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Oh, how many of them there
are in the fields!
But each flowers in its

own way—
In this is the highest achievement
of a flower!
Matsuo Basho
1644-1694

PREFACE TO THE SERIES

“Modern Problems in Condensed Matter Sciences” is a series of contributed
volumes and monographs on condensed matter science that is published by
North-Holland Publishing Company. This vast area of physics is developing
rapidly at the present time, and the numerous fundamental results in it define
to a significant degree the face of contemporary science. This being so, it is
clear that the most important results and directions for future developments
can only be covered by an international group of authors working in cooper-
ation.

Both Soviet and Western scholars are taking part in the series, and each
contributed volume has, correspondingly, two editors. Furthermore, it is in-
tended that the volumes in the series will be published subsequently in Russian
by the publishing house “Nauka”.

The idea for the series and for its present structure was born during
discussions that took place in the USSR and the USA between the former
President of North-Holland Publishing Company, Drs. W.H. Wimmers, and
the General Editors.

The establishment of this series of books, which should become a dis-
tinguished encyclopedia of condensed matter science, is not the only important
outcome of these discussions. A significant development is also the emergence
of a rather interesting and fruitful form of collaboration among scholars from
different countries. We are deeply convinced that such international collabora-
tion in the spheres of science and art, as well as other socially useful spheres of
human activity, will assist in the establishment of a climate of confidence and
peace.

The General Editors of the Series,

V.M. AgranovichA A.A. Maradudin



INTRODUCTION

I am delighted to write a short introduction to this volume. I congratulate the
editors on having brought together contributions from so many of the coun-
tries in which scientists have been at the forefront of this field of research. 1
have myself been involved in it since 1949, and shall study this volume with the
greatest interest.

I suppose the most important single step in the study of Coulomb interac-
tions in solids was the demonstration by Landau that, in spite of these
interactions, the Fermi surface in k-space is a real physical quantity and at
zero temperature is sharp. So of course is the sharp cut-off at the Fermi energy,
which was shown even earlier in 1934 by Jones, Mott and Skinner. This is true
also for a degenerate electron gas in a non-crystalline field. As regards the
problem of electrons in these fields, even without interactions, I doubt if it is
fully understood even yet. Such understanding as we have starts with P.W.
Anderson’s famous paper of 1958 on the “Absence of Diffusion in Certain
Random Lattices”, which shows not unexpectedly that disorder must lead to
traps in a conduction band but, more surprisingly that traps with a continuous
range of energies can prevent diffusion. In the light of Anderson’s concept of
localization, one can divide problems into those of the conduction band of an
amorphous semiconductor, such as hydrogenated amorphous silicon, in which
Coulomb interactions are not important, and those of a degenerate gas, for
instance in an impurity band, where they are. Even the former are by no means
understood; in real semiconductors there is no agreed calculation of the
position of the mobility edge or of the shape of the tail of localized states; the
sign of the Hall effect remains to be explained and there is lack of agreement
on whether polarons are formed.

For the degenerate electron gas, a puzzie until recently has been the
status —if any — of the author’s “minimum metallic conductivity”, given by

Omin = 0.025 €% /ha,
where in a compensated impurity band a is the distance between centres.
There was much experimental evidence for its existence, but in 1979 arguments

based on scaling theory claimed that o(7 = 0) would always go continuously to
zero as the Fermi energy E tends to the mobility edge E_, and there is now

vii



viii Sir Nevill Mott

much experimental evidence that this is so, if experiments are carried out at a
low enough temperature. Recently Mott (1984) has shown that this can be
deduced from the Kubo-Greenwood formula. A minimum metallic conductiv-
ity will only exist if a transition is induced by a magnetic field, and is then

~0.025¢2/hL,

where L= L, = (ch/He)'/* if L,;>a, and L=a otherwise. The author’s
“minimum metallic conductivity” should be observed, then, for magnetic fields
such that L, <a at the transition, as is the case in the work of Long and
Pepper (1984) and Dubois et al. (1984) on doped InP, using temperatures
down to 40 mK.

Turning now to interactions, the intra-atomic interaction (e*/r1,), called
the Hubbard U, is responsible for a metal-insulator transition in a crystalline
array of one-electron centres—or more generally centres with a magnetic
moment. This is what is often called a “Mott transition”. The most interesting
point about it is that, in crystalline materials, it is predicted to be a first-order
transition; in a rigid lattice the number of free electrons should Jjump discon-
tinuously from zero to a finite value. This discontinuity may not exist in
strongly disordered systems (Mott 1978) — but probably does in, for instance,
metal-ammonia solutions, where a solubility gap appears to be a consequence
of the transitions. But whether this is so in uncompensated doped semiconduc-
tors is very doubtful; there is no evidence for it at all.

Doped semiconductors do of course provide the ideal field for the explora-
tion of interactions in degenerate gases, and in this the work of Gordon
Thomas and co-workers reported in this book is outstanding. They were the
first to show that, at low enough temperatures, the conductivity would go
continuously to zero if the transition occurred through change of concentration
or stress (in contrast, in our view, to magnetic fields). Now they find that o is
proportional to (n,— n)* with s =}, instead of s =1 as predicted by a theory
without interactions and observed in other systems such as a Si-Nb. At the
time of writing, several theorists are attempting to explain this in terms of
interactions; can it be related to the change in the density of states near the
Fermi level, as |E — Eg|'/?, first predicted by Altshuler and Aronov (1979)?

The transition in doped semiconductors is usually supposed to take place in
an impurity band —but for Si: P this must be doubted, because the electronic
specific heat shows little deviation from the value calculated for free electrons
in the silicon conduction band. We have to ask, then, can an Anderson
transition take place without a drop in the density of states resulting from
disorder? Perhaps this is only possible in a many-valley band.

In the limit of low concentrations of dopant, there is of course no doubt that
conduction is in an impurity band and it is here, for hopping conduction, that
interactions through the “Coulomb gap” have their most striking effect. It is



Introduction ix

good to see contributions from the two editors, pioneer workers on this subject,
setting out so fully the present position.

Sir Nevill Mott
Cavendish Laboratory
Cambridge, UK
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1. Introduction

The theory of transport phenomena based on the classical equation assumes
that between scattering events the electron moves along a classical trajectory.
This is valid, however, only provided interference of scattering from different
centers can be neglected. The criterion for the validity of such an approach is
the smallness of the electron wavelength A compared to the mean free path /,
as pointed out by Ioffe and Regel (1960), Mott (1961), and Mott and Davis
(1971). If this condition is not satisfied, then, as shown by Anderson (1958),
the electron states are localized, the zero temperature conductivity being zero.

The momentum relaxation of electrons in disordered conductors at suffi-
ciently low temperatures is governed by their elastic scattering from impurities
and structural defects. Even if A </, quantum corrections to the transport
effects become essential, since it is these corrections that are responsible for the
nontrivial dependences on temperature, external fields and sample size (Abra-
hams et al. 1979, Anderson et al. 1979, Gor’kov et al. 1979). These corrections
are applicable even in the case of an ideal gas of noninteracting electrons.

Electron—electron interaction in disordered metal systems also results in
nontrivial corrections which are small in the A// parameter and depend on
temperature, external fields and sample size. However, in contrast to the case
of noninteracting electrons, such corrections have to be applied not only to the
transport, but also to thermodynamic quantities and to the electron density of
states at the Fermi level as well (Altshuler and Aronov 1979a, b, c, Altshuler et
al. 1980a, b, Altshuler et al. 1982c,d, Fukuyama 1980a).

This effect of the electron-electron interaction in disordered systems makes
it drastically different from that for pure metals, where the interaction at low
temperatures manifests itself only in renormalization of the electron spectral
parameters.

Progress in the theory of disordered metals has provided clues to a number
of phenomena which have been defying explanation for a long time.

Among them is the negative magnetoresistance in semiconductors discovered
more than 20 years ago, zero-bias anomalies in the tunneling conductivity, the
minimum in the temperature dependence of the resistivity of disordered
metals, which are not associated with the Kondo effect, and some other
phenomena. At the same time, investigation of the quantum corrections to the
transport phenomena has offered a unique possibility to shed light on the
microscopic relaxation times in metals and their temperature dependence,
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among them the inelastic collision time, the phase relaxation time, the
spin—orbit and spin-spin scattering times (Bergmann 1982a, b, ¢, Gershenzon
and Gubankov 1981, Gershenzon et al. 1982a,b).

The present review deals with the investigation of the effect of electron—elec-
tron interaction on the properties of disordered conductors in the metallic
conduction domain. The theory developed in the recent years and outlined in
this review is applicable to dirty and amorphous metals, metal glasses and
doped semiconductors. Similar to the case of quantum corrections to the
kinetic effects in a noninteracting electron gas, the interaction effects are most
clearly pronounced in low-dimensionality systems, i.e., in the MOS structures
in semiconductors, in thin films and wires.

The purpose of the present survey is to give a consistent overview of the
effect of electron—electron interaction on the properties of disordered conduc-
tors. Therefore, despite the wealth of available experimental data on the
quantum corrections in disordered conductors, we will present here only a few
of them just to illustrate the major achievements of the theory, rather than
attempt to give a comprehensive critical analysis of the experimental situation
in this area.

The review is constructed in the following way.

In section 2, the major results of the application of quantum corrections to
the theory of a noninteracting electron gas are studied qualitatively, the
principal phenomena are considered, and the effect of external fields is
discussed. In the same section (subsection 2.2) the conventional diagrammatic
technique is outlined, and subsequently the principal quantities used are
introduced.

Section 3 reports on a study of the effect of electron—electron interaction on
the one-particle density of states and the thermodynamics of disordered
conductors. It is shown, in particular, that particle repulsion produces a
minimum in the density of states at the Fermi energy. It is this minimum that
is responsible for the anomalous maximum of tunneling resistivity at zero bias.
The effective electron interaction for the case where the gas approximation fails
is also discussed. Quantum corrections to such thermodynamic quantities as
the heat capacity and compressibility of the electron gas are considered in the
concluding part of this section.

Section 4 deals with an investigation of electron—electron collisions in
disordered metals. The presence of a large number of impurities or defects
changes the classical result of Landau concerning the temperature dependence
of the inelastic electron—electron collision time. It is found to be different for
bulk samples, films and thin wires.

The electron—electron collisions result in relaxation not only of the oc-
cupancy, but of the quasiparticle wave function phase relaxation as well.

When studying the phase relaxation time 7, of the wave function, we
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encounter an unusual situation in the kinetics of normal metals, when the
quasiclassical description of this relaxation process is not applicable, since the
characteristic energy transfer turns out to be of the same order as the inverse
relaxation time multiplied by Planck’s constant. Because of the unusual nature
of this situation, we have given here a detailed mathematical derivation of the
basic results since this situation, in our opinion, is not so unique as not to be
met more than once in the kinetics of normal metals.

Section 5 is devoted to the effect of electron-electron interaction on trans-
port phenomena in disordered conductors, as well as on the temperature and
frequency dependence of the conductivity and the Hall effect. Just as in the
preceding sections, we have tried here to sum up the various contributions to
these effects providing the same functional dependence on the main quantities,
such as temperature, frequency, degree of disorder, while originating from
different interaction effects.

In section 6 we treat the effect of magnetic field and spin scattering on the
phenomena in question. The magnetic field, just as the spin-flip electron
scattering (both of the spin—orbit and spin—spin type) provide new degrees of
freedom and thus permit one to separate the various contributions to the
quantum effects. Indeed, the interaction effects begin, for instance, to depend
on magnetic field at higher fields than is the case with the quantum corrections
to the conductivity of noninteracting electrons. Spin scattering also acts in a
different way, its effect depending on whether it is of the spin-spin or
spin—orbit type. Also, the various contributions are differently affected by the
rate of this scattering.

In the same section, the behavior of the magnetic susceptibility of disordered
metals is analyzed. It is found that the quantum correction to the orbital
magnetic susceptibility originating from electron interaction cannot be small
(Aslamasov and Larkin 1974), and can govern not only the temperature and
field dependence of the magnetic susceptibility, thus imitating the localized
spin susceptibility, but also its magnitude in low-dimensionality systems.

Section 7 deals with an investigation of the effect of anisotropy and
intervalley transitions on the interaction effects in disordered semiconductors.

Despite the obvious achievements in the theory of disordered conductors,
the very important question of how the metal-insulator transition occurs with
a change of disorder, or of the Fermi energy, remains unanswered. Consider-
able progress in this domain has been recently achieved without including
electron—electron interaction following the work of Abrahams et al. (1979) who
showed that in three dimensions the transition is essentially of the second kind,
i.e., without a jump in conductivity, whereas in two- and one-dimensional
systems the electrons are always localized. Wegner (1979) and Efetov et al.
(1980) showed that the field-theoretical model describing this transition is
renormalizable, and thus supported the main results obtained by Abrahams
et al. (1979).
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The effect of electron—electron interaction on the transition proper has not,
however, been clarified. McMillan (1981) developed a phenomenological scal-
ing theory for the metal-insulator transition; however, some of its major
conclusions have been criticized by Castellani et al. (1982) and Finkelshtein
(1983). The latter demonstrated also renormalizability of the theory of the
metal-insulator transition taking into account the interactions.

In section 9 the metal-insulator phase transition is considered including
interactions in the presence of paramagnetic impurities. It is shown that this
phase transition does not differ qualitatively from Anderson’s transition for the
case of a noninteracting electron gas without spin scattering,.

Those parts of the mathematics involved which are not necessary for the
understanding of the subject are transferred to the Appendices.

2. Noninteracting electrons in disordered metal systems
2.1. Quantum corrections to the conductivity of noninteracting electrons

The residual resistance in conductors is determined by the elastic scattering of
electrons from impurities and static lattice defects. In “good” conductors, the
wavelength of the electron A =2xA/p (p is the electron momentum) is much
less than its mean free path /. Between collisions the electron moves as a free
particle and can be described in a quasiclassical way. This description of
electronic behavior yields the well-known Drude expression for the conductiv-
ity

_ety 2.1)

o=""N, .

where N is the electron concentration, m the effective mass, r the time
between collisions, e the electronic charge. As shown by Anderson (1958), at
a sufficiently high impurity concentration when A >/, the electron states
become localized and no longer contribute to conduction. The transition from
delocalized to localized states observed to occur with increasing degree of
disorder is called Anderson’s transition.

However, even in the domain of high metallic conductivity when A </,
quantum corrections can be added to the classical expression of Drude. In this
section we will discuss the physical meaning of these corrections, their magni-
tude and some phenomena associated with them.

Consider a good conductor (A < /). To get from point A to point B (fig. 1),
a particle can move along different paths. The total probability w for a transfer
from point A to point B can be obtained by squaring the modulus of the sum
of all amplitudes of the probability for a particle to pass along all possible
paths, i.e.

w=

2
ZAI‘ =Z|Ai|2+ ZAiA}" (2.2)

i#j
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The first term in eq. (2.2) represents the sum of probabilities for the particle to
pass by any way, and the second, the interference of various amplitudes. For
most paths the interference is not essential since their lengths differ strongly,
and hence also the phases of the wave functions should differ substantially on
these paths. Therefore, when summing over all paths, the mean value of the
interference term will vanish because of its oscillating nature. There are,
however, paths of a specific kind, namely, self-intersecting paths (fig. 1). Each
path of this kind can be assigned a pair of amplitudes, 4, and A4,, correspond-
ing to the passage of the loop clock- and counterclockwise. These two ampli-
tudes are coherent and thus interference of these waves may not be neglected.
As a result, the probability to find a particle at point O becomes

| 4,2+ |4,)* + 2Re 4, 43 = 414,

ie., twice the figure we would obtain if we summed up the probabilities
neglecting interference. On the other hand, an enhanced probability to find a
particle at the point it has left means a reduced probability to find it at point B
(the point of observation), ie., a decrease of conductivity or increase of
resistivity, induced by interference. Neglect of interference corresponds to a
classical description of the electrons (Boltzmann equation), and its inclusion
corresponds to quantum corrections to the conductivity.

Estimate now the magnitude of the corrections to the conductivity. Because
of the collisions with impurities, the electron paths follow a random walk
pattern. The interfering amplitudes correspond to the paths contained within a
ray tube of cross section A%. The relative magnitude of the quantum correction
to conductivity, 86 /0, which, as we have just seen, is negative, is proportional
to the probability for such a ray tube to intersect itself in a classical diffusion
motion

do % vA2dt
Rl AT )

where v is the particle velocity and D the diffusion coefficient. Integration in
eq. (2.3) is performed within the limits 7 <7<, where 7, is the phase

0

Fig. 1. Various paths for a particle to move from point A to point B. O = point of path
self-crossing.



Electron—electron interaction in disordered conductors 9

relaxation time associated with inelastic or spin-flip scattering. (Later we shall
discuss the physical meaning of 7,.) Thus the quantum correction to conductiv-
ity acquires the form (Anderson et al. 1979, Gor’kov et al. 1979)

2

e
8o ~
hL,

+ const., (2.4)

where L, = \/D"rq) . As seen from eq. (2.4), although the quantum correction to
conductivity is small in the parameter //p/ < 1, nevertheless it brings about a
nontrivial temperature (since 7, ~ T77) or frequency relationship (at Qr,>1
the upper limit of integration in eq. (2.3) has to be replaced by 1/Q and, hence,
L, in eq. (2.4) is replaced by Ly =/D/R). It should be emphasized that the
interference effects produce a growth of resistivity as the temperature de-
creases.

If the transverse size of a film or wire a < L, the particle will be able to
diffuse many times the distance from one wall to another in time 7, SO that the
probability to find it at any point along the transverse dimension will be the
same. Hence for the quantum correction to conductivity we obtain

do T U}\zdt 1

o r (Dt)d/z a3—d’

where d is the effective dimensionality of the sample (d=2 for a film and
d =1 for a wire). On integration we come to

(2.3a)

e2
8o,~ —SInLyl, d=2,

eZ

- 7Lq,, d=1.
Here o,=ga® " (For a film o, is the conductivity of a square sample, for a
wire o, refers to a sample of unit length.) Expression (2.4a) is valid at d =2
also for a purely two-dimensional case, e€.g., MOSFET devices, where the
motion of particles in the transverse direction is quantized, making only planar
diffusion possible.

One may thus conclude that the cross-over from one dimensionality to
another occurs when the transverse size of a sample becomes equal to L.

Consider now the physical meaning of 7, following Altshuler et al. (1981a, b).
7, is the time in which the wave function retains its coherence. It should be
stressed that this time is neither the out-relaxation time (by which we under-
stand here the relaxation time associated with the scattering-induced transfer
of a particle to any quantum state) nor the energy relaxation time of the
distribution function. To illustrate this point, consider the case of quasielastic
electron scattering by acoustic phonons. Such a relaxation mechanism can
operate in degenerate semiconductors at not too high electron concentrations
or in metals, when the temperature is about the Debye temperature.

(2.4a)



