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PREFACE

This book is essentially a text for the onec-semester undergraduate course
in differential equations. As a rule, this is the introductory course taken
by students of seience, engineering, and mathematics who have completed
the traditional calculus sequence. Indeed, the author has tested the sub-
stance of this book in just such a course.

The aim of this book is to provide more than a catalogue of explicit
solution techniques. The hope is that even the beginning student will
reach a point where he can say something useful about the solutions of a
differential equation whether it is solvable or not. This is in direct re-
sponse to the needs of scientists and mathematicians who simply cannot
prosper on a knowledge that is restricted to solvable cases or even linear
cases. In fact, then, this is an introduction to a theorizing technique for
the discussion of differential equations. This technique depends in vary-
ing degrees on mathematical theory, gcometric inferences, argument by
analogy with solvable cases and, in applications, the requirements of the
physical situation. It is clear from this that such a technique does not
lend itself well to systematic exposition. Rather, it is presented here by
illustrative examples found in Chapters 3, 6, and 7. Not all of the appli-
cations, however, are of this “unsolvable” type.



The remaining chapters form a unified discussion of explicit solu-
tions methods, fundamental theory, and qualitative geometric arguments
in preparation for the above aim. The substance of these chapters is that
of a somewhat shortened, but standard, introductory course in differential
equations. In order to relate the explicit methods more closely to both
the theory and the applications, these methods are made to lead directly
to solutions of initial-value problems rather than to general solutions. Tor
example, the definite integral is employed to the exclusion of the indefinite
integral in solving first-order initial-value problems, and the Laplace trans-
form is consistently used for all linear equations and systems of equations
with constant coefficients. The use of the Laplace transform has the
additional advantage of leading in a natural way to the idea and form of
integral representations of solutions even in the most general linear case.
It is important to note, however, that the Laplace transform is given no
independent interest here; therefore, the essential results are given without
proof.

Problems of varying difficulty are given with each section. Often
an alternative to the method given in the text is developed in a short
sequence of problems. Two sections (on undetermined coefficients) have
no text and are entirely in the form of problems. The reader is to develop
this technique himself by working a sequence of problems of increasing
difficulty and generality.
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1

FIRST-ORDER EQUATIONS

11 INTRODUCTION

A first-order differential equation has for us the standard form

y' = Jflx, y). (1.11)
In some instances, an equation may be presented, or studied, in differential
form,
M(z,y) dv + N(z,y) dy = 0,
or occasionally in implicit form
F<x17’yl) =0,
but the latter forms are of less interest here, and normally are equivalent
to (1.11). The obvious problem posed by (1.11) is the finding of solutions,
that is, functions which satisfy the equation identically. Specifically, a
solution of (1.11) is a function y(x), defined on an interval a < x < b,
such that
y'(@) = f(z, y(@))
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holds for & < x < b. Tor example, ¢* ix a solution of

!

y =Yy
for —o < a < 4+« since, for all x,
(e)! = e~

- : 1 . ;
Similarly, the function 282 solution of

1
y = 2uxy?
for —1 < a < 1, as is easily verified.

How we obtained these solutions in these examples is a matter of
certain formal solution techniques which we shall deseribe shortly. It is
important, however, to place solution techniques of any nature in proper
perspective by observing that a function is (or is not) a solution only
according as is satisfies (or does not satisfy) the equation at hand. Along
with this, we must remember that a function may exist while a formula
for the functional values does not. This is the status of solutions of many
differential equations—solutions exist, but no manipulative technique
exists to display them. It is natural that purely mathematical interests
should center on such equations, and it is not surprising that the most in-
teresting and pressing modern applications rest on equations of the same
intractable type.

Tor a truly useful knowledge of the subject, then, the obvious prob-
lem of finding solutions in the sense of displayed formulas is too narrow;
this must be, at best, an introduction to and a part of the deeper problem
of saying something useful about solutions in every case. Ior example, we
are not able to “solve” the equation

y =%+ 1 (1.12)

Nonetheless, as a consequence of a general theory, which we develop later,
solutions do exist.  Given any solution y(a) we can see from the equation
that y'(z) is positive; thus, y(x) is increasing. I‘urther, we can say that
y'(2), that is to say, a2%2(x) + 1, is also an increasing funetion of x for
y(@) > 0. With now only a little more information, say, the value of y(2)
at-one point, we could produce a very plausible sketch of the graph of this
colution which is a convex, increasing function. This is what is meant
by useful information, and it is by no means all that can be said of (1.12).

What we have to say in the first six sections concerns solvable
cases.  Sinee here solutions can be displayed, we do not need a theorem
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which asserts that each of a large class of differential equations has solu-
tions. Since for a solvable equation we can show dircctly that there is
only once solution which satisfies some side condition, a gencral uniqueness
theorem is not necessary.  The theory is a necessity for our deeper aims,
and it will be stated and proved in later sections. The ideas of the theory,
however, can be simply and concisely stated; moreover, they form a useful
guide and principle even in routine solvable cases. It is not unnatural to
give these ideas a physical meaning and, indeed, to derive them from
physies. Typically, a physical experiment may be represented mathemat-
ically as a problem in differential equations; e.g., the first-order equation

dv _
dt

)
—392,

together with the initial eondition v({;) = 50, describes (ignoring friction
among other things) the experiment of throwing a ball from the surface of
the earth at time #, with velocity 50 ft/sce. Now, a well-posed experi-
ment has three obvious properties:

(7) Something happens.

(%) Only one thing happens; that is, the experiment can be re-
peated under the same conditions with the same results.

(77¢) Small variations in initial state, physical components, or any
other physical parameters produce only small variations in results.

These hardly necd comment, but from them we infer that a mathe-
matical problem which purports to describe a well-posed experiment must
be well posed in the mathematical sense; namely,

(7) A solution exists.
(77) The solution is unique.

(74%) The solution is continuous in all parameters of the problem.

It is now a simple matter to describe concisely the fundamental
theory of differential equations. It isa collection of theorems which asserts
that a wide class of standard problems are well posed. It is not, of course,
restricted to first-order equations. Specifically, the fundamental theory
takes the form of an existence theorem, a uniqueness theorem, and various
theorems on continuity in parameters, each of substantial generality.

We see, for example, that the initial value problem

dn N
= = —39
dt ’
U([o) = 50
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is indeed well posed, for, by well-known results of elementary calculus,
all solutions of the differential equation are given by

v(t) = =32t +¢
where ¢ is any constant. Only one of these functions satisfies the initial
condition, and ¢ is determined by
50 = v(ty) = —324 +c.
The unique solution is thus given by
v(t) = —32(t — t)) + 50.

PROBLEMS

1. Show that xe® is a solution of
v =y+e.
2. For what constant a is e** a solution of
y' = 3y.
3. Show that
-y —yt=c
defines solutions of

y_2x—y
x4+ 2y
4. Tor what n is a* a solution of
y' = 2y,
y z
5. [Exhibit a solution of
y=y-1

6. Ixhibit a solution of
y = y?— 2zt + 2.

7. Show that e** ﬁ: e~ dt is a solution of

y = 2ay + 1.
8. Show that
y(@) = {O’ z<0
2, >0
is a solution of
y =2Vy

for all z.
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9. TFind the unique solution of the initial value problem

dv _ _
dt

t’(to) = Vp.

Verify that this solution is continuous in all the parameters , v, and g.

> 12 SEPARABLE EQUATIONS

The equation
y' = f@)g(y) (1.21)

is said to be separable, where, unless otherwise specified, the functions f(z)
and ¢(y) are assumed to be continuous in their domains. For example,

y =2v+1 (1.22)
is separable. All solutions of (1.22) are given by the formula
ylx)y =a?+x+¢ (1.23)

because x? + x is one primitive of (1.22), and any two primitives differ by a
constant; that is, (1.22) is solved by integration.

A standard problem for (1.22) and, indeed, for any first-order equa-
tion, is that of finding the solution which satisfies an initial condition

y(x0) = Yo
We may solve this by speeializing (1.23); thus
y(xo) = 2* + @0 + ¢,

from which the unique solution is
y@) = 2* + x + yo — 2 — To. (1.24)

Formula (1.23) is said to be the general solution of (1.22), while (1.24)
defines a single particular solution, but if we allow x, and 3, to take on all
values, these two are virtually the same. The difference lies only in
point of view, for (1.23) gives all possible solutions while (1.24) gives each
solution possible. A general solution is usually the result of indefinite
integration. It may or may not contain all solutions. It is certainly
useful, but in the long run the idea of a differential equation is best revealed
by going directly after the solution(s) of each possible initial value problem.

5



I"IRST-ORDER EQUATIONS

This would be

y' = Iy (125)

y(xo) = Yo -
in the gencral case and

y = flx)g(

Y = f2)g(y) (1.26)

y(x0) = Yo

in the separable case.
The definite integral is an apt device for these purposes. Thus,
our view of the problem

y' =)
y(x0) = yo
is as follows. If (1.27) has a solution, then

[Zvwa= [ >

hence y@) =y + f:f(t) dt (1.28)

in view of the initial condition y(x) = . That is, if there is a solution,
it is uniquely given by (1.28). On the other hand, this is a solution since

y@ = (n+ [[10 d) = 1@

(1.27)

and
y() = yo+ [70 dt =y
hold.
To deal with more complicated problems we combine these simple

ideas with permissible arithmetic operations. I'or example, if y(x) is a
colution of

y = ay

y(xo) = yo,

Ty /I
dt = tdt
4/;0 y(t) Ty

/;:f(.r) dr = [r:f(() dl = ijf(") s,

but, of these, the first equation is obviously confusing and will be avoided.

(1.29)

then

* Note that

6
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provided y(x) is not zero on some interval about x,. This will be true,
for example, if y(x0) = yo #~ 0, and assuming this we have
-TO?

2
In [£y(@)] = In (290) = 5 =

where 4+ or — apply according as y; > 0 or yo < 0. In each case the
result is the same,

y(x) = yoe/2—=%/2 (1.210)
is the only possible solution, and the above arguments are easily reversed
to show that this is a solution. Moreover, this is a solution defined for
all z; the technical restriction to some interval about x¢ is, in this instance,
not necessary. Solutions which are not zero at any one point 2, are evi-
dently never zero since the exponential function is never zero.

We must now consider the missing case, yo = 0. We cannot inte-
grate, but once our attention is drawn to it we see a solution,

y(x) = 0.
That this is the only solution is implied by the content of the last sentence
of the preceding paragraph.
The need for careful procedure is illustrated by the following ex-

ample,
v =Vy

y(x0) = Yo
The arithmetic operations needed to separate this equation draw our
attention to two cases: yo = 0 and yo > 0 (yo < 0 is, of course, impossible).
If yo = 0, we cannot integrate; however, there is a solution,
yx) =0,
by inspection. We must see later whether this is the only solution.
If yo > 0, we integrate:

* Yyt F
—dl =
Ly \/y(t) ,/xa dt'

From this, the solution is uniquely given by

2Vy(x) = (x — 20 + 2Vy)
as long as y(x) > 0; i.c, as long as > vy — 2Vy,.  Here, the restriction
of x to some interval about wy in order to permit integration is, in fact, a
real one, and evidently a solution is defined only on the interval

20 —2\/11 <a < H=.

(1.211)




