

audio content indexing and retrieval

Hyoung-Gook Kim

Nicolas Moreau

Thomas Sikora

WILEY

MPEG-7 Audio and Beyond

Audio Content Indexing and Retrieval

Hyoung-Gook Kim

Samsung Advanced Institute of Technology, Korea

Nicolas Moreau

Technical University of Berlin, Gerr

Thomas Sikora

Communication Systems Group, Technical University of Berlin, Germany

Copyright © 2005

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 42 McDougall Street, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging in Publication Data

Kim, Hyoung-Gook.

Introduction to MPEG-7 audio / Hyoung-Gook Kim, Nicolas Moreau, Thomas Sikora.

n. cm.

Includes bibliographical references and index.

ISBN-13 978-0-470-09334-4 (cloth: alk. paper)

ISBN-10 0-470-09334-X (cloth: alk. paper)

MPEG (Video coding standard)
 Multimedia systems.
 Sound—Recording and reproducing—Digital techniques—Standards.
 Moreau, Nicolas.
 Sikora, Thomas.
 Title.

TK6680.5.K56 2005 006.6'96—dc22

2005011807

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN-13 978-0-470-09334-4 (HB) ISBN-10 0-470-09334-X (HB)

Typeset in 10/12pt Times by Integra Software Services Pvt. Ltd, Pondicherry, India Printed and bound in Great Britain by TJ International Ltd, Padstow, Cornwall This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

MPEG-7 Audio and Beyond

Acronyms

ADSR Attack, Decay, Sustain, Release AFF Audio Fundamental Frequency

AH Audio Harmonicity

AP Audio Power

ASA Auditory Scene Analysis

ASB Audio Spectrum Basis

ASC Audio Spectrum Centroid

ASE Audio Spectrum Envelope

ASF Audio Spectrum Flatness

ASP Audio Spectrum Projection
ASR Automatic Speech Recognition

ASS Audio Spectrum Spread

AWF Audio Waveform

BIC Bayesian Information Criterion

BP Back Propagation BPM Beats Per Minute

CASA Computational Auditory Scene Analysis
CBID Content-Based Audio Identification

CM Coordinate Matching

CMN Cepstrum Mean Normalization
CRC Cyclic Redundancy Checking
DCT Discrete Cosine Transform
DDL Description Definition Language
DFT Discrete Fourier Transform

DP Dynamic Programming
DS Description Scheme

DSD Divergence Shape Distance
DTD Document Type Definition
EBP Error Back Propagation

ED Edit Distance

EM Expectation and Maximization

EMIM Expected Mutual Information Measure

Xİİ ACRONYMS

EPM Exponential Pseudo Norm
FFT Fast Fourier Transform
GLR Generalized Likelihood Ratio

GMM Gaussian Mixture Model

GSM Global System for Mobile Communications

HCNN Hidden Control Neural Network

HMM Hidden Markov Model

HR Harmonic Ratio

HSC Harmonic Spectral Centroid
HSD Harmonic Spectral Deviation
HSS Harmonic Spectral Spread
HSV Harmonic Spectral Variation
ICA Independent Component Analysis
IDF Inverse Document Frequency
INED Inverse Normalized Edit Distance

IR Information Retrieval

ISO International Organization for Standardization

KL Karhunen-Loève
KL Kullback-Leibler
KS Knowledge Source
LAT Log Attack Time
LBG Linde-Buzo-Gray
LD Levenshtein Distance

LHSC Local Harmonic Spectral Centroid
LHSD Local Harmonic Spectral Deviation
LHSS Local Harmonic Spectral Spread
LHSV Local Harmonic Spectral Variation

LLD Low-Level Descriptor LM Language Model

LMPS Logarithmic Maximum Power Spectrum

LP Linear Predictive

LPC Linear Predictive Coefficient

LPCC Linear Prediction Cepstrum Coefficient

LSA Log Spectral Amplitude LSP Linear Spectral Pair

LVCSR Large-Vocabulary Continuous Speech Recognition

mAP Mean Average Precision

MCLT Modulated Complex Lapped Transform

MD5 Message Digest 5

MFCC Mel-Frequency Cepstrum Coefficient

MFFE Multiple Fundamental Frequency Estimation

MIDI Music Instrument Digital Interface
MIR Music Information Retrieval

MLP Multi-Layer Perceptron

ACRONYMS xiii

M.M. Metronom Mälzel

MMS Multimedia Mining System
MPEG Moving Picture Experts Group
MPS Maximum Power Spectrum
MSD Maximum Squared Distance

NASE Normalized Audio Spectrum Envelope NMF Non-Negative Matrix Factorization

NN Neural Network OOV Out-Of-Vocabulary

OPCA Oriented Principal Component Analysis

PCA Principal Component Analysis

PCM Phone Confusion Matrix
PCM Pulse Code Modulated
PLP Perceptual Linear Prediction

PRC Precision

PSM Probabilistic String Matching

QBE Query-By-Example QBH Query-By-Humming

RASTA Relative Spectral Technique

RBF Radial Basis Function RCL Recall

RMS Root Mean Square
RSV Retrieval Status Value
SA Spectral Autocorrelation

SC Spectral Centroid
SCP Speaker Change Point
SDR Spoken Document Retrieval

SF Spectral Flux

SFM Spectral Flatness Measure SNF Spectral Noise Floor SOM Self-Organizing Map

STA Spectro-Temporal Autocorrelation STFT Short-Time Fourier Transform SVD Singular Value Decomposition SVM Support Vector Machine

SVM Support Vector Machine
TA Temporal Autocorrelation
TPBM Time Pitch Beat Matching

TC Temporal Centroid

TDNN Time-Delay Neural Network ULH Upper Limit of Harmonicity

UM Ukkonen Measure

UML Unified Modeling Language
VCV Vowel-Consonant-Vowel
Vector Quantization

VQ Vector Quantization

xiv ACRONYMS

VSM Vector Space Model

XML Extensible Markup Language

ZCR Zero Crossing Rate

The 17 MPEG-7 Low-Level Descriptors:

AFF	Audio	Fundamental	Frequency
-----	-------	-------------	-----------

AH Audio Harmonicity

AP Audio Power

ASB Audio Spectrum Basis
ASC Audio Spectrum Centroid
ASE Audio Spectrum Envelope
ASF Audio Spectrum Flatness
ASP Audio Spectrum Projection
ASS Audio Spectrum Spread

AWF Audio Waveform

HSC Harmonic Spectral Centroid HSD Harmonic Spectral Deviation HSS Harmonic Spectral Spread HSV Harmonic Spectral Variation

LAT Log Attack Time SC Spectral Centroid TC Temporal Centroid

Symbols

Chapter 2

n time index s(n) digital audio signal F_s sampling frequency l frame index L total number of frames w(n) windowing function L_w length of a frame

 N_w length of a frame in number of time samples HopSize time interval between two successive frames

 N_{hon} number of time samples between two successive frames

k frequency bin index

f(k) frequency corresponding to the index k spectrum extracted from the lth frame

 $P_l(k)$ power spectrum extracted from the *l*th frame

 N_{FT} size of the fast Fourier transform

 ΔF frequency interval between two successive FFT bins

 $\begin{array}{ll} r & \text{spectral resolution} \\ b & \text{frequency band index} \\ B & \text{number of frequency bands} \\ loF_b & \text{lower frequency limit of band } b \\ hiF_b & \text{higher frequency limit of band } b \end{array}$

 $\Gamma_l(m)$ normalized autocorrelation function of the *l*th frame

m autocorrelation lag T_0 fundamental period f_0 fundamental frequency

h index of harmonic component N_H number of harmonic components f_h frequency of the hth harmonic amplitude of the hth harmonic

 V_E reduced SVD basis

W ICA transformation matrix

xvi SYMBOLS

Chapter 3

```
X
           feature matrix (L \times F)
L
           total number of frames
1
           frame index
F
           number of columns in X (frequency axis)
f
           frequency band index
\boldsymbol{E}
           size of the reduced space
U
           row basis matrix (L \times L)
           diagonal singular value matrix (L \times F)
D
V
           matrix of transposed column basis functions (F \times F)
           reduced SVD matrix (F \times E)
V_E
Ŷ
           normalized feature matrix
           mean of column f
\mu_f
           mean of row l
\mu_{I}
\Gamma_{l}
           standard deviation of row l
           energy of the NASE
\chi_l
V
           matrix of orthogonal eigenvectors
D
           diagonal eigenvalue matrix
C
           covariance matrix
C_{P}
           reduced eigenvalues of D
C_E
           reduced PCA matrix (F \times E)
P
           number of components
S
           source signal matrix (P \times F)
W
           ICA mixing matrix (L \times P)
N
           matrix of noise signals (L \times F)
Ň
           whitened feature matrix
H
           NMF basis signal matrix (P \times F)
G
           mixing matrix (L \times P)
H_{\rm F}
           matrix H with P = E(E \times F)
           coefficient vector
x
d
           dimension of the coefficient space
λ
           parameter set of a GMM
M
           number of mixture components
b_m(x)
           Gaussian density (component m)
           mean vector of component m
\mu_m
\Sigma_m
           covariance matrix of component m
           weight of component m
C_m
           number of hidden Markov model states
S_i
           hidden Markov model state number i
b_i
           observation function of state S_i
           probability of transition between states S_i and S_i
a_{ij}
           probability that S_i is the initial state
\pi_i
           parameters of a hidden Markov model
```

SYMBOLS xviii

w, b	parameters of a hyperplane
d(w, b)	distance between the hyperplane and the closest sample
α_i	Lagrange multiplier
$L(w, b, \alpha)$	Lagrange function
$K(\cdot,\cdot)$	kernel mapping
R_l	RMS-norm gain of the lth frame
X_{l}	NASE vector of the <i>l</i> th frame
Y	audio spectrum projection

Chapter 4

X

\boldsymbol{w}	word (or symbol)
W	sequence of words (or symbols)
λ_w	hidden Markov model of symbol w
S_i	hidden Markov model state number i
b_i	observation function of state S_i
a_{ij}	probability of transition between states S_i and S_j
\vec{D}	description of a document
Q	description of a query
d	vector representation of document D
q	vector representation of query Q
t	indexing term
q(t)	weight of term t in q
d(t)	weight of term t in d
T	indexing term space
N_T	number of terms in T
$s(t_i, t_i)$	measure of similarity between terms t_i and t_j

acoustic observation

Chapter 5

	8
n	note index
f(n)	pitch of note n
F_s	sampling frequency
F_0	fundamental frequency
scale(n)	scale value for pitch n in a scale
i(n)	interval value for note n
d(n)	differential onset for note n
o(n)	time of onset of note n
C	melody contour
M	number of interval values in C
m(i)	interval value in C

xviii SYMBOLS

G(i)	n-gram of interval values in C
Q	query representation
D	music document
Q_N	set of n -grams in Q
D_N	set of <i>n</i> -grams in <i>D</i>
c_d	cost of an insertion or deletion
C_m	cost of a mismatch
C_e	value of an exact match
U, V	MPEG-7 beat vectors
u(i)	ith coefficient of vector U
v(j)	jth coefficient of vector V
R	distance measure
S	similarity score
$\langle t, p, b \rangle$	time t , pitch p , beat b triplet
$\langle t_m, p_m, b_m \rangle$	melody segment m
$\langle t_q, p_q, b_q \rangle$	query segment q
n	measure number
S_n	similarity score of measure n
S_m	subsets of melody pitch p_m
S_q	subsets of query pitch p_q
i, j	contour value counters

Chapter 6

L_{S}	length of the digital signal in number of samples
N_{CH}	number of channels
$s_i(n)$	digital signal in the ith channel
$\Gamma_{si,sj}$	cross-correlation between channels i and j
P_i	mean power of the ith channel

Chapter 7

X_i	sub-sequence of feature vectors
μ_{X_i}	mean value of X_i
\sum_{X_i}	covariance matrix of X_i
N_{X_i}	number of feature vectors in X_i
\boldsymbol{R}	generalized likelihood ratio
D	penalty

Contents

Li	List of Acronyms				
Li	List of Symbols				
1	Intr	troduction			
	1.1	Audio Content Description			
	1.2	MPEG-7 Audio Content Description – An Overview	2		
		1.2.1 MPEG-7 Low-Level Descriptors	5		
		1.2.2 MPEG-7 Description Schemes	6		
		1.2.3 MPEG-7 Description Definition Language (DDL)	9		
		1.2.4 BiM (Binary Format for MPEG-7)	9		
	1.3	Organization of the Book	10		
2	Low	-Level Descriptors	13		
	2.1	Introduction	13		
	2.2	Basic Parameters and Notations	14		
		2.2.1 Time Domain	14		
		2.2.2 Frequency Domain	15		
	2.3	Scalable Series	17		
		2.3.1 Series of Scalars	18		
		2.3.2 Series of Vectors	20		
		2.3.3 Binary Series	22		
	2.4	Basic Descriptors	22		
		2.4.1 Audio Waveform	23		
		2.4.2 Audio Power	24		
	2.5	Basic Spectral Descriptors	24		
		2.5.1 Audio Spectrum Envelope	24		
		2.5.2 Audio Spectrum Centroid	27		
		2.5.3 Audio Spectrum Spread	29		
	- m	2.5.4 Audio Spectrum Flatness	29		
	2.6	Basic Signal Parameters	32		
		2.6.1 Audio Harmonicity	33		
		2.6.2 Audio Fundamental Frequency	36		

vi CONTENTS

	2.7	Timbral Descriptors	38
		2.7.1 Temporal Timbral: Requirements	39
		2.7.2 Log Attack Time	40
		2.7.3 Temporal Centroid	41
		2.7.4 Spectral Timbral: Requirements	42
		2.7.5 Harmonic Spectral Centroid	45
		2.7.6 Harmonic Spectral Deviation	47
		2.7.7 Harmonic Spectral Spread	47
		2.7.8 Harmonic Spectral Variation	48
		2.7.9 Spectral Centroid	48
	2.8	Spectral Basis Representations	49
	2.9	Silence Segment	50
	2.10	Beyond the Scope of MPEG-7	50
		2.10.1 Other Low-Level Descriptors	50
		2.10.2 Mel-Frequency Cepstrum Coefficients	52
		References	55
3	Soun	d Classification and Similarity	59
	3.1	Introduction	59
	3.2	Dimensionality Reduction	61
		3.2.1 Singular Value Decomposition (SVD)	61
		3.2.2 Principal Component Analysis (PCA)	62
		3.2.3 Independent Component Analysis (ICA)	63
		3.2.4 Non-Negative Factorization (NMF)	65
	3.3	Classification Methods	66
		3.3.1 Gaussian Mixture Model (GMM)	66
		3.3.2 Hidden Markov Model (HMM)	68
		3.3.3 Neural Network (NN)	70
		3.3.4 Support Vector Machine (SVM)	71
	3.4	MPEG-7 Sound Classification	73
		3.4.1 MPEG-7 Audio Spectrum Projection (ASP)	
		Feature Extraction	74
		3.4.2 Training Hidden Markov Models (HMMs)	77
		3.4.3 Classification of Sounds	79
	3.5	Comparison of MPEG-7 Audio Spectrum Projection vs.	
		MFCC Features	79
	3.6	Indexing and Similarity	84
		3.6.1 Audio Retrieval Using Histogram Sum of	
		Squared Differences	85
	3.7	Simulation Results and Discussion	85
		3.7.1 Plots of MPEG-7 Audio Descriptors	86
		3.7.2 Parameter Selection	88
		3.7.3 Results for Distinguishing Between Speech, Music	
		and Environmental Sound	91

CONTENTS vii

		3.7.4	Results of Sound Classification Using Three Audio Taxonomy Methods	92
		3.7.5	<u>, ₹1</u>	96
			Results of Musical Instrument Classification	98
			Audio Retrieval Results	99
	3.8	Concl		100
		Refere	ences	101
4	Spo	ken Co	ntent	103
	4.1	Introd	uction	103
	4.2	Auton	natic Speech Recognition	104
		4.2.1	Basic Principles	104
		4.2.2	Types of Speech Recognition Systems	108
		4.2.3	Recognition Results	111
	4.3	MPEC	G-7 SpokenContent Description	113
		4.3.1	General Structure	114
		4.3.2	SpokenContentHeader	114
		4.3.3	SpokenContentLattice	121
	4.4	Applie	cation: Spoken Document Retrieval	123
		4.4.1	Basic Principles of IR and SDR	124
		4.4.2	Vector Space Models	130
		4.4.3	Word-Based SDR	135
		4.4.4	Sub-Word-Based Vector Space Models	140
		4.4.5	Sub-Word String Matching	154
		4.4.6	Combining Word and Sub-Word Indexing	161
	4.5	Concl	usions	163
		4.5.1	MPEG-7 Interoperability	163
		4.5.2	MPEG-7 Flexibility	164
		4.5.3	Perspectives	166
		Refere	ences	167
5	Mus	sic Des	cription Tools	171
	5.1	Timbr	re	171
		5.1.1	Introduction	171
		5.1.2	InstrumentTimbre	173
		5.1.3	HarmonicInstrumentTimbre	174
		5.1.4	PercussiveInstrumentTimbre	176
		5.1.5	Distance Measures	176
	5.2	Meloc		177
		5.2.1	Melody	177
		5.2.2	Meter	178
		5.2.3	Scale	179
		5.2.4	Key	181

viii CONTENTS

		5.2.5	MelodyContour	182
			MelodySequence	185
	5.3	Tempo	0	190
		5.3.1	AudioTempo	192
		5.3.2	AudioBPM	192
	5.4	Applic	cation Example: Query-by-Humming	193
		5.4.1	Monophonic Melody Transcription	194
		5.4.2	Polyphonic Melody Transcription	196
		5.4.3	Comparison of Melody Contours	200
		Refere	ences	203
6	Fing	gerprin	ting and Audio Signal Quality	207
	6.1	Introd	uction	207
	6.2	Audio	Signature	207
		6.2.1	Generalities on Audio Fingerprinting	207
		6.2.2	Fingerprint Extraction	211
		6.2.3	Distance and Searching Methods	216
		6.2.4	MPEG-7-Standardized AudioSignature	217
	6.3	Audio	Signal Quality	220
		6.3.1	AudioSignalQuality	
			Description Scheme	221
		6.3.2	BroadcastReady	222
		6.3.3	IsOriginalMono	222
		6.3.4	BackgroundNoiseLevel	222
		6.3.5	CrossChannelCorrelation	223
		6.3.6	RelativeDelay	224
			Balance	224
		6.3.8	DcOffset	225
		6.3.9	Bandwidth	226
		6.3.10	TransmissionTechnology	226
		6.3.11	ErrorEvent and ErrorEventList	226
		Refere	ences	227
7	App	lication	ı	231
	7.1	Introdu	action	231
	7.2	Autom	atic Audio Segmentation	234
		7.2.1	Feature Extraction	235
		7.2.2	Segmentation	236
		7.2.3	Metric-Based Segmentation	237
		7.2.4	Model-Selection-Based Segmentation	242
		7.2.5	Hybrid Segmentation	243
		7.2.6	Hybrid Segmentation Using MPEG-7 ASP	246
		727	Segmentation Results	250

CONTENTS ix

7.3	Sound Indexing and Browsing of Home Video Using Spoken		
	Annot		254
	7.3.1	A Simple Experimental System	254
	7.3.2	Retrieval Results	258
7.4	Highli	ghts Extraction for Sport Programmes Using Audio	
	Event	Detection	259
	7.4.1	Goal Event Segment Selection	261
	7.4.2	System Results	262
7.5	A Spo	ken Document Retrieval System for Digital Photo	
	Albun	ns	265
	Refere	ences	266
Inde	ex		271