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PREFACE

This book is intended primarily as a textbook for a senior or first-year
graduate course in Microwaves. It may also be useful to research workers
and practicing engineers as a reference book. For the benefit of those
who have not had a course in Electrodynamics, chapters have been
included on the theory of static and dynamic electromagnetic fields, a
knowledge of which is essential to the analysis of waveguides and travel-
ing-wave tubes. The arrangement is such, however, that the mathemati-
cal treatments contained in the Introduction and in Chapters 1, 2, and
the first part of 5 may be omitted by those who are primarily interested
in the physical analyses and characteristics of microwave devices. Em-
phasis has been placed upon the physical principles underlying the opera-
tion of microwave amplifiers and oscillators, since a knowledge of these
principles may be helpful in suggesting new microwave devices.

The treatment of waveguide and coaxial-line components, measure-
ments, and, to some extent, antennas is largely descriptive and is pre-
sented at a relatively low level. The justification for this is that some
knowledge of these subjects is essential to work in this field, but that
a comprehensive treatment would require far more space than could
be assigned to it in a book of reasonable length. Books covering each of
these fields are available to those desiring more detailed information.

The term “microwave” has been interpreted by the. authors to apply
to devices operating at frequencies at which distributed-element circuits
are usually used. Thus the frequency range covered by this book extends
upward from a lower limit of approximately three or four hundred
megacycles per second.

The authors experienced considerable difficulty in the choice of letter
symbols, both because of the large number of different quantities to be
represented and because of the variety of symbols that have been used by
various authors for identical quantities. Standard symbols have been
used whenever possible. Where standard symbols do not exist, the au-
thors have tried to choose symbols that agree with the most general
usage and that do not lead to confusion. The Index of Symbols lists the
pages on which each symbol is defined.
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Most of the chapters contain problems that help to emphasize funda-
mental principles. Some problems, in which the method of attack is
suggested, are also used as means of eliminating, in the text, mathemati-
cal details that should be familiar or easily determined by students of
senior or graduate standing. References to these problems are made at
appropriate points in the text. Although many instructors prefer to
devise their own laboratory experiments, the authors believe that the
experiments provided in this book may at least serve as a useful guide
in a laboratory course on Microwaves.

Every effort has been made to include references to papers and books
that served as sources for the material presented in this book. Because
much of the development in the microwave field took place during
World War II, however, credit cannot always be given to those who
deserve it.

The microwave field is still sufficiently new so that no book in this
field can be completely up-to-date at the end of the time required for
publication. The manuscript has been modified frequently in order to
include newly available material, and the authors believe the treatment
to be reasonably up-to-date at the time of this writing.

New Haven, Conn.
March 1953
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INTRODUCTION

VECTOR ANALYSIS

I-1. Vector Arithmetic.! Vectors are quantities that have magnitude
and direction. Force is a typical vector quantity—that is, its description
requires the specification of its magnitude and of the direction of its
action. Other examples are electric intensity, magnetic intensity, veloc-
ity, surface, etc. Customarily, a vector is referred to a reference co-
ordinate system. The right-hand reference frame, defined with respect to
the right-hand-screw convention, is usually employed. The axes of a right-
hand system, shown in Fig. I-1 for the Cartesian system, are oriented so
that a right-hand screw rotated from positive x to positive y through the
90° angle will advance in the positive z direction.

With respect to the coordinate system shown in Fig. I-1, the vector F
which, for example, might represent a force or a surface, can be expressed
as

Ful, F.+1,F,3 1. F, (I-1)

in which F,, F,, and F, are the respective components of F that act par-
allel to the coordinate axes, and 1,, 1,, 1, are unit vectors that are
directed along the respective x, y, z axes. The unit vectors always de-
fine the direction of action of the components of the vector.

If F is a force, the quantities F,, F,, F, are the magnitudes of the
components of the force along the coordinate axes. When F represents
an open surface such as a sheet of paper or, as in Fig. I-7, F is drawn
normal to the surface in such a manner that its positive direction is the
direction of advance of a right-hand screw turned so as to pass through
the surface, and the components F,, Fy, F, are the magnitudes of the
projected areas of the surface upon the y-z, x-z, and x-y coordinate planes
respectively. When F represents a small section of a closed surface such

'The material in this section is a condensed development of vector mathe-
matics. For more detailed and extensive treatments, the reader may wish to con-
sult other authors. A particularly good treatment from the standpoints of content,
pictorial development and detail is that of Guillemin, E. A., Mathematics of
Circuit Analysis, Chap. 5, John Wiley & Sons, Inc., 1949. Also Page, Leigh,
Introduction to Theoretical Physics, 3rd Ed., D. Van Nostrand & Coey Inc., 1952,

and Skilling, Hugh H., Fundamentals of Electric Waves, John Wiley & Sons, Inc.,
1942,
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as a sphere, the vector is customarily drawn normal to the small section
of surface area and outward from the closed surface.

Y

Wi
| PR

]i/ = X

Z

Fig. I-1. Force F acting at point p in a right-hand system
of Cartesian coordinates.

The magnitude of F must evidently be

| F| = V(Fo? + (F ) + (F,7 (1-2)

Fy - Fy B

|F| |F| |F]|
each of the coordinate axes. These cosines are commonly known as the
direction cosines of F,
The addition of vectors is customarily defined to be the addition of
the codirected components of each of the vectors. If

must be the cosines of the angles that F makes with

Fal . F.+1. F 1 F, (I-3)
and | & =150, P Gy N, 6 (I-4)
then F+G=1, (F+ G+ 1, (Fy+G,)+ 1, (F, +Gy) (I-5)

There are two forms of vector multiplication, the ‘‘dot’’ or scalar
product and the “‘cross’’ or vector product. The dot product of two vec-
tors is a scalar that is defined by the relation

G
F G=|F| |G|cosGF (1-6)

G
where 0 is the angle between F and G. From the definition, it is evi-

dent that the dot product of codirected unit vectors is unity and of orthog-
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onal vectors zero; hence

i (1-7)

The dot product of the two vectors F and G is
FG=(1, F, +1, Fy + 1, F;)* (1, G, + 1, G, + 1, G;) = -8)
Fp Gy + Fy G # F, Gy

As an example of the dot product, the work done when a body is moved
a distance AL by a force F is defined by

AL
Work = IFI |A£| cos 0 | o (I-9)

in which 6 $£ is the angle between the direction of action of F and of

the displacement A. Work done mechanically can thus be expressed as
the dot product of the vectors F and A£.

Work = F + A4 (I-10)

The cross product of two vectors F and G is defined to be a vector
R, F x G =R, in which the magnitude of R is

G
|R| = |[Fxa| = |F| |G] sin 0 (I-11)

and in which the direction of R is the direction of advance of a right-hand
screw rotated through the smaller angle from F to G.

Since sin 0 = —sin (—0), the manner of measurement of 0 in the cross
product must be specified. According to the usual convention,  is meas-
ured as the smaller angle from F to G—that is, from the first to the second
vector in the product: hence the order of the vectors is very important and
FxG=-GxF. In accordance with the right-hand-screw convention,
the following cross products of unit vectors are expressed:

1,x1;=1,=-1,x1,

1,x1,=1,=-1,x1, (I-12)
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For the two vectors, F and G, as defined in Egs. (I-1) and (I-2), the cross
product is obtained by complete algebraic multiplication as

Fx@=(1, F,+1,F, +1, Fp) x (1 Gy +1, G, + 1, G,)
=1, x1, FyGe+1,x1,F, G, +1,x1, F, G,
+1,x1, Fny+lyxlyFyGy+1yxlesz

(I-13)

t X xRy By G B, B 6, s I 4 F G

When the cross products of the unit vectors are evaluated as in Eq. (I-1%),
F x G is obtained as

FxG=1,(F,G,~F,Gy)+1,(F, G, ~F, Gp) + (I-14)

L (F. G,~F,G,)
This product may conveniently be expressed as a determinant jn the form
L 1, 1,
FxGa=1F F,F, (I-15)
G, G, G,

One illustration of this type of multiplication is the computation of
torque. When a force acts on a lever arm, the resultant torque acts about
a definite axis of rotation perpendicular to the plane containing the lever
arm and the force. The magnitude of the torque depends upon the products
of the magnitude of the force, the length of lever arm, and the sine of the
angle between them. Consequently, the torque T produced by a force F

acting on a lever arm £ can be expressed exactly in vector form as
T=Fx 4.

I-2. Vector Triple Product and the Scalar Triple Product, The defini-
tion of the vector product readily extends to the triple vector product
F x G x H which has a unique meaning only when the order for obtaining
the product is clearly indicated. This order is customarily indicated by
association so that (F x G) x H is understood to mean that the vector
product F x G is formed first, and then the product of this vector with
vector H is formed. The resultant vector is normal to (F x G); conse-
quently the resultant is in the plane containing F and G. Evidently,
(FxG)x H=F x (G x H) and the order of association of vectors in form-
ing the product cannot be interchanged. Since the vectors within paren-
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theses may be commuted without changing the association in forming the
triple product,

(FxG)xH=~(G><F)><H=H><(GxF):—Hx(FxG). (I-16)

Through the use of Eq. (I-15) the vector triple product can be expanded
to yield the identity

FxG)xH=F -HG-(G-HF (I-17)

The combination of a vector and a scalar product of the form H ‘FxG)
is called a scalar triple product. In order to form the scalar triple product,
the vector product F x G is first formed, and then the scalar product with
H is obtained. From analogy to Eq. (I-15) it can be shown that the scalar
triple product can be expressed in the form

H, H, H,
H-FxG=|F, F,F, (1-18)
GGy G,

According to the laws of determinants, interchanging a pair of adjacent
fows or a pair of adjacent columns changes only the algebraic sign of
the value of the determinant. Therefore, the association in the triple
scalar product may be interchanged with appropriate sign changes in the
product; thus

H-FXxG=-F *HxG=-H'GxF=G-HxF (I-19)

I-3. Vector and Scalar Fields. Most quantities in electromagnetic field
theory are functions of position ia the coordinate system in which they
are expressed. Such quantities are either vectors or scalars. An illus-
tration of a vector function of space, commonly called a vector field,
is the force field set up by displaced water in the region of the bottom
of a ship. 'The magnitude and direction of the force exerted at a point
on the hull of a ship depend upon the location of the point. On the other
hand, an illustration of a scalar function of space, commonly called a
scalar field, is the temperature of the walls and interior of a refrigerator.
“The temperature at a point p within the refrigerator is specified as a
magnitude only and depends, among other things, upon the location of the
point. *

*Vector fields can often be computed from scalar fields, and vice versa
The rate of change of temperature with respect to change in location of the point



