = Vf(Vu*), z € Q,., is shown for a particular solution
u*, hence o is of class C%% on this set.

ad #4). The duality relation is proved using local C'**-results for some
u* as above. As a consequence, information on the behavior of o is only ob-
tained on the u*-regular set. In Section 2.4, the almost everywhere identity
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o = Vf(V®u*) is established for a class of degenerate problems which gives
intrinsic regularity results in terms of o (this is due to [Bi2]). Note that the
applied technique completely differs from the previous considerations since
we cannot rely on regularity results: arguments from measure theory are com-
bined with the construction of local comparison functions (see Appendix B.3).

Chapter 3 deals with the nearly linear and/or anisotropic situation. Here
1) we introduce the notion of integrands with (s, i, q)-growth;
and give a unified and extended approach to

i1) the results of type (1) and (3) outlined in the above table;
i11) the corresponding theorems (2).

Finally, reducing the generality of the previous sections, a theorem on

iv) full CY@-regularity of solutions of two-dimensional vector-valued problems
with anisotropic power growth

completes Chapter 3.

ad 7). The main observation is clarified in Example 3.7. Three free pa-
rameters occurring in the structure and growth conditions imposed on the
integrand f determine the behavior of solutions, which now uniquely exist in
an appropriate energy class: the growth rate s of the integrand f under con-
sideration, and the exponents u, g of a non-uniform ellipticity condition. This
leads to the notion of integrands with (s, y, ¢)-growth which includes and ex-
tends the list given in A and B in a natural way. Note that related structure
conditions for variational integrands with superquadratic growth are intro-
duced in [Ma5]-[MaT] (see Section 3.5 for a brief discussion).

ad 41). Since regular solutions cannot be expected for the whole range of
s, p and ¢ (we already mentioned [Gia2]), we impose the so called (s, g, q)-
condition. Observe that we do not lose information in comparison with the
known results (see Section 3.5).

As a next step, uniform a priori L], -estimates for the gradients of a reg-
ularizing sequence are proved. This enables us to apply DeGiorgi-type argu-
ments with uniform local a priori gradient bounds as the result. The conclusion
then follows in a well known manner (we refer to [BFM)] for a discussion of
scalar variational problems with (s, i, g)-growth).

It should be emphasized that the proof covers the whole scale of (s, u, q)-
integrands without distinguishing several cases.

ad 7ii). Here a blow-up procedure (compare [Ev], [CFM]) is used to prove
partial regularity in the above setting (compare [BF2]). This generalizes the
known results to a large extent (see Section 3.5).
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ad iv). With the higher integrability results of the previous sections it is
possible (following [BF6]) to refer to a lemma due to Frehse and Seregin.

In Chapter 4 we return to problems with linear growth, where we first benefit
from some of the techniques outlined in Chapter 3, i.e.

1) a regular class of p-elliptic integrands with linear growth is introduced.
Then the results are substantially improved by

1) studying bounded solutions (in some natural sense);
1i1) considering two-dimensional problems.

We finish the study of linear growth problems by proving the
iv) sharpness of the results.

ad ¢). Example 3.9 also provides a class of u-elliptic integrands with linear
growth in the sense that for all Z, Y € R*V

A1+1ZR) BV < D2V Y) < AQ+|ZP)EYE ()

holds for some p > 1 and with constants A, A. If u < 14+2/n, then this class is
called a regular one since generalized minimizers are unique up to a constant
and since Theorems 1 and 3 for functions u € M will be established following
the arguments of Chapter 3 (see [BF3]). Let us shortly discuss the limitation
1 < 1+ 2/n. Given a suitable regularization us, it is shown that
2—
ws = (1 + |VU,5|2)_TIi
is uniformly bounded in the class Wy, (). This provides no information
at all if the exponent is negative, i.e. if g4 > 2. An application of Sobolev’s
inequality, which needs the bound p < 1+ 2/n, proves uniform local higher
integrability of the gradients. The final DeGiorgi-type arguments will lead to
the same limitation on the ellipticity exponent p.

ad 7). The minimal surface integrand can be interpreted as a p-elliptic
example with limit exponent g = 3 (recall that in the minimal surface case
the regularity of solutions is obtained by using the geometric structure).

Section 4.2 and [Bi4] are devoted to the question, whether the limit p = 3
is of some relevance if the geometric structure condition is dropped. To this
purpose some examples are discussed.

Then, imposing a natural boundedness condition, we prove even in the
vector-valued setting (without assuming f(Z) = g(|Z|?)) that a generalized
minimizer u* of class W} (Q; RV) exists. Moreover, u* uniquely (up to a con-
stant) determines the solutions of the problem

/f(Vw) d9:+/ foo((uo —w)®@v) dH™ ' - min in W] (GRY) . (P)
Q o9



