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Foreword

Three series of lectures were given at the 34th Probability Summer School in
Saint-Flour (July 6-24, 2004), by the Professors Cerf, Lyons and Slade. We
have decided to publish these courses separately. This volume contains the
course of Professor Slade. We cordially thank the author for his performance
at the summer school, and for the redaction of these notes.

69 participants have attended this school. 35 of them have given a short
lecture. The lists of participants and of short lectures are enclosed at the end
of the volume.

The Saint-Flour Probability Summer School was founded in 1971. Here
are the references of Springer volumes which have been published prior to
this one. All numbers refer to the Lecture Notes in Mathematics series, except
S-50 which refers to volume 50 of the Lecture Notes in Statistics series.

1971: vol 307 1980: vol 929 1990: vol 1527 1998: vol 1738

1973: vol 390 1981: vol 976 1991: vol 1541 1999: vol 1781

1974: vol 480 1982: vol 1097 1992: vol 1581 2000: vol 1816

1975: vol 539 1983: vol 1117 1993: vol 1608 2001: vol 1837 & 1851
1976: vol 598 1984: vol 1180 1994: vol 1648  2002: vol 1840

1977: vol 678  1985/86/87: vol 1362 & S-50  1995: vol 1690  2003: vol 1869

1978: vol 774 1988: vol 1427 1996: vol 1665 2004: vol. 1878 & 1879
1979: vol 876 1989: vol 1464 1997: vol 1717

Further details can be found on the summer school web site
http://math.univ-bpclermont.fr/stflour/

Jean Picard, Université Blaise Pascal
Chairman of the summer school



Preface

Several superficially simple mathematical models, such as the self-avoiding
walk and percolation, are paradigms for the study of critical phenomena in
statistical mechanics. Although these models have been studied by mathe-
maticians for about half a century, exciting new developments continue to
occur and the subject is flourishing. Much progress has been made, but it
remains a major challenge for mathematical physics and probability theory to
obtain a complete and mathematically rigorous understanding of the scaling
theory of these models at criticality.

These lecture notes concern the lace expansion, which is a powerful tool for
the analysis of the critical scaling of several models above their upper critical
dimensions, namely:

e the self-avoiding walk on Z? for d > 4,
e lattice trees and lattice animals on Z¢ for d > 8,

e percolation on Z® for d > 6,

e oriented percolation on Z? x Z, and the contact process on Z? for d > 4.

Results include proofs of existence of critical exponents, with mean-field val-
ues, and construction of scaling limits. Often, the scaling limit is described in
terms of super-Brownian motion.

There are two distinct goals for these notes. The first goal is to provide
a written accompaniment to my lectures at the XXXIV Saint-Flour Interna-
tional Probability School, in July 2004, and at the Pacific Institute for the
Mathematical Sciences — University of British Columbia Summer School on
Probability, in June 2005. The notes contain an introduction to the lace ex-
pansion and several of its applications, with sufficient background and depth
to prepare a newcomer to do research using the lace expansion. Basic grad-
uate level probability theory will be used, but no previous knowledge of the
lace expansion or super-Brownian motion is assumed. The second goal is to
provide a survey of the field, so that an interested reader can follow up by
consulting the original literature. In pursuit of the second goal, these notes
include more material than can be covered during a summer school course.
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Following a brief initial chapter concerning random walk, the notes can be
divided into four parts, whose contents are summarized as follows.

Part I, which concerns the self-avoiding walk, consists of Chaps.2 6. A
complete and self-contained proof is given of the convergence of the lace ex-
pansion for the nearest-neighbour model in dimensions d > 4, and for the
spread-out model of self-avoiding walks which take steps of length at most L,
with L > 1, in dimensions d > 4. The convergence proof presented here seems
simpler than all previous lace expansion convergence proofs. As a consequence
of convergence, it is shown that the critical exponent 7 for the generating func-
tion of the number of n-step self-avoiding walks exists and is equal to 1. A
survey is then given of the many extensions of this result that have been
obtained using the lace expansion.

Part II, which concerns lattice trees and lattice animals, consists of
Chaps. 7-8. It is shown how a minor modification of the expansion for the
self-avoiding walk can be applied to give expansions for lattice trees and lat-
tice animals, and an indication is given of the diagrammatic estimates that
are necessary for proving convergence of the expansion. The relevance of the
square condition is indicated, and results concerning existence of critical ex-
ponents in dimensions d > 8 are surveyed.

Part III, which concerns percolation, oriented percolation, and the contact
process, consists of Chaps. 9-14. Detailed discussions are given of expansions
for each of these models. Differential inequalities involving the triangle con-
dition are stated (and usually proved) and are shown to imply mean-field
behaviour of various critical exponents. Results concerning existence of crit-
ical exponents in dimensions d > 6 (for percolation) and d > 4 (for oriented
percolation and the contact process) are surveyed.

Part IV, which concerns super-Brownian scaling limits, consists of
Chaps. 15-17. Critical branching random walk with Poisson offspring distri-
bution is analyzed in detail and used to give a self-contained construction
of integrated super-Brownian excursion (ISE). The role of ISE as the scaling
limit of lattice trees and of critical percolation clusters, above the upper criti-
cal dimensions, is discussed. The canonical measure of super-Brownian motion
is also described, as is its role as scaling limit of critical oriented percolation
clusters and the critical contact process in dimensions d > 4, and of lattice
trees in dimensions d > 8.

Mathematics is not a spectator sport, and true understanding requires
active participation in working out the ideas. To help facilitate this, a number
of exercises for the reader appear throughout the notes. Some can be solved in
a few lines, and others require more effort. I am grateful to Jeremy Flowers,
Jesse Goodman, Jeffrey Hood, Sandra Kliem, Richard Liang, and Terry Soo,
who collectively wrote solutions to all the exercises during the PIMS-UBC
summer school.

It would not be possible to include detailed proofs of all the results dis-
cussed in these lecture notes without substantially increasing their length,
and a number of important topics are only alluded to. These include: the
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inductive approach to the lace expansion, which is in many respects the most
powerful method to prove convergence of the expansion; the “double” expan-
sions that have been used to analyze r-point functions for » > 3; and the
lace expansion on a tree, which is a method that can sometimes be used to
replace a double expansion. (Two of these topics—the inductive method and
double expansions—are discussed in recent lecture notes by Remco van der
Hofstad [110].) Also, a complete proof of the convergence of the expansion is
given only for the self-avoiding walk. This is the simplest setting for proving
convergence, and convergence for the other models can be based on the ideas
used in this setting. Finally, in an important new development about which
it is too early to provide details, Sakai [181] has shown how to apply the lace
expansion to analyze the Ising model in dimensions d > 4.

This work was supported in part by NSERC of Canada. Versions of the
lectures were given at the University of British Columbia in Spring 2003, at
EURANDOM in Fall 2003, at Saint-Flour in Summer 2004, and at PIMS/UBC
in Summer 2005. The lecture notes were written primarily while I was travel-
ling during 2003-04. I thank EURANDOM and the Thomas Stieltjes Institute,
the University of Melbourne, Microsoft Research, and my hosts at these in-
stitutions, for their hospitality during visits to Eindhoven, Melbourne and
Redmond.

I am grateful to the friends and colleagues with whom I have had the good
fortune to work on topics related to these lecture notes. I thank Markus Hey-
denreich, Remco van der Hofstad, Mark Holmes, Sandra Kliem, Ed Perkins
and Akira Sakai for suggesting improvements and for comments on earlier
drafts of these notes. Many others have also made helpful comments of one
form or another. Most of the illustrations (and all of the best ones) were pro-
duced by Bill Casselman, my colleague at the University of British Columbia
and Graphics Editor of Notices of the American Mathematical Society.

I extend special thanks to David Brydges, whose patient teaching brought
me into the subject, and to Takashi Hara and Remco van der Hofstad, who
have played profound roles in the development of the ideas presented in these
notes.

Vancouver, Gordon Slade
August 9, 2005
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1

Simple Random Walk

The point of departure for the lace expansion is simple (ordinary) random
walk, and it is helpful first to recall some elementary facts about random
walk on Z4. This will also set some notation for later use.

1.1 Asymptotic Behaviour

Fix a finite set 2 C Z< that is invariant under the symmetry group of Z<,
i.e., under permutation of coordinates or replacement of any coordinate x; by
—x;. Our two basic examples are the nearest-neighbour model

R={zxeczi:|z|, =1} (1.1)
and the spread-out model
R={xeZ':0< || <L}, (1.2)

where L is a fixed (usually large) constant. The norms are defined, for x =
d
(@15 xa), by [lz]l1 = 3752, |2j and ||z = maxicj<ala;].

For n > 1, an n-step walk taking steps in 2 is defined to be a sequence
(w(0),w(1),...w(n)) of vertices in Z? such that w(i) —w(i — 1) € 2 for i =
1,...,n. Let W, (z,y) be the set of n-step walks with w(0) = x and w(n) =y,
and let W, = U,c7¢W,(0,2) denote the set of all n-step walks starting from
the origin. Let cflo)(:r) denote the cardinality of W, (0,z). The superscript
(0) is there to indicate that we are working with the random walk with no
interaction. We allow for the degenerate case n = 0 by defining Wy(z,y) to
consist of the zero-step walk (z) if * = y, and to be empty otherwise. Then
c(()o)(.v, y) = 9. Taking into account the translation invariance, we will use

the abbreviations W, (y — ) = W,,(z,y) and C;O)(y —z)= Y (z,y).
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For n > 1, by considering the possible values y € 2 of the walk’s first step,

we have
(@)=Y i@ —y) =Y A" Wel i@~ y). (1.3)

yenR yez!

Denoting the convolution of functions f and g by
=Y fwelz-y), (1.4)
yezd

(1.3) can be written as
(@) = (¢ x e)) (@), (15)

The Fourier transform of an absolutely summable function f : Z¢ — C is
defined by

fky =Y f@e** (ke [-ma]?, (1.6)

IEZ"

d ; :
where k-2 =} 7, kjx;, with inverse

s = [ S e (17)

T) = e . .
[=mm]d (27r)d

The fact stated in part (a) of the following exercise makes the use of Fourier

transforms very convenient.

Exercise 1.1. (a) Show that the Fourier transform of f * ¢ is f§.

(b) A closely related statement is the following. Denote the generating func-
tions of the sequences f, and g, by F(z) = > >, faz" and G(z) =
Yoo o 9nz", and assume these series both have positive radius of convergence.
Show that the generating function H(z) of the sequence h, = Z:z:() fmGn—m
is H(z) = F(2)G(2).

By Exercise 1.1(a), (1.5) implies that
D (k) = &7 (R)E, (k). (1.8)

n—1

Since é(()o)(k) = 1, solving (1.8) by iteration gives

&Ok) ="k (n>0). (1.9)

If we define the transition probability

D(z) = I[I €)= —" ), (1.10)

42| s

where |{2| denotes the cardinality of the set {2 and I denotes the indicator
function, then (1.9) can be rewritten as

ésl())(k) _ I.QI”D(IC)” (‘71, > O) (111)
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Exercise 1.2. (a) Show that for the nearest-neighbour model,

d
D(k) = éZC()sktj, (1.12)

D(k) = ﬁ I M) -1, (1.13)
j=1
where )
M(t) = W’—+W2_] (1.14)

sin(t/2)

is the Dirichlet kernel.

(b) Denote the variance of D by 0% = 3 ., [z[*D(x). Show that o = 1 for
the nearest-neighbour model and that o is asymptotic to a multiple of L as
L — oo for the spread-out model.

The number of n-step walks starting from a given vertex is of course
|2|", because each step can be chosen in |f2| different ways. This fact is
contained in (1.11), since the number of n-step walks starting from the origin
i8 Y eza ('ﬁlo)(r = é(no)(O) = |£2|", using D(0) = 1

By symmetry, 02 = —V2ﬁ|k:0, where V2 = Z;izl Vf is the Laplacian,
with V; denoting partial differentiation with respect to the component k; of
k. Then, by (1.11) and by the symmetry of {2, the central limit theorem

~(0)
lim o K/OVR) k2 /2a (1.15)
e 60(0)
follows, as does the fact that the mean-square displacement is given by
2 (0)
Lacp L en (1) Gapnl g (1.16)

ZmGZ’ 051())(1) - k=0
Exercise 1.3. Prove (1.15) and (1.16).
The two-point function is defined by
W= > =) el (1.17)
n=0wew, (z.y) n=(

The two-point function is finite for z € [0,1/[2|). For d > 2, it is also known
to be finite for z = 1/|£2|, and for this value of z it is called the Green function.
By translation invariance, we may regard the two-point function as a function
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of a single variable, writing C,(z,y) = C.(y — ). By (1.11) and (1.17), its

Fourier transform is

= 1
=Y #k)et = . (1.18)
e 1— 2|Q|D(k)

The susceptibility is defined by

foey 1
- Z C.(0,x) = C.(0) = T (1.19)

The critical point is the singularity z. = 1/]£2| of the susceptibility.
The inverse Fourier transform of (1.18) is

(ldk efik-,r
C.(z :/ = : 1.20
( ) [—m. w4 (27]-)(’ 1- Z|QID(IC) ( )

For d > 2,

C,, (x) ~ const (1.21)

IJ.|d—2
as |z| — oo, where the constant depends on d and on {2 (see [149,195], or [203]
for a more general statement of this fact). The notation

f(z) ~ g(x) denotes lim f(x)/g(x) =1, (1.22)
r—oo
and this notation will used in general for asymptotic formulas.

Exercise 1.4. Some care is needed with (1.20) when z = z, since C; _(x) is
not summable by (1.21) and thus its Fourier transform is problematic. Using
the symmetry of {2, prove that (1.20) does hold when z = z, for d > 2, and
that the integral is infinite when z = z,. for d < 2.

Exercise 1.5. Let f : Z¢4 — C. For y € §2, define forward and backward
discrete partial derivatives by 9 f(z) = f(z+y) — f(z) and 9, f(x) = f(z)—
f(z — y). Define the discrete Laplacian by

Af(x) 2|Q|Z |!Z|Zfl+l/ f(x), (1.23)

ye N

and let d, , denote the Kronecker delta which takes the value 1 if r = y and 0
if  # y. Show that —AC, ||(x) = b0, Thus C /() is the Green function
for —A.

Exercise 1.6. Consider a simple random walk started at the origin.

(a) Let u denote the probability that the walk ever returns to the origin. The
walk is recurrent if u = 1 and transient if u < 1. Let N denote the (random)
number of visits to the origin, including the initial visit at time 0, and let
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m = EN. Show that m = l—i& so the walk is recurrent if and only if m = oo.
(b) Show that
(o9)
1 dk
m = P(w(n) =0 =/ e . (1.24
D e A S CLea )

Thus transience is characterized by the integrability of (71 /1021(k).

(c) For simplicity, consider the nearest-neighbour model, with §2 given by
(1.1). Show that the walk is recurrent in dimensions d < 2 and transient in
dimensions d > 2.

Exercise 1.7. Let w™® and w® denote two independent simple random walks
started at the origin, and let

oo
=

denote the number of intersections of the two walks. Here I denotes an indi-
cator function. Show that

o}

IwM (@) = w@(j)] (1.25)
=0

7

1 dk
EX = e [~ DR 20T (1.26)

Thus EX is finite if and only if él/lfll(k) is square integrable. Conclude,
for simplicity for the nearest-neighbour model, that the expected number of
intersections is finite if d > 4 and infinite if d < 4.

The integral (27)~¢ f[_"‘ﬂ],, C.. (k)2d% of (1.26) is equal, by the Parseval
relation, to Y- ;4 C. ()% The relevance of the condition d > 4 for the
latter is evident from the asymptotic behaviour (1.21). However, the k-space
analysis is more elementary, as it relies on the easy formulas given in (1.12)
and (1.18) rather than the deeper statement (1.21). It is often much easier to
use estimates in k-space than to work directly in z-space.

It is a consequence of Donsker’s Theorem [24] that the scaling limit of
simple random walk is Brownian motion, in all dimensions. This means that
if we define a random continuous function X,, from the interval [0, 1] into R?
by setting X, (j/n) = o~ 'n"1/2w(j) for integers j € [0,n], and interpolating
linearly between consecutive vertices, then the distribution of X,, converges
weakly to the Wiener measure. See Fig. 1.1.

1.2 Universality and Spread-Out Models

In these notes, we study several models that live on the integer lattice,
and each has a nearest-neighbour and a spread-out version. In the nearest-
neighbour model, specified by (1.1), bonds (also called edges) join pairs of
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Fig. 1.1. Nearest-neighbour random walks on Z* taking n = 1,000, 10,000 and
100,000 steps. The circles have radius y/n, in units of the step size of the random
walk.

vertices separated by unit Euclidean distance. In the spread-out model, spec-
ified by (1.2), bonds join pairs of vertices separated by distance between 1
and L, where L is a parameter usually taken to be large. According to the
deep hypothesis of universality, the critical scaling of the models to be studied
should be the same for the nearest-neighbour and spread-out models.

We use the spread-out model because proofs of convergence of the lace
expansion require large degree. The degree is the cardinality of 2. For the
nearest-neighbour model the degree is 2d, and can be taken large by increas-
ing the dimension. The degree of the spread-out model is of order L? for large
L, and this allows for convergence proofs for the lace expansion without tak-
ing the dimension d to be large in an uncontrolled way. In the applications to
be discussed, results will typically be obtained: (i) for the nearest-neighbour
model for d > dy for some dy having no physical meaning, and (ii) for the
spread-out model with L larger than some Ly and d strictly greater than the
upper critical dimension (4 for the self-avoiding walk, oriented percolation and
the contact process; 6 for percolation; 8 for lattice trees and lattice animals).
While it is of interest to prove results of type (i) with dy equal to the upper
critical dimension plus one, failing this, results of type (ii) seem more impor-
tant, as they indicate clearly the role of the upper critical dimension. Also, the
fact that all large L give rise to the same scaling behaviour provides a partial
proof of universality in this context. In fact, much more general spread-out
models than (1.2) can be handled using the lace expansion (see, e.g., [94,120]),
but we restrict attention in these notes to (1.2) for the sake of simplicity.
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The Self-Avoiding Walk

The self-avoiding walk is a model of fundamental interest in combinatorics,
probability theory, statistical physics and polymer chemistry. It is a model
of random walk paths but it cannot be described in terms of transition
probabilities and thus is not even a stochastic process. It is certainly non-
Markovian. These features makes the subject difficult, and many of the central
problems remain unsolved. See [127,158] for extensive surveys.

The self-avoiding walk is a basic example in the theory of critical phenom-
ena, due to its close links with models of ferromagnetism such as the Ising
model. In particular, it can be understood as the N — 0 limit of the N-vector
model [79] (see also [158, Sect. 2.3]). In polymer chemistry, self-avoiding walks
are used to model a single linear polymer molecule in a good solution [80,205].
The flexibility of the polymer is modelled by the possible configurations of a
self-avoiding walk, while the self-avoidance constraint models the excluded
volume effect that causes the polymer to repel itself.

In this chapter, we first give an overview of the self-avoiding walk and
its predicted asymptotic behaviour. Then we define the bubble condition and
show that it is a sufficient condition for a particular critical exponent (namely
v) to exist and take its mean-field value.

2.1 Asymptotic Behaviour

An n-step self-avoiding walk starting at = and ending at y is an n-step walk
(w(0),w(1),..., w(n)) with w(0) = z, w(n) = y, and w(i) # w(y) for all
i # j. We will assume for simplicity that the walks take steps in {2 given
either by (1.1) or (1.2). Let S,(x,y) be the set of n-step self-avoiding walks
from x to y, let S, = U,c7:5,(0, x) denote the set of all n-step self-avoiding
walks starting from the origin, and let S(z,y) = U2 S, (z,y) denote the
set of all self-avoiding walks of any length from x to y. Let ¢,(z,y) denote
the cardinality of S, (z,y). In particular, co(z,y) = 6,,. We will use the
abbreviations S, (z) = 8,(0,z), ¢, (x) = ¢,(0,2), and ¢, = Y czacn(T).



