The Art
0
Compiler
Design |

| THEORY AND PRACTICE |

The Art of Compiler Design
Theory and Practice

Thomas Pittman

James Peters
University of Arkansas

PRENTICE HALL, Englewood Cliffs, NJ 07632

Library of Congress Cataloging-in-Publication Data

Pittman, Thomas.
The art of compiler design : theory and practice / Thomas Pittman,
James Peters.
p. cm.
Includes bibliographical references and index.
ISBN 0-13-048190-4
1. Compilers (Computer progranms) I. Peters, James F. II. Title.
QA76.76.C65P57 1992
005.4'53--dc20 91-21591
CIP

Acquisitions editor: Tom McElwee
Editorial/production supervision

and interior design: Richard DeLorenzo
Copy editor: Brenda Melissoratos
Cover design: Butler Udell Design
Prepress buyer: Linda Behrens
Manufacturing buyer: David Dickey

= © 1992 by Prentice-Hall, Inc.
= A Simon & Schuster Company

Englewood Cliffs, New Jersey 07632

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

The author and publisher of this book have used their best efforts
in preparing this book. These efforts include the development,
research, and testing of the theories and programs to determine
their effectiveness. The author and publisher make no warranty of
any kind, expressed or implied, with regard to these programs

or the documentation contained in this book. The author and
publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the
furnishing, performance, or use of these programs.

Printed in the United States of America

0987654321
ISBN 0-13-048190-4

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto

Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo

Simon & Schuster Asia Pte. Ltd., Singapore

Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro

Preface

No useful modern complex information system ever evolved from the accumulation of
chance events. The complexity of compilers as useful information systems can be
understood in simple terms only because of careful design. Not only is the undesigned
compiler nonfunctional, but compiler theory itself depends on a subtle relationship
between linguistic principles originally developed for natural (human) languages and
computers considered as finite-state automata. Understanding and exploiting this
relationship requires a thorough grounding in the theoretical principles that underlie
grammar theory, and a good grasp of their mechanical implementation. Thus, teaching
compiler design involves also a complex information system that must be carefully
designed to present the concepts in a coherent and logical sequence, so that the student
finds compiler design both relevant and manageable.

This book is not an encyclopedic compendium of all possible ways to build all
possible compilers, but a sequential introduction to the fundamental issues of compiler
design in sufficient depth that the diligent student will be thoroughly equipped to
construct practical and efficient compilers either by hand or using modern compiler
generation tools, or some combination of the two. More importantly, the student will
understand what is going on in the tools and why grammars must be composed in certain
ways to achieve the intended results. This is the principle of design. Therefore, while
most modern parser generators use bottom-up parsing techniques, we explore the more
restrictive top-down parsing theory in considerable depth before advancing to a relatively
brief (but complete) single chapter on bottom-up parsers. The goal in each chapter is
always to instill an understanding of the concepts first, then to apply them in practical
ways.

We believe The Art of Compiler Design stands out among comparable works in four
important ways. First, it is rooted solidly and consistently in grammars. Beginning with
the theoretical relationship between grammars and language recognizers, we continue
throughout the entire book to apply the technology of grammars to all aspects of
compiler design. The second distinction is the consistent and practical use of attribute
grammars as a vehicle for compiler semantics. This uncompromising stand leads naturally
to a compiler-compiler specified entirely in an attribute grammar that compiles itself;
indeed, this is the focus of the final chapter. On the other hand, the third unique quality of
this book is its very practical nature. Compiler design must be specified in attribute
grammars, but compiler construction requires executable code, and every important

X Preface

theoretical principle is illustrated in generous listings written in a real programming
language, always showing the very natural relationship between the grammars and the
machine code. Finally, our choice of Modula-2 as the programming language for
illustrative code walks a narrow line between conceptual abstraction and concrete
efficiency. Applying the optimizations taught in the later chapters can make programs
written in Modula-2 more efficient at lower cost than comparable code in lower-level
languages such as C.

This book may be used in a one-term beginning compiler course by concentrating on
the first six or seven chapters, or the whole book may be spread over a full year for better
coverage of the more advanced topics. The one-term course of study is suited for either a
semester or quarter schedule; it has been optimized and classroom-tested to allow the
steady progress of student projects culminating by the end of the term in a functional “Itty
Bitty Modula” compiler that can be used in a final project to compile a second parser such
at the pretty-printer or Tiny Basic interpreter outlined at the end of Chapter 6.

Some of the sections and problems are designed to be optional. While we firmly
believe in a good theoretical basis for compiler design, there are some interesting
mathematical side trails along the way which may be passed up if time or aptitude make
them inappropriate. These have been marked with a little professor icon in the margin as
you see here. Other sections are relevant to the major issues of compiler design, but the
material is difficult to comprehend on the first-year level at which this book is aimed.
These sections are identified with a little “Ex Calibur” icon in the margin as you see here.
Similarly, there are some problems that are particularly challenging. The reader who
tackles these problems will come away with agreater appreciation of the intricacies of
compiler design, but a good understanding of the subject material does not require the
extra time and effort that these problems take. They are also identified by the Ex Calibur
icon in the margin.

While we can hardly mention all the people who contributed to this text, the first
name that comes to mind is Brad Blaker, without whose encouragement and early
assistance The Art of Compiler Design would never have happened. We also appreciate
Bill Hankley, Austin Melton, and the patient students at Kansas State University for
persevering through the early drafts, and Frank DeRemer for planting and nurturing many
of the seminal ideas expressed here. The comments and suggestions from Thom Boyer,
Dick Karpinski, Brian Kernighan, Marvin Zelkowitz, Wayne Citrin, Norman C.
Hutchinson, Johnson M. Hart, Bernhard Weinberg, Will Gillett, and especially Dean
Pittman, Chota, and Dave Schmidt were particularly helpful in making this into the book
you are now reading.

Thomas Pittman
James Peters

Preface Xi

Contents

Preface X
1 The Compiler Theory Landscape 1
1.1 Introduction 1
1.2 Languages and Translators 2
1.3 The Role of Grammars 3
14 Some Examples 5
1.5 Structure of a Compiler 7

2.1
22

23
24

2.5
2.6
2.7
2.8

1.5.1 Lexical Analysis 9
1.5.2 The String Table 10
1.5.3 Parsing 11
1.5.4 Constraining 11
1.5.5 The Symbol Table 12
1.5.6 Code Generation 12
1.5.7 Optimization 13
Summary 14

Grammars: The Chomsky Hierarchy 18

Introduction 18
Grammars 19
2.2.1 Alphabets and Strings 19
2.2.2 Nonterminals and Productions 20
2.2.3 Some Example Grammars 20
The Chomsky Hierarchy 24
Grammars and Their Machines 24
2.4.1 Turing Machines 25
2.4.2 Linear-Bounded Automata 26
2.4.3 Push-Down Automata 27
2.4.4 Removing Empty Productions 28
2.4.5 A Comparison of Context-Free and Context-Sensitive 28
2.4.6 Finite-State Automata 29
Empty Strings and Empty Languages 30
Canonical Derivations 30
Ambiguity 32
The Art of Thinking in Grammars 33

Contents iii

3

3.1
32

33
34
35
3.6
3.7
3.8
3.9

2.8.1 Limits of Finite-State Automata 33
2.8.2 Counting on Context-Free Grammars 35
2.8.3 Sensitive to the Context 38

Summary 39

Scanners and Regular Languages 48

Introduction to Lexical Analysis 48
Regular Expressions 49

3.2.1 The Algebra of Regular Expressions 50
3.2.2 Formal Properties of Regular Expressions 51

3.10
3.11

Transforming Grammars and Regular Expressions 54
Finite-State Automata 57

Nondeterministic Finite-State Automata 59

Transforming Grammars to Automata 60

Transforming Automata 63

Transforming Automata to Grammars 71

Left-Linear Grammars 72

Implementing a Finite-State Automaton on a Computer 72
Special Implementation Problems for Scanners 77

3.11.1 Input Alphabet Size 77

3.11.2 Halting States in the Scanner Automaton 78
3.11.3 Stripping Spaces and Comments 78

3.11.4 Token Output 79

3.12 String Table Implementation 82
3.13 Reserved Words 87
Summary 90
3.14 Using Scanner Generators 90
Parsers and Context-Free Languages 99
4.1 Introduction 99
4.2 Push-Down Automata 100

43

44
4.5
4.6
4.7

4.8
4.9

4.2.1 Halting Condition Equivalence 102
4.2.2 Constructing a PDA from a Context-Free Grammar 103

The LL(k) Criterion 105

4.3.1 First and Follow Sets 106
4.3.2 Selection Sets 109

Left-Recursion 110

Common Left-Factors 112

Extending CFGs with Regular Expression Operators 114
Using a Parser Generator 116

4.7.1 Using YACC 118

Recursive-Descent Parsers 118
Recursive-Descent Parsers as Push-Down Automata 119
Summary 121

Contents

5

5.1
5.2

53
54
55
5.6
5.7

5.8
59

6.1
6.2
6.3
6.4
6.5

6.6
6.7

6.8
6.9

Semantic Analysis and Attribute Grammars 130

Introduction 130
Attribute Grammars 131
5.2.1 Inherited and Synthesized Attributes 132
5.2.2 Attribute Value Flow 136
Nonterminals as Attribute Evaluation Functions 137
Symbol Tables as Attributes 138
A Micro-Modula Attribute Grammar 139
Using Attributes with the TAG Compiler 142
Scope and Kind of Identifiers 142
5.7.1 Identifier Scope Grammar 142
5.7.2 Identifier Scope Example Analysis 145
5.7.3 Other Symbol Table Issues 149
Implementing Attributes in Recursive Descent 150
Implementing a Symbol Table 150
Summary 152

Syntax-Directed Code Generation 159

Introduction 159
Computer Hardware Architecture 160
Stack Machine Expression Evaluation 161
The “Itty Bitty Stack Machine” 163
Attributed Code Generation 166
6.5.1 Operator Precedence and Associativity 169
6.5.2 Semantics of Program Structures 169
6.5.3 The Forward Branch Problem 171
Generating Code for Procedures and Functions 176
Block-Structured Stack Frame Management 177
6.7.1 Frames and Frame Pointers 177
6.7.2 Static and Dynamic Links 178
6.7.3 The Display Vector of Frame Pointers 179
Other Data Types 182
Structured Data Types 184
6.9.1 Pointer Types 184
6.9.2 Record Structures 185
6.9.3 Array Semantics 186

6.10 Other Data Structures 188

6.11 Input and Output in the Itty Bitty Stack Machine 189
6.12 Limits to Syntax-Directed Semantics 189

6.13 Generating Code in Hand-Coded Compilers 190

6.14 Applications of Syntax-Directed Semantics 190

6.14.1 A Tiny Basic Interpreter 191
6.14.2 A Micro-Modula Pretty-Printer 192
Summary 193

Contents

7

7.1
7.2

7.3
7.4
7.5
7.6
7.7
7.8
7.9

Automated Bottom-Up Parser Design 198

Introduction 198
LR(k) Parsers 202
7.2.1 Constructing the LR(k) State Machine 203
7.2.2 An LR(2) Parser 205
7.2.3 Apply and Shift Operations 205
Conflicts 206
Example: Conflict Resolution in G2 207
Saving States on the Stack 207
Other LR (k) Parsers: SLR 210
LALR(k) Parsers 211
Bottom-Up Parser Implementation 213
Error Recovery 213

7.10 Attribute Evaluation in an LR Parser 215

8.1
8.2
8.3

8.4
8.5
8.6

8.7

8.8

Summary 216
Transformational Attribute Grammars 222

Introduction 222
Program Representation as Trees 223
Tree-Transformational Grammars 224
8.3.1 Nongenerative Grammars 227
8.3.2 A TAG Example 228
8.3.3 Evaluation Order 229
8.3.4 Information Flow and Storage 230
8.3.5 Tree-Valued Attributes 231
8.3.6 Nondeterministic Parsing 233
Combining String and Tree Grammars 234
Type-Checking in TAGs 235
Code Optimization by Transformation 236
8.6.1 Data-Flow Analysis 237
8.6.2 Using Attribute Grammars for Data-Flow Analysis 240
Alternatives to Tree Representations of Intermediate Code 241
8.7.1 Data-Flow in Quads 243
8.7.2 Data-Flow Analysis Through Loops 244
A Survey of Useful Optimizing Transformations 247
8.8.1 The Class of Simulated Execution Optimizations 249
8.8.2 Analysis for Constant Folding 250
8.8.3 Common Subexpression Detection Using Value Numbers 253
8.8.4 Left—Motion Hoisting 256
8.8.5 Right—Motion Hoisting 258
8.8.6 Useless Code and Other Right-to-Left DFAs 262
8.8.7 Mathematical Identities and Code Selection 262
8.8.8 Loop Structure Analysis 264

vi

Contents

8.9

Implementing Abstract-Syntax Trees 267

8.10 Implementing TAG-Driven Tree Transformers 276

9.1
9.2

9.3

9.4

9.5

9.6

10

10.1
10.2

10.3

Summary 280
Code Generation and Optimization 287

Introduction 287

Loop Optimizations 288
9.2.1 Range Analysis Through Loops 288
9.2.2 Induction Variables 290
9.2.3 Loop Unrolling 291

Register and Memory Allocation 292
9.3.1 Algorithms for Register Allocation 293
9.3.2 Register Allocation in Expressions 295
9.3.3 Data-Flow Analysis for Better Register Allocation 308
9.3.4 Register Allocation in Loops 311
9.3.5 Addressing Modes 311
9.3.6 Branch Address Selection 312
9.3.7 Branch Chains 314

Complexities of Code Generation 319
9.4.1 Instruction Selection 320
9.4.2 Strength Reduction 323

Specialized Instructions 324
9.5.1 RISC and Pipeline Processor Scheduling 325
9.5.2 Vector Processors 328

Varieties of Code Optimization 333
9.6.1 Peephole Optimizations 333

Summary 334

Nonprocedural Languages 339

Introduction 339
Compiling an Applicative Language 340
10.2.1 Some Lisp Concepts 342
10.2.2 Tail-Recursion 343
10.2.3 Implementing an Applicative Language Compiler 345
A Transformational Attribute Grammar Compiler 352
10.3.1 TAG Compiler Parts 353
10.3.2 Iterators in a Grammar 354
10.3.3 Reporting Syntax Errors to the User 355
10.3.4 Automatic Scanner Construction 357
10.3.5 Parsing in the TAG Compiler 360
10.3.6 Tree Transformation 365
10.3.7 Syntax Error Halts 367
Summary 368

Contents

vii

Appendices 372

oaQwy

Index

Itty Bitty Modula Syntax Diagrams 372

The TAG Compiler TAG 376

Itty Bitty® Stack Machine Instruction Set 400
Code Generation Tables 405

408

Listings

Listing 1.1. Failed attempt to “comment out” some code in Modula-2.

Listing 3.1. Modula-2 implementation of a simple finite automaton.
Listing 3.2. Encoding a finite automaton’s transitions in program code.
Listing 3.3. Encoding a finite automaton’s state in the Program Counter.
Listing 3.4. Three ways of encoding semantic actions in scanner code.
Listing 3.5. A linear-search string table implementation.

Listing 3.6. A hashing string table implementation.

Listing 3.7. A search-tree string table implementation.

Listing 4.1. The grammar G,g acceptable to the TAG compiler.
Listing 4.2. The TAG compiler grammar grammar.
Listing 4.3. Recursive-descent parser for grammar Gyg.

Listing 5.1. “Micro-Modula” syntax grammar.

Listing 5.2. “Micro-Modula” attribute grammar, with type-checking.

Listing 5.3. “Micro-Modula” attribute grammar header for TAG compiler.
Listing 5.4. Changes to “Micro-Modula” syntax to add functions.

Listing 5.6. Implementation of an attribute grammar production in Modula-2.

Listing 6.1. “Micro-Modula” attribute grammar, generating code for IBSM.
Listing 6.2. Generating backpatch code for IF-statements.

Listing 6.3. Procedure header attributes for parameterless functions.
Listing 6.4. Tiny Basic syntax grammar, with informal semantic actions.
Listing 6.5. Pretty-printing Micro-Modula.

Listing 7.1. LR parser table interpreter.

Listing 8.1. A simple TAG for constant folding.

Listing 8.2. Two ways to construct an abstract-syntax tree in the
Listing 8.3. A small program for data-flow analysis.

Listing 8.4. Forward data-flow analysis using intersection.

viii

7

74
76
71
81
83
85
88

116
117
120

140
141
143
143
151

167
172
180
191
192

214

229
235
238
238

Contents

Listing 8.5. Backward data-flow analysis using set union.
Listing 8.6. A small data-flow analysis grammar.

Listing 8.7. Quads for the program of Listing 8.3, showing basic blocks.

Listing 8.8. Live variable analysis grammar, including
Listing 8.9. Constant folding analysis and transformation grammar.

Listing 8.10. Common subexpression elimination grammar fragment.

Listing 8.11. Right-motion hoisting grammar fragment.

Listing 8.12. Two grammar fragments for strength reduction.
Listing 8.13. Grammar fragment for loop-constant code motion.
Listing 8.14. A tree node implementation module.

Listing 8.15. A virtual-memory tree node module.

Listing 8.16. A sample tree-transformer, from TAG in Listing 8.13.

Listing 9.1. Unrolling a WHILE loop once.

Listing 9.2. Linearizing an array.

Listing 9.3. Simulating a zero-address stack in registers.

Listing 9.4. A module for generating register-based code from IBSM.
Listing 9.5. Using RegGenCode in a tree-flattening grammar.
Listing 9.6. A branch address selection queue.

Listing 9.7. Building branch chains in a code generator grammar.

Listing 10.1. A Tiny Scheme source-to-tree grammar.
Listing 10.2. A code-generating grammar fragment for Tiny Scheme.
Listing 10.3. Error messages in a TAG grammar fragment.

Listing 10.4. The scanner compiler grammar from the TAG compiler.

Listing 10.5. The code generator grammar from the TAG compiler.
Listing 10.6. A library routine to parse one tree template detail.

Listing B.1. The TAG Compiler TAG.
Listing C.1. Code to Build a Display on the IBSM Stack.

Contents

239
241
242
246
251
257
259
263
266
269
273
278

292
292
296
299
309
315
319

347
348
356
359
362
367

376
404

Chapter

The Compiler Theory Landscape

Aims

® Survey the purpose of and approach to compiling.

® Introduce grammar concepts in language specification.
® Give an overview of a compiler structure.

® Introduce the basic data structures used by a compiler.
* Distinguish between lexical analysis and parsing.

¢ Survey the front and back ends of a compiler.

1.1 Introduction

Compiler design is one of the few areas of computer science where the abstract theory
radically changed the way we write programs. The earliest compilers were largely written
by ad-hoc “seat-of-the-pants” methods, using conventional programming techniques. The
advent of grammar-driven parsers changed all that. We no longer see any real compiler
that is not written first as a context-free grammar which is then mechanically translated
into code.

This book is about modern compiler design, and so it is about grammars. Every part
of a good compiler is related in some way or other to the grammars used to specify it. We
show that the grammatical specification of the compiler is that compiler, written in a
very high level language, and we show both how to write compilers in grammars and
how to write grammar-compilers to compile the grammars into compilers. Grammar
theory drives the design, so the designs are clean and easily implemented. The diligent
reader can learn from this book how to write a complete compiler for a small but realistic
programming language in a few days.

1.2 Languages and Translators

Like natural languages (English, French, Russian), computer languages define a way of
structuring words into sentences for communicating information. A natural language
communicates feelings of the heart, facts about the world, questions about those facts and
feelings, and commands that should be followed by the listener or reader. A computer
language is typically restricted to commands that are to be followed by the machine
receiving them.

A natural language restricts the form of what can be said, but not what can be said.
For example, it is meaningful in English to say, “Peter hit the ball” but not “ball Peter
the hit.” One is grammatically correct; the other is not. Similarly, we could say “Piérre
frappa la balle” in grammatically correct French. A bilingual reader would immediately
recognize that the English and French sentences say the same thing — that is, they have
the same meaning — but that would not necessarily be obvious to a person conversant in
only one of those languages. The word “frappa” has no meaning to the English speaker,
and the word “hit” means nothing to the French. Even if the dictionary meaning of the
verbs were recognized, the grammars of the respective languages still define verb tense,
which is indicated in the form of the words: both are in the past tense.

When an Englishman wishes to communicate to a Frenchman and neither knows the
other’s language, it is necessary to bring in a translator. In the natural world, a translator
is a person who receives a message in one language and repeats that same message in
some other language. A human translator from English to French would read, “Peter hit
the ball” and write “Piérre frappa la balle.” If the translator happened upon the expression
“ball Peter the hit,” he would probably respond that it makes no sense. Because it has no
meaning in English, it cannot be translated into a French sentence with any meaning.

A compiler is a computer program that acts like our human translator. It reads
statements in one computer language, and if they make sense in that language, it
translates them into statements with the same meaning in another computer language.
There are rules defining what makes sense in each language, and the compiler applies
these rules to determine if its input makes sense and to ensure that the output makes
sense. A sequence of statements in a computer language is a program, and the compiler
translates the program from one computer language (called the source language) into a
program — that is, a sequence of statements — in another computer language (called the
target language).

There are actually several kinds of computer languages and computer language
translators. The simplest translator reads words in a simple computer language, and
translates these words directly to the numbers that computers use for their instruction
codes. This is called an assembler, and the source language is called assembly language.
The name derives from the fact that most machine instructions are composed of several
parts, and the assembly language uses a separate word or number for each part; the
assembler assembles these parts into one numerical code. An assembler consists of little
more than a table lookup routine, where each word of the source language is looked up in
a table for its numerical equivalent, which is then output as part of the target language
program. Assembly language generally gives the programmer precise and direct access to
every capability of the computer hardware, but it is much harder to write correct programs
in assembly language than in most other computer languages.

2 The Compiler Theory Landscape Chap. 1

The term compiler is generally reserved for the more complex languages, where there
is no immediate and direct relationship between the source language words and the target
language. The target language for most compilers is usually the same machine language
that is the target for assemblers — indeed, the purpose of computer language translators is
to ease the process of creating programs in machine language — but most of the early
compilers and even some modern compilers compile to assembly language and then let an
assembler finish the translation to machine language. The source language for a compiler,
however, is usually what we call a “high-level language” or HLL. High-level languages
are characterized by resembling problem-solving notations rather than machine languages.
For example, for business applications, Cobol (“COmmon Business Oriented Language”)
uses terminology easily understood by accountants and middle managers. Scientific
problems are often stated in formulas for which Fortran (“FORmula TRANslator”) is
considered appropriate. Some programmers now favor a language with the more abstract
structures of an HLL, but with all the low-level control offered by an assembler; for this
purpose they use the language C (so named because it was the next language after an
earlier language called B). Recent advances in programming methodology dictate a
modular software design, a characteristic featured in Modula-2.

An interpreter is somewhat like a translator in that it reads a program in an HLL, but
the translation is immediate, just as a human interpreter makes a verbal translation that is
heard and understood immediately. Where a compiler will translate a computer program
into machine code that executes at a later time, an interpreter actually executes the
program as it is read. In one sense the interpreter never really completes the translation
process; it is as if the human translator of our earlier example were to hear the command
“Peter, hit the ball!” but instead of responding, “Pierre, frappez la balle!” he just went and
hit the ball himself. Because the interpreter does not have to be concerned with a target
language, it can often process a line of source program much faster than a compiler. An
interpreter must read its input program over and over to compute the results, but a
compiler translates it only once. Compilers take longer to get the output from the first
time a computer program is run, but subsequent runs are much faster than with the
interpreter because no additional translation is needed.

Most of the focus of this book is on compiler design, but some of the exercises
encompass interpreters also.

1.3 The Role of Grammars

One of the characteristics we study in a natural language such as English or French is its
grammar. The grammar of a language defines the correct form for sentences in that
language. For example, the English language might have some rules such as

sentence — noun-phrase verb noun-phrase
verb — “hit”
noun-phrase — article noun
— proper-name
article - ‘@’ | “the”
noun - “ball” | “pat”
proper-name — “Peter”

1.3 The Role of Grammars 3

This grammar says that a sentence can consist of a verb between two noun phrases. That
is, the abstract concept of a sentence represented by the word “sentence” in the grammar
may be rewritten as, or replaced by, the sequence of three abstract concepts, noun phrase,
verb, and another noun phrase. A noun phrase can be a proper name like “Peter,” or it can
be an ordinary noun like “ball” with an article (“the” or “a”). The verb in our example is
of course “hit.” Similarly, in a computer language the grammar defines the correct form
for sentences in that language by specifying how to rewrite the abstract concepts of the
language as ever more concrete sequences of symbols. Each rewrite rule of the grammar is
represented by an arrow connecting a word with one or more other words. Of course, what
we mean by “sentence” is carefully defined in a computer language.

Starting with the word “sentence,” this little grammar can generate not only the
sentence “Peter hit the ball” but also “a ball hit Peter” and the somewhat nonsensical
sentence “Peter hit Peter.” When a grammar defines alternatives (either by means of
multiple arrows, or else by the “or-bar” separator “I”’), any one of the alternatives may be
chosen arbitrarily in rewriting an occurrence of the name on the left of the arrow. The
language generated by the grammar is the set of all the sentences that can be generated by
successively choosing all possible alternatives in all combinations. This language has
exactly 25 possible sentences.

A programming language is usually specified by two separate grammars, one to define
the words of the language, the other to define how the words go together. A grammar
could similarly be written to define the target language, and recent research has focused on
building compilers automatically from the source and target grammars, but with mixed
results. Therefore, we adhere to the more traditional compiler design methodology, using
attribute grammars to define explicitly how the translation is to take place. Several
grammars may be used to define a compiler, with each grammar specifying the functions
of one component of the compiler.

The primary grammar is the phrase-structure grammar, and it specifies the central part
of a compiler or interpreter, called the parser. The phrase-structure grammar specifies how
the “words” of the computer language are allowed to fit together to form syntactically
valid programs. “Parsing” is the natural-language term that describes the process of
analyzing a sentence in that language according to its grammatical form; we use the term
in exactly the same way with respect to computer languages. Our tiny English-language
grammar is a phrase-structure grammar.

A secondary grammar is often used to specify the correct form or spelling of the
“words” of the computer language. This is called the lexical grammar, from the Latin
word for “word.” The part of the compiler that analyzes the individual words of the input
program is called the scanner. We might define a lexical grammar for English-language
words something like this:

word — letter word
— letter

where we mean “letter” to stand for exactly one letter of the 26 letters of the alphabet at a
time. Although this grammar generates a lot of nonsense words, it shows that a grammar
need not be complex to generate a very large language. Indeed, the language of this
grammar is infinite: as long as we choose the first alternative in adding single letters to
the beginning of a word, the word can get as long as we like.

4 The Compiler Theory Landscape Chap. 1

The translation process in a compiler is specified by values (called “attributes”) and by
attribute evaluation functions and assertions attached to the lexical and phrase-structure
grammars. Other attribute grammars may be used to specify how the compiler can
improve the speed or size of the compiled program. We could use assertions, for example,
to prevent the nonsensical sentence “Peter hit Peter” by constraining the grammar to
generate at most one proper name in a sentence.

This entire book focuses on the grammatical approach to compiler construction. It is
our opinion that a grammar is a high-level language specification of a compiler — indeed,
it is the compiler. In other words, all of the compiler design should go into writing the
grammars that define the components of the language and its translation. That properly
done, the rest of compiler design is mechanical and can be automated. The tools for
automatically building compilers from grammars alone are fully described in this book,
for these tools are themselves a compiler, and their design is an important part of the Art
of Compiler Design.

1.4 Some Examples

One of the rewards of directing our attention to the construction of compilers as a logical
extension of language specification is that we will be more likely to appreciate the clean
design of grammar-specified and strongly-typed languages. Fortran was designed in a
rather haphazard way to represent mathematical formulas and simple control structures.
Without the grammatical specification to drive the language design, we find it
excruciatingly difficult to write deterministic and fast scanners for Fortran compilers.
Consider, for example, the following two lines, both legal in the original Fortran (note
that spaces were insignificant in Fortran, and could be omitted entirely):

DO10K=1.9
DO10K=1, 9

The first line is an assignment statement, assigning the real value 1.9 to the
floating-point variable DO1 0K; the second is the beginning of a loop construct that ends
on the statement labeled 10, with the control variable K, which steps from one to nine.
There is nothing to distinguish the line with statement label 10 as the terminator of a
loop, so the compiler has no way to recognize whether or not the first is a miskeyed
attempt to program the second (or the other way around). Indeed, it is reported that the
first Venus probe was lost in a crash landing due to just such a programming error (a
comma or period substituted for the other in such a way that it radically changed the
meaning of the Fortran program controlling the space probe). Furthermore, in this
example the compiler must examine all but the last character of this statement before it
can even begin to consider what to do with the first — that is, whether this statement
begins with the keyword DO or an identifier for a real variable.

Fortran is every language designer’s favorite whipping boy; we mention only one
other classic puzzle in the language, by way of example of the difficulties that could have
been eliminated by a sound and unambiguous grammatical specification. In the following

1.4 Some Examples 5

