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Introduction

The Vision Geometry series of conferences continues to bring together researchers wno
use mathematical or geometric techniques to solve problems related to computer vision.
In Vision Geometry VII, thirty-three papers were presented in five oral sessions and one
poster session on topics including, but not limited to, digital surfaces, 3D vision
geometry, shape features, digital topology and geometry, and applications of vision
geometry.

Participants were indeed global; they came from Belarus, Bulgaria, Canada, China,
France, Germany, Israel, Italy, japan, New Zealand, and the United States. We were
fortunate to have as our keynote speaker Proressor Cabor Herman, who talked about the
geometry of digital spaces.

The chairs thank ail of the attendees for their active participation, and especiaily the
authors for their timely submission of manuscripts. The help of SPIE staff in facilitating
the conference and publishing these proceedings is also gratefully acknowledged.
Vision Geometry VIII is scheduled to take place during SPIE’s Annual Meeting in
Denver, Colorado, in july 1999.

Robert A. Melter
Angela Y. Wu
Longin Jan Latecki
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eometry of digital spaces

ey
z. L. lerman

Lledical Image Processing Group. Department of Radiology
1 Pennsyivania. Blockley Hall, Fourth Floor
rive, Philadelphia. PA 10104-5021. U S.A.
ABSTRACT
[n the recently pubiished Ref. | the author surveys a number of aspects of the geometry of digital spaces. In this

articie we exemplify the approach of that book, by providing 2 seif-containea proof of one of its final result which 1s
0 do with the correctness and the characterization of the sutput of 2 zZeneral purpose boundary-tracking algorithm.

~ f -~

Keywords: Digitai geometry, Digital topotogy. Digital spaces. Bounaary *

1. SURFACES IN DIGITAL SPACES

Let M be 2ny set, ana 2 be a tmary elatzon on M 1.2, 515 a sudset of M° -he set of 21l ardered palrs of =lements
st M). if (c.d) = 5. then we say that ¢ is o-adjacent ‘o 4 and thal {is s~adjacent jrom ¢ and. in 3ase o 1S a symmeir:c
L

often use the word

relation (meamng that ic, d)

2 f.and only if, (d.=1 S o1, tha

adjacent. ‘We wii

‘adjacency’ to refer to a symmetric sipary relation

We use Z to denote the set of 2il integers. For anyv positive integer NV we jenine

In the case when M = ZV we wiil be repeatedly dealing with two binary relations. ~x and Sy, defined as:

¢
a
IS
R
|
'
[
2

N

N 2 Y 2
e el -
fed) €y =21 < ) (ca—dy) <2 (1.3)

Note that, for any positive integer V. wy C 2v. (.4 C 3 denotes the phrase "4 15 a subses of 3.7)

Let 4 be a subset of M. For any = and d in 4. the sequence &7/ - 2%} of elements of 4 1s said o be a p-path
:n A connecting ¢ to d. if ¢'° is p-adjacent 1o o F' We call K the length of
this path. Note that the length is measured not 5v the number of elements in the path. but rather by the number
of steps needed to get from its beginning to its end. In particular, there are p-paths of length zero (such as (c)); we
refer to them as trwial paths. If thers is a p-path in 4 connecting 2 to 1. then we say that ¢ is p-connected 2 A to d.
{Since avery =lement of A is p-connected 1n 4 1o itself by a trivial path, p~conneciedness in A 1s a reflexive relation)
A nonempty subset 4 of M is said 1o be a p-connected subset if, for any ¢ and 4 in 4, 2 is p-connected in A to d.

V= 8 =dand.for | <k <A,

If there are p-paths tn A connecting ctodand d to e, then thev can be combined into a p-path in A connecting
¢ to 2. hence p-connectedness in - is aiso a transitive reiation If it is aiso the case that o-connectedness in . is a
symmetric relation on 4 {and hence an eguivaience relationon A). then i parutions A into p-components (nonempty
p-connected subsets swwhich are not proper subsets of anyv other s-connected subset of 4). If o happens to be symmetric,
then p-connectedness in A s guaranteed 10 be a symmetric (and hence an equivalence) relation on A,

E-mail: gaboremipg. upenn.zdu
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In the special case wnen .4 = M, we use the phrases p-path and p-connected instead of p-path in .4 and ~
onnected in A. For any binary relation p on a set M, we define its {ransttive closure as the binary relation p° on
M, defined by: (c,d) € p" if, and only if, ¢ is p-connected to d. As we have aiready pointed out, p” is always a
reflexive and transitive relation on M. If, in addition, p° also happens to be symmetric, then it is an equivaience
relation and so partitions M into p-components.

A digital space is a pair (V, 7), where V is an arbitrary nonempty set and 7 is 1 symmetric binary relation
on V such that V is m-connected. Sometimes we will refer to = as the proto-adjacency of the digital space (V. 7.
Elements of V will be called spels (short for spatial elements) and elements of = will be called surfels (short for
surface elements). Any nonempty subset of = will be called a surface in (V, 7). Occasionally we will need to restrict
our attention to antisymmeiric surfaces S, meaning that if (c,d) € S, then (d,c) € S.

v

We will be particularly concerned with a special class of surfaces, which we refer to as boundaries. Let (V. =)
be a digital space and let O and @ be subsets of V. Then the boundary tn (V, 7) between O and Q is defined to be

90,Q) = {(c,d) | (c,d)em, ce0&deQ}. (1.4)

If it is not empty, then a boundary in (V, ) is a surface in (V, 7). In what follows, we will normally be dealing with
nonempty boundaries between disjoint sets. Clearly, such boundaries are antisymmetric surfaces.

Let (V. 7) be a digital space and let S be a surface in it. We define the immediate interior /I(S) and the
:mmediate eztertor [E(S) of 5 as follows:

II(S) = {c|(c,d)e SforsomedinV },
[E(S)={d|(c,d) € S for somecinV }.

We say that a m-path (c(9), ... ()} crosses the surface S if there isa k, 1 < k < K, such that either (c(¥=1) F)) ¢ g
or (¢t¥) ¢#=1)y £ S. The ntertor I(S) and the ezterior E(S) of S are defined as follows:

I(S) = {c € V| there exists a 7-path connecting c to an element of II(S) which does not cross S},

(1.0)
E(S) = { ¢ € V| there exists a 7-path connecting c to an element of JE(S) which does not cross S} . ’

A surface S in a digital space (V, 7) is said to be near-Jordan if every w-path from any element of 7/(S5) to
any element of [E(S) crosses S. (This immediately implies that a near-Jordan surface is an antisymmetric surface.)
We remark that if S is not a near-Jordan surface, then the intersection of its interior and its exterior is necessarily
aonempty. (This is because there is a path, not crossing S, from its immediate interior to its immediate exterior:
all the spels in this path are in both the interior and the exterior of S, as can be seen from (1.6), the symmetry of
proto-adjacency and the symmetrical definition of “crosses.”)

Lemma 1.1. Let S be a surface in a digital space (V, 7). Then the following three conditions are equivalent.
(i) S is near-Jordan.
(il) Every w-path f{rom any element of I(S) to any element of £(S) crosses S.
(i) I(S)N E(S) = 8. (As usual, § denotes the empty set.)
Furthermore, if these conditions are satisfied, then it is also the case that

S =08(I(S), E(S)) . ' : (1.7)

Proot. Let $ be any surface in a digital space (V, 7). Suppose there is a 7-path (c!®), .- c'X}) not crossing

S connecting a c in /($) to a d in £(S). By (1.6), there is also a m-path (el®),--- e{L)) not crossing S connecting
¢ to an element of [I(S) and a m-path (d(® --. dM)) not crossing S connecting d to an element of /E(S). Then
B e = o = (0 L B) = g = 40 ... (M) is a 7-path not crossing S which connects an element of
l(5) to an element of [E(S). Therefore, by definition, S is not near-Jordan. This argument shows that (i implies
(). If I(S) and E(S) have an element ¢ in common, then the trivial r-path (c) is from an element of /(5) to an
2iement of E(S) and does not cross 5. This shows that (ii) implies (iii). That (iii) implies (i) was essentially proven
in the paragraph preceding the statement of the lemma. Finally, it is the case for any surface S that it is a subset
of g(I(S), £(S)) . (This tfollows trivially from the definitions of immediate interior and exterior and of interior and
=xterior.) Suppose now that (i) - (iii) hold and that the surfel (¢, d) is in 8(/(S). E(S)) . Then d belongs to £(5).
and so by (ni) 4 does not belong to /(S): hence (d, ¢) is not in S. The 7-path (c.d) is from an element of /(5) 1=
:n element of £(S) and so, as condition (ii) is satisfied, it crosses S. Hence (c, d) is in S. This proves that any of
the conditions (1) - (1) implies (1.7). O



2. SIMPLY CONNECTEDNESS

Let S be asurface in a digital space {1’

7). For any practical application. it would be impossible to determine wnether
S is near-Jordan by examining ail =-paths from [I(S) to [ £(S). [t i1s desirable ‘0 have a resuit which savs that
is near-Jordan (f some local condition is satisfied at every surfel of 5

[n classical topology, a simply connected space is (intuitively speaking) a connected space in which every loop
can be continuously puiled to a point without leaving the space. There is an infinity of corresponding notions for
digital spaces: for every positive integer D (reflecting how large a digital step is allowed to replace the nouon of
continuity), there is a class of D-simply connected digital spaces, whose definition now follows.

if

P = ;:c““.---.;:i'"'. A PP ol

and
P'o= (D) fAm) f(0) ) (2

are 7-paths in the digital space (V. ), such that
FO = d® R = g and 1< f4n< D2,

then P and P’ are said to be zlementarly D-equivaient. (In this definition. m or [or both in (2.1} may be zero.; Two

7-path P and P’ in a digital space (V) 1) are said to be D-equivalent. if there is a sequence of T-paths 2;.--. 2
L > 9)n the digital space. sucn that 2y = P, P, = P’ and.for | <! < L, P_; and 2 are =ier
We demonstrate 2-equivalent w-paths in (Z:,.u'_:) in Figure e; Figuh, i

Uy 2-equivalent to {a.d.c.d.e.d,g,h,1,],k,[,a) by substituting 1 2,49 = ¢ &V = f P =g

and in (2.2) £=2, f® =, A =4 ‘(2)-'1' {a,b,c.d, ¢ J'._].l i
(a,b,c. d.g.h.z,j,k..’.a) by substituting in {2.1) n = 2, 4®) = 4. 4}

S

s =lementarily
dandin (2.2) &k =

-2quivalent ‘o
Ffo

0

A loop (of length K) in a digital space (V,7) is a m-path (c(®, .. %)) such that /%) = (9 [n particular, for
any spel ¢, (c) is a loop, and is called a trwvial loop. (The notion of a trivial loop and the previously defined notion
of a trivial path are identical; we select the terminology to be used depending on the context.) We note that any
loop of length 1, 2, or 3 is automatically D-equivalent to a triviai loop, for any positive integer D. A digital space is
said to be D-simply connected if every loop in the digital space is D-equivalent to a trivial loop.

Let 5 be a surface in a digital space (V, 7). We say that a surfel (¢, d) in (V| =) crosses S if =xactly one or
(c,d) € Sor(d,c) € Sistrue. Let P =(c\9 ... {K)) be a x-path in {V, ). We say that the crossing partty ps? of
P through S is even (or zero; i.e., psP = 0) if the number of surfels among 1?1, ... ({K=4) 1K)} that cross
S is even and we say that it 1s odd (or one; i.e., ps P = 1) if this number is odd. We use the notation @ for meduio
2 addition of parities (i.e.; 020=151=0 and 061 =120 = \

It is easy to see that. for any surface S in a digital space, the crossing parity through S is even for any loop
in the digital space whose length is not greater than two. Also, cyclic permutation of a loop does not influence its

crossing parity through a surface S, since, for 1 < & < K,

ps(c{m' c:k“’,c‘“,---‘c(x)) = ps(C(k), . C_X\,:cov. ,'C:k-n.c(k\) (2.4
e f e
i1 a9 h d|lg| A d]l g | h
bl ¢ ! bl ¢ 1 bl c :
a ! k ] a I k] a l k|

Figure 2.1. Demonstration of equivalence of m-paths :n (27 wa). (a.5,¢c,d.e, f,9.h.t, ). k. [ a)
is 2-equivalent to {(a.b,c,d,g,h, 1. ), k. [, a), since it is elementarily 2-equivaient to
a.b,c,d.e.d,g.h 1, k.l.a), which is elementarly 2-equivalent to (a.b.c.d,g,h.1,5, k. [,a).



[n addition, reversing a w-path does not change its ~rossing parity. It is also easy to see that if (cl9) ... oK)y and
(@, ...d'L) are x-paths such that ¢f) = 49 then

ps(ct®, -, B M), @ D) = pg(c®, . ) 5 pg(d®, - dtD)). (2.3)

Theorem 2.1. If S is a near-Jordan surface in a digital space, then the crossing parity through S is odd for any
7-path P = (c(® ... ]y such that (c(®, ) e S.

Proof. First note that (according to Lemma 1.1), since S is near-Jordan, [(S)NE(S)=9 and § =
8(I1(S), E(S)). We prove by induction that, for any 0 < & < K,

e (k
(O ... By = 0, if c®) € I(S), (2.5
T 1, otherwise.

Since ¢tX) € E(S), this is sufficient to prove the theorem.

Clearly, (2.6) is true for £ = 0. Suppose that (2.6) is true for some k£ — 1, where 1 < k < K. We prove that it
is also true for k. We make repeated use of the following special case of (2.5):

ps(el®, -, =1, By = ps(cl®, ..., (E7D) @ ps{c*=1, M) . (2.7

[n case ¢'*~ 1) € [(S), the first term on the right hand side of (2.7) is 0 and the second term is 0 if ¢(¥) € I(S) and
1 otherwise. In case c(¥=1) ¢ [(S), the first term on the right hand side of (2.7) is 1 and the second term is 1 if
c%¥) ¢ I(S) and 0 otherwise. In either case, (2.6) is true for k. O

A surface S in a digital space (V,«) is sald to be D-locally-Jordan (where D is a positive integer) if
ps{ct®, .-, X)) is odd for any w-path such that (c{®), (X)) € S and 2 < K < D+ 1. By Theorem 2.1, if a

surface S in a digital space (V, ) is near-Jordan, then it is D-locally-Jordan for all positive D.

Lemma 2.2. Any loop of length not more than D + 2 has even crossing parity through any D-locally-Jordan surface
in any digital space (V, ).

Proof. We have already pointed out that the crossing parity through any surface is even for any loop of length
not more than two. Let S be an D-locally-Jordan surface. Consider a loop L = (c{®, -, (&) with 3 < K < D+ 2.
If there does not exist a &, 1 < k < K, such that (c(*=1) c(¥)) crosses S, then we are done Otherwise, for such a &,
exactly one of (c(¥—1), c(")) € Sor (c(k) (:-1)) € S'is true. If (c™®), c*=D) e §, P = (¥, ... ) = c(u) c("‘”\
is a m-path of length A" — 1 with 2 < K — 1 < D + 1 and so the fact that Sis D-locaily- Jordan implies psP = 1.
By application of (2.4) and (2.5), we have

psL =psP@ps(c* DV cFy=191=0. (2.8)

If (ct5=1 c(F)y € S, a similar argument, which also makes use of the fact that reversing a /'-pa.t.h does not change
its rrossmg parity, can be used to derive the same conclusion. O

Lemma 2.3. Let S be an D-locally-Jordan surface in a digital space (V. 7). If P and P’ are D-equivalent w-paths,
then they have the same crossing parity through S. .

Proof. By the definition of D-equivalent, it is sufficient to prove that if P and P’ satisfy (2.1), (2.2), and (2.3),
then they have the same crossing parity through S.

By applying (2.5), we get

psP =ps(c®,---, ™, d) @ ps(d® .- d™) g ps(d™) &) .. ey (2.9)
and o _
psP' = ps(cM, -, ™, fO) @ ps(FN, ..., /) @ ps(fF),elV), .. M) . (2.10)

Therefore, using (2.3), the invariance of crossing parity under reversal, and (2.5), we get
psP@psP' = ps(d®, .-, d™)  ps(fO,. /)
Ps(d(m- oo d™ = f(k). R AL 40)) = 0.

The last equality follows from the previous lemma combined with (2.3). O

The results up to now apply to digital spaces which do not have to be D-simply connected for any D. The next
lemma makes essential use of D-simple connectedness.



Lemma 2.4. [f 5 is an D-locally-Jordan anusymmetric surface in an D-simply connected digital space ' \" =), "nen
S is near-Jordan :f either (and hence both) of the following two equivalent conditions hoids.

(1) For any ¢ = {I(S) and d € [](S), there exists a 7-path P from c to d such that ps? = 0

(11) For any c € [E(S) and d & [ E(S). there exists a 7-path P from ¢ to d such that ps? = 0.

Proof. Evidently the two conditions are equivalent. Indeed, if ¢ € [I(S) and 4 = [I(S), then there =xist
¢ € IE(S) and d' £ [E(S) such that {¢,¢’) € 5 and (d,.d’) € S; hence if there exists a 7-path of even rrossing parity
from ¢ to ¢, then there also exists one from ¢ to d, so that (ii) implies (i). Similarly, (1) impiies (i1}

’

In what follows, we prove that S is near-Jordan if (ii) holds. We do this by supposing that 5 is not near-Jordan
and showing that this, together with (ii), leads to a contradiction.

First. we show that there exists a m-path P; = (c(}) ... &5y such that ¢tV = [I(S), &% = [E(5) wna

psP1 = 0. Indeed, since S is supposed to be not near-Jordan, there is a m-path from [/(S) to [£(S) that does not
cross S. Clearly, any such =-path has the required properties.

Next, we show that there exists a w-path P; = (e{}) ... e{L)) such that (et!) elL)) € S and psP; = 0. Let
P. be the 7-path of the last paragraph. Let ¢t be such that (¢} &) = S By (ii), there 2xsts 3 T-patn
Py = () = 4@ .. ) = 9 from K 1o 9 such that ps P> = 0. Then Py = (ctb), ... oF) 48 AL g

a 7-path from ¢!} to d'X) such that (c{') d')) € S and, by (2.5), psPs = psPL ® psPs = 0.

For a 7-path Pj satistying the properties listed at the beginning of the previous paragraph, let «?) = 2%
By the antisymmetry of 5. ps(et® e(!)) = 1 and so. by (2.3), Py ={el® &1} ... L) s 3 [oop such -hat
psPs = ps{el?,et!)y @ ps Py = 1. Since (V.7) is D-simply connected, Py is D-equivaient to a triviai icop, wnose
crossing parity through S is zero. Since Sis D-locally-Jordan, according to Lemma 2.3, we must also have ps Py =
contradicting the fact that psPy = 1. O
Theorem 2.5. For any positive integer V. (ZV,wy) is 2-simply connected.

Proof. We show that every loop in (Z“".u,v) is 2-equivalent to a trivial loop. We do this by induction on the
length of the loop. We have already noted that, in general, every loop of length 1 or 2 is 2-equivalent to a trivial
loop. Suppose that every loop in (Z‘V.uN) of length less than some A > 2 is 2-equivalent to a trivial loop. Consider
a loop (ct®, .. Ky in (Z¥ wp) of length K. We now show that it is 2-equivalent to 2 loop of length X — 1 or
K — 2 and thus, by the induction hypothesis, is 2-equivalent to a trivial loop.

Since c{!) is wy-adjacent to ¢'?), we have c(}) # (%) (To illustrate our argument, consider Figure 2.1. In that

figure ® =a =1(0,0) and ) = b = {(0.1).) Then there is a unique ; such that c;;” = c;o). Without loss o1
generality, assume that cE” > c§0). (In Figure 2.1, 7 = 2.) Let = = 1xsr}‘aéxx Lc";‘-k)}. (In Figure 2.1, . = 3.) Let!
be the largest integer in the range 0 < ! < K such that cé') = z. (In Figure 2.1, in the left,column { =5 with

¢3) = f =(2,3) and in the middle column { = 4 with ¢{*) = ¢ = (1,3).) Clearly, cg-H'” =51, (In Figure 2.1, in
the left column ¢(+1) = ¢(6) = g = (2,2) and in the middle column c('*1) = ¢(5) = d = (1,2).) Let k be the smallest
integer such that, for ail ¢ in the range 0 < £ <7 <[ < R, we have cg-i) = z. (In Figure 2.1, ¥ = 4 in both the
left and the middle column.) Clearly, cg-k_” =z — 1. (In Figure 2.1, k=1 = ¢(3) = d = (1,2) in both the left and

middle columns.) We will new use induction on [ - k.
If /- k=0, then £ = { and therefore c*=1) = ¢(5+1)  (This case is illustrated in Figure 2.1 by the middle
column, for which £ = [ = 4 and ¢/~ = *+1) = 4.) In this case the loop
(O =) (k=) (R) (k1) (kD) (K (2.12)

is elementarily 2-equivalent to the loop
(O .. =D (k=1) = (kD) ((k+2) (KD (2.13)
which has length X' — 2 and we are done. {The loop in (2.12) is illustrated by the loop of the middle column of
Figure 2.1, while the loop in (2.13) is illustrated by the loop of the right coiumn of Figure 2.1.)
Suppose now (induction hypothesis) that whenever [ — k = 4, then (c!®), - 5} is 2-equivaient 10 a loop ot
length A’ — 1 or ' — 2. We now show that the same conclusion holds if [ - & = A + L. Let

(c")'}c“’.---,c"“, ”'C\l—l)'cnl)_c;lﬂ)‘,_,’th)) (2,143



o

be a loop. Define j, = (. and & for this ioop as above and suppose ! - ¢ = 2 — 1. | This is the case in Figure

1

‘or the loop associated with the left column with { = 5. & = 4 and. hence. 2 = J. Note also that for this loop ;
2 and - = 3.) Let ¢ be a spel such that, for 1 < n <.V,
:=1, ifn=j vey TES
c;}”: (=1 - (2.15)
ch , otherwise.

(In the left column of Figure 2.1, ¢\ = ¢3) = (1,2) = d.) Clearly, ¢V is proto-adjacent to =1 Also, cliFY)
differs from ¢'? in exactly the jth component (which is = — 1 for the former) and D differs from ¢~ in exactly
one component which is other than the jth; thus ) is proto-adjacent to c+1) (In the left column of Figure 2.1,
W= = o4) = ¢ and F1) = 8 = 3, both of which are proto-adjacent 1o /(" = ¢/5) = 4.) It follows thac

(O M) Ll B L =1y D) ) LY {2.18)
is also a loop and is easily seen to be elementarily 2-equivalent to the loop in (2.14). (The loop in (2.14) is iilustrated
by the loop of the left column of Figure 2.1, while the loop in (2.16) is illustrated by the loop of the middle coiumn or
Figure 2.1.) Furthermore, it follows from (2.15) that for the loop in (2.16) the condition of the induction hypothesis
h0ids. (Indeed, we have aiready seen that for the middle column of Figure 2.1 we have { — & = 0 = h.) So. by the
:nduction hypothesis, the loop in (2.16) 1s 2-equivalent to a loop of length A" — 1 or A’ — 2. From this 1t follows that
the loop in (2.14) is also 2-equivalent to a loop of length Y — 1 or A —2. T

3. GENERAL BOUNDARY TRACKING

We define a digital picture over the digital space (V, ) to be a triple (V. 7, f), where fis a function whose domain
1s V. The choice of topics in this book is biased towards the study of binary pictures, which are defined to be digitai
pictures in which the range of fis the two-element set {0, 1}. We refer to those spels which map into 0 under f as
0-spels and we refer to those speis which map into 1 under f as -spels.

If O is the set of ail 1-spels and Q is the set of all O-spels in a binary picture (V, 7, f), then we refer to elements
of B = 9(0,Q) as bels (short for boundary elements) in (V,«, f). We say that the binary relation A on B is a
hel-adjacency if
(i) A" is symmetric and
(ii) for any b in B, there is a finite number (denoted by iny(b) and called the :ndegree of the bel b) of different
clements a in B for which (a.b) € A.

We propose an algorithm for the following task: Given a binary picture (V, 1, f), a bel-adjacency A, and a bel
o, such that the A-component S of B wkich contains o is finite, find S.

General Bel-Tracking Algorithm
{1) Put ointo L and S and . "t iny(0) copies of o into T.
{2) Remove a bel a from L. For all bels 6 which are A-adjacent from a, try to find one copy of b in T.
a. If successful, remove this copy of b from T.
b. If not, then put b into L and S and put iny(b) — | copies of b into T.
{3) Check if L is empuy.
1. If it is, STOP.

1

5. If it 1s not. start again at Instruction (2).

Prior to proving the correctness of this algorithm, two remarks are in order. First, in Instruction (2)b, iny(b)—1
is zuaranteed to be nonnegative. This is because we only get to this point in the algorithm for a b which is A-adjacent
from a bel a and, so, in,(b) > 1. Second, the potential efficiency of this algorithm comes from the fact that we
check for membership in T (rather than in §). While S keeps getting bigger and bigger as the algorithm is executed,
due to [nstruction (2)b, the same is not true for T: elements from T will be repeatedly removed due to Instruction
(2)a. Hence the size of T is likely to be a small fraction of the size of S after the algorithm has been performing
for a while on a large data set.

The essence of the proof of correctness is given in the next lemma. To state it =asily we use a couple of
abbreviations. We let nr()) abbreviate “the number of copies of the bel b in the list T.” The other definition is more
complicated. The value of n,(6) is 0 if b € S and is “iny(b) less the number of bels in S — L which are A-adjacent
to the bel " otherwise.



Lemma 3.1. Both just prior and just atter the execution of Instruction (2) in the Generai Bei-'Tracking Algorithm
1t 1s the case that. for every bei b.
(1) nr(b) = n,d),
(1) the bel o has so far been put into L and S — =ither due to Instruction i i) or due o [nstruction (2)b —
at most once, and
(ii1) if the bel 6 is in 5, then 1 is A-connected in 3 1o b.

Proof. Consider the situation just after the execution of Instruction (1). We have that nr(0) = iny(0) = ng(0)
and the bel o has so far been put into L and S exactly once. For any belt b other than o, np(b) = 0 = n,(b) and b has

o

not so far been put into L and S even once. Since oniy o has been put into S, (iii) s clearly satisfied at this time.

Now we show that if (1), (11) and (iii) hold just prior the execution of Instruction {2}, then they also hold just after
its execution. This is sufficient, since the situation cannot change as a resuit of Instruction (3). Assume therefore
that we are just at the beginning of executing Instruction (2). This means that at this time L is not empty and so
we remove a bel a from it. This a must have been put into L and S eariier on and, since nothing is ever removed
from S, we must have that a £ S. We leave it to the reader to supply the easy proof of the fact that for those
bels which are not A-adjacent from a, the inductive step is valid. For the beis b which are A-adjacent from . we
study separately two possibilities.

Case a: we find a copy of b in T In this case, oy Instruction {2)a. we remove this b from I". This reduces n{b)
by 1. Since b was in T, it also had to be in S (nothing is ever put into T without being put into S at the same
rime). Therefore the applicable part of the definition of n,(b) is that it is in\(b) less the number of bels in 5 — L
which are A-adjacent to the bel 6. The only thing that changes in this definition is that a, which 1s A-adjacent to b,
got removed from L. Hence n4(b) is also decreased by 1, proving (i) of the lemma ior the bei 4. Since nothing s put
mto L and S, (ii) and (iii) are aiso valid at the end of executing Instruction (2).

Case b: there isno copy of din T i.e., np(b) = 0. First we show that under these circumstances, it cannot be the
case that b has been previously put into L and S. This is so, since otherwise prior to the beginning of Instruction (2),
the applicable part of the definition of n,(b) would be “iny(b) less the number of bels in § — L which are \-adjacent
to the bel 5.” Since at that time the bel a is still in L, the value of n,(5) has to be positive, contradicting the truth
of (i) in the induction hypothesis. Upon executing Instruction (2)b, b has been put into L and S (for the first time}
and nr(b) = iny(b) — 1. There is at least one bel, namely a, which is in S — L and is A-adjacent to . There cannot
be another one, since whenever a bel is put into S, it is also put into L at the same time, and so if at a later time 1t
is no longer in L, then it must have been removed from it. At that time, b would have been put into L and S and we
would not be in Case b. This shows that in this case too, ny(b) = n,(b) just after the execution of Instruction (2).
Finally, since a € S just prior to the executiou of Instruction (2), ¢ is A-connected in B to a, by (ii1) of the induction
hypothesis. The same must be true for the new bel b in S, since a is A-adjacent to it. O

Theorem 3.2. If (V,x, f) 1s a binary‘p‘lcr.ure. A is a bel-adjacency and o is a bel. such that the A\-component of B
which contains o is finite, then the General Bel-Tracking Algorithm terminates in a finite number of steps- and, at
- that time, S is the A-component of B which contains o.

Proof. From (iii) of the previous lemma it follows that anything that gets put into S is in the finite A-component
of B which contains :. Termination in a finite number of steps now easily follows from (ii) of the previous lemma:
since each of the finitely many bels in the A-component of B which contains 7 is put into L at most once (and nothing
else ever gets put into L) and in each execution of Instruction (2) of the algorithm a bel is removed from L, sooner
or later L has to become empty and the algorithm will stop due to Instruction (3). At that time, as all through
the execution of the algorithm, i is A-connected in B to every element of S. That the converse is also true (and
hence S is the A-component of B which contains i) can be shown as follows. For any bel 6 of the A-component of
B which contains i, there is a A-path (b(®), ... 6(5)) from i to b. It is a trivial matter to show by induction that.
for 1 < k < K, b%*=1) will get put into L and S and, since L gets eventually emptied, 6(*~!) must get removed from
L, resulting in 6(¥) being put into L and S (provided that it is not in T, which would imply that it has been put
into L and S in some previous step). O

This theorem shows that the General Bel-Tracking Algorithm is powerful sturf. Its practical usefulness depends
on two properties of the bel-adjacency A. The first is, how easy is it to compute the beis A-adjacent from a given
bel? Clearly, the efficiency of executing Instruction (2) depends on this (as well as on how easy it 1s to determine for
a bel whether or not it is in T'). The other property has to do with the usefulness of the resuiting boundaries: are



they in fact of the form 8(O. Q) for some appropriately specified O and Q7 [n the following section we wiil positivery

answer these questions for some specific choices of the bel-adjacency in certain digital spaces.

4. BOUNDARY TRACKING ON HYPER-CUBES

We now apply the General Bel-Tracking Algorithm to the tracking of boundaries in the spaces (ZV. on) with V > 2
Let, for 1 < n < N, u” denote the unit vector in direction n, which is defined as the element of ZN for which 4% = |
and all other components are 0. A basic digraph for ZV is a pair (M, p) for which:
(i) M ={u*|1<n<N} U {—-u*|1<n< N}
(i) p = U1<x<J<N pi.j, where p; ; is exactly one of

A {(uw), (W ), (=ut =), (=, u) },
B. {(u’,—uﬂ,,(—w‘.—u‘),(—u‘.uf),(uj,u‘)},
C. 0.

Note that it is permitted in the definition of p that different options (A, B, or C) be selected for specifying p; ; for
iifferent pairs of i and ;. We refer to elements of M as the nodes and elements of p as the arcs of the basic aigrapn.

As an example, consider Figure 4.1. In this case .V = 3 and so the number of nodes in the basic digraph is six.
Also, there are three sets of arcs p; ; (since 1 < i< j < 3) and here we have selected Option A for all three. Seiecting
Option B would correspond to reversing the direction of the corresponding cycle of arrows (e.g., choosing Option B
for p» 3 would correspond to reversing the horizontal cycle of arrows on the vertical faces of the cube in Figure 4.11:
such choices are arbitrary and, as will be easily seen from the material that follows, they make no difference to the
nature of the tracked boundaries. (On the other hand, choosing Option C instead of Option A can result in a very
different boundary being tracked by the General Bel-Tracking Algorithm.)

The ourpose of introducing basic digraphs is that they can be used to define adjacencies between bels in binary
pictures over (ZV,wy). We now assume that we are given a basic digraph (M, p) and a binary picture (ZN . wn, f)
and explain how these are used to define an adjacency A on the set of bels of (ZN,wN,f). If b = (c,d) is such a
bel, then we must have that f(c) = 1, f(d) =0, and (¢,d) € wy. From the definition of wy it follows that d — ¢ 1s
a node of the given basic digraph (M, p). Every node p-adjacent from d — c gives rise to single bel A-adjacent from
b. Because of the utility of this in the proofs that follow, we in fact define A as [J;¢;c;<n Aij, Where every node
pi j-adjacent from d — ¢ gives rise to single bel A; j-adjacent from b.

[n following the details of the specification of how a node u which is p; j-adjacent from d — ¢ gives rise to 2
unique bel which is A; j-adjacent from (c. d), consult Figure 4.2. (In that figure we are illustrating the situation when
u nas been selected using p; 3. Three separate casas are considered: in (i) d — ¢ = —u® and, hence, u = u*, in (ii)
d—c=u' and, hence, v = u?, and in (iii) d — ¢ = u? and, hence, u = —u’.) We distinguish between three mutuaily
=xclusive possibilities. The first is that d + u is a l-spel (this corresponds to (iii) in Figure 4.2). In this case tht oel
A; j-adjacent from (c,d) is specified to be (d + u,d). The second is that d + u is a 0-spel and ¢ + u is a l-spel (this
corresponds to (ii) in Figure 4.2). In this case the bel \; ;-adjacent from (c, d) is specified to be (¢ + u,d + u). The
third is that both d +.u and ¢+ u are 0-spels (this corresponds to (i) in Figure 4.2). In this case the bel \; ;-adjacent
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Figure 4.1. [llustration of a basic digraph (on the right) and its interpretation as a set of directions taken while
tracking the boundary between a single spel and the set of all other spels in Z3 (in the middle)



