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INTRODUCTION

This book is devoted to giving an account of the arithmetic t-heory of
the moduli spaces of elliptic curves. The main emphasis is on under:
standing the behavior of these moduli spaces at primes dividiné the
‘““‘level” of the moduli problem being considered. Until recently, this
seemed a very difficult préblem, because one had no a priori construction
of these spaces at the ““bad’’ primes. One defined them as schemes over,
say, Z[1/N] as the solution to some well-posed moduli problem which
only made sense for eliiptic curves over rings in which N was invertible,
and then one used a process of normalization to extend them to schemes

«

over Z, e.g., one took the ““proj’” of the graded subring of the ring of all
modular forms of the type in question consisting of those with integral
Fourier (‘‘g-expansion’’) coefficients at the cusps. This procedure pro-
duced a scheme over Z, but one had no idea of what moduli interpretation
this scheme had, nor a fortiori did one have any idea of the modular inter-
pretation of its reduction modulo p, for p a prime dividing the levei.
Historically, the only case where this question was in any way satis-
factorily understood was the case of I;(p), which made universal sense
as the moduli problem ‘‘p-isogenies’’, or ““finite flat subgroup-schemes of
rank p.”’ This modular interpretation was implicitly known to Kronecker,
o

for whom it appears as the statement that the ‘“modular equation of

degree p, reduced mod p, is the curve in the (jl,jz)—plane
(Jl_(J2)p)((J1)p_12) =0.”

One knows the crucial role that the reinterpretation of this Kronecker

congruence by Eichler-Shimura as the ‘“‘congruence relation’’

ix
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Tp =F+V mod p

played in the reduction of the Ramanujan conjecture to Weil’s ‘“Riemann
Hypothesis for varieties over finite fields.”’

Eichler-Shimura made use of this relation to prcve that for 21l but
finitely many p the Ramanujan conjecture held for any given cusp form
of weight two and level N which is a simultaneous eigenfunction of all
Tp with p not dividing N. The method was intrinsically incapable of
specifying the exceptional p, which were believed to consist only of
primes dividing N.

Partly in order to settle definitively this question of exceptional p
for weight two forms, Igusa, in a brilliant series of papers ([lg 2, 3.4,5]),
gave a complete and definitive account of the level N moduli scheme
over Z[1/N]. Except for a difference of mathematical language, and the
modular interpretation of the cusps by Deligne-Rapoport, there have been
no ‘‘improvements’’ to Igusa’s account of what happens over Z[1/N].
Although Igusa’s papers cantain many stimulating speculations about the
situation mod p for ‘““bad”’ p (e.g., the footnote ([Ig 2], p. 472) where he
points out that the genus of ro(p) is closely related to the number of
[super] singular points in characteristic p ), there was to be no significant
progress in understanding the situation at ‘““bad’’ p for another decade.

In 1968, Deligne completed the general reduction of Ramanujan’s con-
jecture, for formns of arbitrary weight, and in particular for A, to Weil’s
Riemann Hypothesis for varieties over finite fields. In his article [De 1],
he mentions that in fact the IB(p) moduli scheme, (with suitable auxiliary
prime-to-p rigidification) is actually a regular scheme, and in a letter of
July 10, 1970 to Parshin he proves this regularity by checking what
happens at the supersingular points in characteristic p.

Simultaneously, another theme was developing. Shimura conjectured
and Casselman [Cmn 1] proved that for p =29, 53, 61, 73, 89, 97, the
Jacobian of (the modular curve for) I'(p), modulo the Jacobian of Iy(p),

acquired good reduction over the field ()(g'p) Casselman [Cmn 2]
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explained that such theorems of good reduction could be predicted by the
‘‘Langlands philosophy’’, which related, conjecturally, such questions to
questions in representation theory which were already well-understood.
The paper of Deligne-Rapoport [De-Ra] in 1972 provided an exhaustive
acccunt of what was then known about arithmetic ‘moduli of elliptic curves.
It gave a complete account of level N moduli problems over Z[1/N], in-
cluding a modular interpretation of the compactified .noduli scheme (i.e.,
including the cusps) as the moduli space of ‘‘generalized elliptic curves

)

with auxiliary structure.” It also gave a modular interpretation over 7
to the [’ (p) moduli problem, and with it a proof that the good reduction
phenomenon of Shimura-Casselman held for any p. Another innovation
was the systematic use of algebraic stacks, as developed by Mumford
[Mum 1] and Deligne-Mumford [De-Mu].

The next significant progress came in 1974, with Drinfeld’s introduc-
tion {in the context of his theory of ‘‘elliptic modules’’) of the notion of a
“full level N-structure’’ on an elliptic curve over an arbitrary scheme,

where N need not be invertible, as a pair of points P,Q of order N

such that the group-scheme E[N] of points of order N is equal to the

2 [aP +bQ]

a,b mod N

sum

as a Cartier divisor inside E. Drinfeld showed that with this definition,
the corresponding full level N moduli problem for his ‘‘elliptic modules”’
was regular. It was clear to the experts, although never published, that
with Drinfeld’s definition applied to usual elliptic curves, one cbtained a
moduli problem over 7 which was regular, and which, over Z[1/N],

IR}

coincided with the usual “full level N ’’ moduli problem. In particular, .
one now had a modular interpretation of its reduction moduio any p, as

the moduli space of elliptic curves, together with Drinfeld level N struc-
tures, over Fp-algebras. With this modular interpretation, it became a

pleasant exercise to calculate explicitly the reduction modulo any prime p.
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In a letter to Drinfeld of January 21, 1975, Deligne explained how the
Drinfeld idea of using Cartier divisors allowed one to define universally
the 1(N) problem as well as a “‘balanced’’ version of it by saying that
a point P in an elliptic curve has ‘‘exact order N ”’ if it is killed by N

and if the Cartier divisor inside E defined by

>, Pl

a mod N

18 actually a subgroup-scheme of E. Deligne also explained that the
resulti}xg moduli problem was regular.

In June 1979, the present authors rediscovered Deligne’s I (N) idea,
and they formulated a Drinfeldian version of TB(N) by defining a finite
locally free subgroup-scheme G of rank N inside an elliptic curve to be
cyclic if locally f.p.p.f. on the base one could find a point P in it which

generated it, in the sense that

G= > laP]

a mod N

as Cartier divl'iso_rS inside E. Using this definition of FO(N) as the
moduli problem c;f “eiliptic curves together with cyclic subgroup-schemes
which are finite locally free of rank N,’’ they proved that the r;)(N)
problem was regular and worked out explicitly the reductions mod p of
al! the ‘“standard’’ moduli problems.

These calculations of special fibers, together with some intricate (due
to wild ramification) calculations of the topological invariants of the
special fibers, led to a direct geometric verification of a rather general
theorem of good reduction which includes the Shimura-Casselman-Deligne-
Rapoport theoren; as a special case. For the most part, this good reduction
theorem is also a consequence of the above-mentioned Langlards philosophy,
which reduces it to a known question in representation theory (cf. [La] and
[M W], proof of Prop. 2, §2, Chapter 3).

In writing this book, we have tried simultaneously to be self contained

and to be as general as possible.
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In the first chapter, we develop the Drinfeldian notions of level
structure through the notion of equality of Cartier divisors in the ambient
elliptic curve. With an eye to future applications to the moduli of higher-
dimensional abelian varieties, in which the points of order N cease to
be a Cartier divisor, we give a reformulation of all the Drinfeldian
;wtions in the context of finite locally free commutative group-schemes,
without reference to any ambient space. This reformulation, and the
questions it raises, may prove to be of some independent interest.

This chapter is followed by a short ‘“‘Review of Elliptic Curves’’, in
which we recall all the basic facts we will use about elliptic curves. We
give either complete proofs or precise references for all of these facts.

In Chapter 3, we apply the general notions developed in the first
chapter to the special case of elliptic curves, and we formulate in terms
of them the basic moduli problems for elliptic curves.

In Chapter 4, we develop a rudimentary formalism for speaking about
these moduli problems, which amounts to working systematically with
stacks without ever saying so. We speak rather of ‘‘relatively representa-
ble moduli probléms’’, a notion which seems admirably suited to eur
purposes, and which is a throw-back to Mumferd’s original exposition
[Mum 1].

After these preliminary chapters, we turn to the detailed study of the
basic moduli problems as ‘‘open arithmetic surface_sh.i’. The basic results
on their structure and inter-relations (e.g., which are regular, which are
finite flat over which others, which are quotients by finite groups of
which others,---) are given in Chapters 5, 6 and 7.

The remaining 7 chapters are devoted to the detailed study of these
same moduli problems as ‘““curves over Spec(Z).”

In Chapter 8, we compactify our moduli problems, relative to Spec(Z),
by adding the cusps. In Chapter 9, we explain how to deal systematically .
with these moduli problems which are ‘‘really’’ defined over cyclotomic
integer rit;gs rather than over Z. In Chapter 10 we give the basic result.

on the structure of our compactified moduli problems as relative curves:
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After a brief digression concerning ‘‘exotic’’ isomorphisms of moduli
problems in Chapter 11, the remaining three chapters are devoted to the
detailed study of the degeneration at bad primes of our moduli problems
as relative curves. Chapter 12 gives the theory of the Igusa curves,
which are the ‘‘basic’’ p-power level moduli problems in characteristic p.
In Chapter 13, we give the detailed structure of the reduction mod p of
each of our basic moduli problems as a ‘‘disjoint union, with crossings at
the supersingular points’’, of suitable Igusa curves.

In Chapter 14, we apply the specific calculations of the previous
chapter to prov-e a general theorem of good reduction for suitable ‘““‘pieces’
of Jacobians of modular curves.

We would like to thank the IHES for providing the congenial atmosphere
in which this book was written. We warmly thank Ofer Gabber, whose in-
numerable comments and corrections were invaluable to us in preparing
the final version of this work. Lauri Hein and Perry Di Verita of Princeton
University, and Heien Mann of Princeton University Press prepared the
original and final manuscripts respectively. To them and to our editor,
Barbara Stump of Princeton University Press, we extend our thanks for their

patience in the face of our numerous and unexpected revisions.

NICHOLAS M. KATZ
BARRY MAZUR
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Chapter 1
GENERALITIES ON ‘‘A-STRUCTURES’ AND ‘‘A-GENERATORS”’

(1.1) Review of relative Cartier divisors (Compare [Mum 2], pp. 61-73.)

(1.1.1) Let S be an arbitrary scheme, and let X be an S-scheme. By
an effective Cartier divisor D in X/S we mean a closed subscheme

D € X such that

D is flat over S
the ideal sheaf I(D) C @x is an invertible @X-module, i.e.,

it is a locally free @x-moduie of rank one.

This notion is local on S. When S is affine, cay S = Spec (R), it means

that we can cover X by affine opens U‘1 - Spec (Ai)' Ai an R-algebra,
such that D N U, is defined in U; by one equation f; = 0, where f, e Ay

is an element such that

Ai'/fiAi is flat over R

fi is not a zero-divisor in Ai .

The tautological exact sequence on X .

0-1D) >0y ~Cp -0,

becomes on U; = Spec (Ai) the exact sequence

xfi

0 ——A; —5A; —A/A — 0.

(1.1.2) Given two effective Cartier divisors D and D’ in X/S, their
sum D+D’ is the effective Cartier divisor in X/S defined locally by the

3
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product of the defining equations of D and D’. Explicitly, if S=Spec(R)
and if on an affine open Spec(A) of X, D and D’ are defined respec-

‘tively by equations f =0 and g =0, then D+D’ is defined there by

fg = 0. To check that fg is not a zerodivisor in A, one notes the com-

mutative diagram

To check that A/fgA is flat over R, one notes the short exact sequence

x f

0——A/gA A/fgA A/EA 0,

which exhibits A/fgA as an extension of flat R-modules.

(1.1.3) Given an effective Cartier divisor D in X/S, we may speak of
the inverse (as invertible @x-module) I_l(D) of its ideal sheaf. We have

a tautological exact sequence

0.0, -1"D) - (‘)che i7i(p) - 0.
X

The inclusion of Gx in I"}(D) allows us to view the constant function
‘“1’’ as a global section of 1"4D), and we may recover D as the scheme
of zeroes of this global section of I—I(D).

Conver;sely, suppose we are given a pair £,9 consisting of an in-
vertible @x-module € on X together with a global section £ ¢ HYX, £)

which sits in a short exact sequence of @x-modules
0—0, 2he_,e0, o0
b'e —_ —_ X —_—

with f/@x flat over S. Then the scheme of zeroes of the section £ of
£ is easily seen to be an effective Cartier divisor D in X/S, and there

is a unique isomorphism of (£,£) with a~ioy,“17).
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This construction allows us to interpret effective Cartier divisors in
X/S as isomorphism classes of pairs (£,£) as above. From this point
of view, the operation ‘‘sum of effective Cartier divisors in X/R " is

none other than the operation of tensor product:
(.0 +(E0) = (Lol tel).

The zero element for this addition is the pair (@x, 1), corresponding to

the empty Cartier divisor.

(1.1.4) There are two natural situations in which one can define the

inverse image of a relative Cartier divisor. First let
T->C

be an arbitrary morphism of schemes. Then for any effective Cartier
divisor D in X/S, say represented by a pair (&, £), the closed sub-

scheme DT dfn D xT of XT =X x T is an effective Cartier divisor in
S S

XT/T , represented by the pair (f.r, Y.T) on X,. To see this, it suffices
to treat the case when S =Spec(R) and T = Spec(R”") are both affine;

then the sequence on X.. = X®R’

1
O e R 2L . Por . LeR/O, ® R’
R R

i obtained from the short exact sequence on X
4
i LB RS,

by applying the functor ® R’. Because £/Cx is assumed flat over R,
R

this sequence stays short exact after ® R’, and its last term is R*flat.
R

Therefore (£ ®R’,0®1) defines an effective Cartier divisor in X®R7/R’
R R

as required.
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v i——‘:]x

be a flat morphism of S-schemes. Then any effective Cartier divisor D °

Second, let

in X/S gives rise to an effective Cartier divisor f*(D) in Y/S. Indeed,

the cartesian diagram

*o)yc— Ly
f flat

DC— = X

shows that f*(D) is flat over D, und hence, D being S-flat, that f*(D)
is flat over S. To see that the ideal sheaf I(f*(D)) is an invertible
@Y—module, we remark that this ideal sheaf is none other than f*(I(D)),
as follows from the fact that the short exact sequence on X

0 - I(D) a@x ﬁ@D >0

remains short exact after application of the functor f*, thanks to the

flatness of f.

(1.1.5) We now turn to the question of recognizing which closed sub-

schemes of X are in fact effective Cartier divisors in X/S.

PROPOSITION 1.1.5.1. Suppose that S 1is locally noetherian, and that
X 1is an S-scheme of .’inite‘type which is flat over S. Let I be a
coherent sheaf on X which is flat over S. Then the necessary and
sufficient condition that § be flat over Gx is that for every geometric

point of S, i.e., every morphism Spec(k) »S with k an algebraically



