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Preface

Interval orders and interval graphs have emerged during the past few decades
as important research subjects in the theory of partially ordered sets and graph
theory. The name interval order was first used in the late 1960s (Fishburn,
1970a), but the same concept was discussed much earlier as “relations of
complete sequence” by Norbert Wiener (1914). The more recent name reflects
the fact that a partially ordered set (X, <) is an interval order precisely when
its points x, y,... can be mapped into intervals in a linearly ordered set, such
as (R, <), such that, for all x and y in X, x < y if and only if the interval
assigned to x completely precedes the interval assigned to y.

The companion term interval graph appeared earlier (Gilmore and
Hoffman, 1962), having been previously discussed without this designation by
Hajos (1957) and Benzer (1959). It refers to a graph (X, ~) whose points can
be mapped into intervals in a linearly ordered set such that, for all distinct x
and y, x ~ y if and only if the intervals assigned to x and y have a nonempty
intersection.

The close relationship between interval orders and interval graphs is sug-
gested by two observations. First, if (X, <) is an interval order, and if ~ is
the symmetric complement of <, then (X, ~) is an interval graph. Second, if
(X, ~) is an interval graph, and if < is defined from an interval representa-
tion of (X, ~) by x < y if the interval for x completely precedes the interval
for y, then (X, <) is an interval order.

The present book is an outgrowth of my research on ordered sets. It
attempts to provide a unified treatment of interval orders, interval graphs, and
related concepts such as semiorders, comparability graphs, and indifference
graphs (named, respectively, by R. D. Luce, A. J. Hoffman, and F. S. Roberts).
The presentation is self-contained and is designed to be readily accessible to
mathematicians, upper-level students of mathematics, and people in econom-
ics, statistics, psychology, computer science, and other fields who are interested
in ordered sets and graphs.

My organization of the book around the theme of interval orders reflects its
author’s particular orientation, as does the choice of subject matter. However,
important topics developed by others are included for broader and more
balanced coverage. At the same time, the book does not try to treat exhaus-
tively all of the topics mentioned, and some extensions and generalizations of
interval orders and interval graphs are not discussed. A great deal of additional
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viii Preface

material will be found, for example, in the graph-theory books by Berge (1973)
and Golumbic (1980), and in the recent treatise on linear orders by Rosenstein
(1982).

A few remarks on personal style are in order. Over the years I have come to
prefer to work with irreflexive as opposed to reflexive orders and will follow
this preference here. Thus partial, interval, linear, and other types of orders
symbolized by <, <, and so forth, are always irreflexive (it is never true that
x < x) and asymmetric [if x < y, then not (y < x)]. Reflexive orders, when
used, carry an undersymbol, as in < and <. The symbol ~, by itself or
with scripts, always denotes a symmetric binary relation; it may or may not be
reflexive. In most cases, (X, ~) is a reflexive graph, so every point has a
“loop” (x ~ x); the main exception involves comparability graphs.

Theorems within each chapter are numbered consecutively without chapter
prefix, but interchapter references add the chapter number (Theorem 5.3 is
Theorem 3 in Chapter 5). The end of each proof is marked by O, | X]| is the
cardinality of set X, 4\ B is the set of points in 4 but not B, C denotes
proper inclusion, R is the set of real numbers, | x| is the integer part of x, and
[x] is the smallest integer not less than x.

For the record, and to avoid unnecessary references to my own work
throughout the text, I note here publications used as source material for parts
of the book. Fxy signifies Fishburn (19xy) in the references at the end of the
book; numbers in parentheses are the numbers of theorems in the book that
first appeared in Fxy. F69 (7.3); F70a (1.4,2.2,2.3,2.8,3.1); F70b (1.1,1.2,
1.4,2.2,2.3,2.8); F70c (1.1(c)); F71 (3.1,4.1,4.3,4.5,4.6); F73a (7.5 through
7.12); F73b (1.2(f),2.10); F8la (9.1,9.3); F81b (6.1 through 6.4); F82
(6.2,6.5,6.6); F83a (8.2,8.4,8.5); F83b (5.18,7.2); F83c (10.1 through 10.6);
F84a (3.12); F84b (8.1,8.3,9.2,9.4); F84c (9.6,9.7,9.8).

I am indebted to many people for guidance and encouragement over the
years in my work on ordered sets. Special thanks go to Fred Roberts, Duncan
Luce, Peter Hammer, Ronald Graham, and Thomas Trotter. I am also indebt-
ed to the institutions that have supported my research in this area—The
Research Analysis Corporation, The Institute for Advanced Study, The Penn-
sylvania State University, AT & T Bell Laboratories—and to Bell Labs for
making the book possible. The entire manuscript was superbly typed by Marie
Wenslau, and I thank her for invaluable assistance.

PETER C. FISHBURN

Murray Hill, New Jersey
January 1985
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1

Introduction

This chapter has two purposes. The first is to introduce basic terminology and
facts about relations, orders, and graphs that are used throughout the book.
The second is to outline topics discussed later. Our study of interval orders
proper begins in the next chapter.

1.1 BINARY RELATIONS

An n-ary relation R on a set X is a subset of X". Although ternary (n = 3) and
quaternary (n = 4) relations will be used later, most of the relations we shall
deal with are binary relations, with R C X X X. Notationally, xRy means the

same thing as (x, y) € R, and not(xRy) or xRy signifies (x, y) & R.
We shall say that a binary relation R on X is

reflexive if xRx for every x in X.

irreflexive if not(xRx) for every x in X.

symmetric if xRy = yRx for all x and y in X.

asymmetric if xRy = not( yRx) for all x and y in X.

transitive if (xRy, yRz) = xRz for all x, y, and z in X.

negatively transitive if xRy = (xRz or zRy) for all x, y, and z in X.
complete if x # y = (xRy or yRx) for all x and y in X.

Other properties will be introduced as they are needed.

An equivalence relation on X is a reflexive, symmetric, and transitive binary
relation on X. Given an equivalence relation £ on X, X/E denotes the set of
equivalence classes determined by E. Each class in X/E is a subset of X of the
form {y: yEx}, and X/E is a partition of X. Conversely, a partition of X
into nonempty subsets determines an equivalence relation E by defining xEy
if x and y are in the same element of the partition.

The composition RS of binary relations R and S on X is defined by

RS = {(x, y): xRz and zSy for some z in X }.
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When S = R, we write RS as R%. For n > 2, R" = R(R" '). Transitivity says
that R* C R.

For any binary relation R on X, let a(R), s(R), ¢(R), d(R), and 1(R) be
respectively the asymmetric part of R, the symmetric part of R, the complement
of R, the dual of R, and the transitive closure of R:

a(R) = {(x, y): xRy and not( yRx)}.
s(R) = {(x, y): xRy and yRx}.
c¢(R) = {(x, y): not(xRy)}.

d(R) = {(x, y): (y,x) € R).
t(RY=RUR*UR?....

These basic operations combine to form compound operations, such as ¢d(R),
the complement of the dual of R, sc(R), the symmetric complement of R, and
ta(R), the transitive closure of the asymmetric part of R. Fishburn (1978)
proves that, in addition to the empty relation @ and the universal relation
X X X, at most 110 different relations can be generated from a given relation
by sequential applications of the five basic operations, and that 110 is the least
upper bound. Examples of duplications for different sequences are cd(R) =
dc(R), ac(R) = ad(R), atcat(R) = atct(R), and stct(R) = tsct(R).

It is easily seen that a(R) = R N c¢d(R) and s(R) = R N d(R). In addi-
tion, we have the following expressions for properties defined earlier:

symmetry: d(R) = R
asymmetry: R N d(R)= O
negative transitivity: ¢(R)? C ¢(R).

When A4 and B are nonempty subsets of X, and R is a binary relation on X,
we shall write

ARB if aRb forall (a,b) € A X B.

Similarly, when a, b € X, aRB means {a}RB, and ARb means AR{b}.

1.2 RELATED SETS

The simple relational system (X, R) in which R is a binary relation on X will
be referred to as a related set. More specifically, when E is an equivalence
relation on X, (X, E) is an equivalence set; when < is a partial order on X,
(X, <) is a partially ordered set; and so forth.

We shall say that (X, R) is reflexive (irreflexive,...,complete) if R is
reflexive (irreflexive, ..., complete). In addition, the operations on binary rela-
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tions defined in the preceding section apply to related sets by the definitions
y(X,R) = (X,y(R)) y € {a,s,c,d,t}.

Thus the asymmetric part of (X, R) is (X, a(R)), the complement of (X, R) is
(X, c(R)), and so forth.

Two related sets (X, R) and (Y, S) are isomorphic if there is a one-to-one
mapping f from X onto Y such that, for all x, y € X,

xRy < f(x)Sf(y).

Isomorphism between (X, R) and (Y, S) is expressed by (X, R) = (Y, S). It is
easily seen that isomorphism is an equivalence relation on the class of related
sets.

The restriction of a binary relation R on X to a subset Y of X is
RN (Y X Y), and the restriction of the related set (X,R) to Y C X is
(Y, RN (Y X Y)). For convenience, we shall sometimes abbreviate (Y, R N
(Y X Y))as (Y, R), orjust Y. A subset Z C X in the context of (X, R) is said
to be isomorphic to (Y, S) if (Z, R) is isomorphic to (Y, S).

1.3 ORDERED SETS
A binary relation R on X is a:

partial order if R is irreflexive and transitive.
weak order if R is asymmetric and negatively transitive.
linear order if R is a complete weak order.

We refer to (X, R) respectively as a poset (partially ordered set), a weakly
ordered set, and a linearly ordered set. I leave it to the reader to show that a
partial order is asymmetric, a weak order is transitive, and a complete partial
order is a linear order.

Linearly ordered sets will also be called chains. A linearly ordered subset or
chain in a related set (X,R) is a Y C X such that (Y, RN (Y X Y)) is a
linearly ordered set. A chain in (X, R) is maximal if it is not properly included
in another chain in (X, R), and it is maximum if no chain has greater
cardinality.

The distinctions among partial, weak, and linear orders are illustrated by
the Hasse diagrams in Fig. 1.1. In such a diagram, either xRy if x is above y
and there is a downward path from x to y, or (exclusionary) xRy if x is below
y and there is an upward path from x to y. The latter orientation will be used
when we write R as <.
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PARTIAL ORDER WEAK ORDER LINEAR ORDER

Figure 1.1 Posets.

When (X, <) is a poset, we shall often use ~ to denote sc(<), in which
case

x ~y ifnot(x < y)and not(y < x).

We now present two theorems that record useful facts about partial orders
and foreshadow some of the results proved later for interval orders. These
theorems describe qualitative properties of < with the use of ~ = s¢(<) and
two other binary relations on X that are based on < . A numerical representa-
tion theorem is proved in the next section.

The first new relation is defined succinctly by

==c[(=)e(~)Ue(=)(~)I,

where (~)c(~) is the composition of ~ and ¢(~), and c¢(~)(~) is the
composition of ¢(~) and ~ . In more detail, x = y if it is false that there is a
z for which x ~ z and not(z ~ y), and it is false that there is a z for which
not(x ~ z) and z ~ y, that is,

x=y if{ziz~x}={z:z~y}.

When (X, <) is a poset, Theorem 1 notes that x = y if x and y have the same
upper sets ({z: x <z} = {z: y < z}) and the same lower sets ({z: z < x} =
{z: 2=y}

The second new relation, called the sequel of < , is defined by

So(<) = [(=)(<) (=) Ned [(~)(=<) L(=<)(~)].

where ( )( ) denotes composition. Thus, xS,(<)y if either x(~)(<)y or
x(=<)(~)y, and neither y(~)(<)x nor y(=<)(~)x. When (X, <) is a poset, so
is (X, Sy(=<)); moreover, < is included in S;(<).

Here and later X is assumed to be nonempty. Unless it is noted otherwise,
there is no restriction on the cardinality of X apart from |X| > 0.
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Theorem 1. Suppose (X, <) is a poset. Let ~ = sc(<), with = and Sy(<)
as defined above. Then

(a) = is an equivalence relation.

(b) =< ,(=<)=), and (=)(<) are identical.

€ x=ye[{zzx<z}={ziy<z}{ziz<x}={z:z<y}]
(d) (X/=, <) is a poset.

(e) Sy(=) is a partial order that includes < .

Proof. (a) Since < is irreflexive, its symmetric complement ~ is reflexive
and symmetric, and = is clearly reflexive and symmetric. Suppose x = y and
y=z.Then {w:w~x}={w:w~y}={w:w~z} hence {(w: w~x} =
{w: w~ z}, hence x = z, so = is transitive.

Proofs of (b), (c), and (d) are left to the reader.

(e) Suppose x < y. Then x ~ x <y, and either y ~z<x or y <z ~ x
yields a contradiction by transitivity, so xS,(<)y. By its definition, S,(<) is
irreflexive. To verify that it is transitive, suppose xSy(<)y and yS,(<)z.
Contrary to transitivity, suppose not(xS,(<)z). Then either

(i) z ~aand a < x for some a € X, or

(i) z < aand a ~ x for some a € X, or

(iii) there is no b € A4 such that either (x ~ b, b < z) or (x < b, b ~ z).
If (i) holds, then a < y by xS,(<)y, but @ < y and z ~ a contradict yS,(<)z.
A similar contradiction follows from (ii). Suppose then that (iii) holds. Assume
first that xS,(<)y is realized in part by (x ~ ¢, ¢ < y). Then (iii) implies
not(c < z), so either z < ¢ or z ~ ¢. However, since ¢ < y, each of z < ¢ and
z ~ ¢ contradicts yS,(<)z. A similar contradiction obtains if (x < ¢, ¢ ~ y),
so (iii) leads to a contradiction in any event, and we conclude that xS,(<)z.

a

Theorem 2. Suppose the hypotheses and definitions of Theorem 1 hold. Then the
following are mutually equivalent:

(a) (X, <) is a weakly ordered set.

(b) ~ is transitive.

(c) ~==.

@ =<=(=)~)=(~)=)

(e) (X/=, <) is a linearly ordered set.
Moreover, if X is finite, then each of (a)—(e) is equivalent to

) Sp(=x)=<.

In addition, (X, <) is a linearly ordered set if and only if ~ is the identity
relation {(x,x): x € X }.

Remark 1. We show why (f) can fail to imply weak order when X is not
finite. Suppose (X, <) consists of the linearly ordered set of integers (Z, <)
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plus an additional point w such that w ~ n forall n€ Z. Then n <n+ 1 ~
w = not(wSy(<)n), and w ~ (n — 1) < n = not(nSy(<)w). Theorem 1(e)
then implies S;(<) = <, but < is not a weak order since ~ is not transitive.

Proof. The proof of the final sentence of Theorem 2 is left to the reader.
The proofs of the other implications follow.

(a) = (b). Since negative transitivity says that x <z = (x <y or y < z)
and z<x=(z<y or y<x), x~y and y~z imply x ~ 2z, so ~ is
transitive.

(by=(c). Clearlyx=y=x~ypy,andx~y=(z~x<z~y).

(¢c) = (d). See Theorem 1(b).

(d) = (b). Obvious.

(d) = (e). By Theorem 1(d), (X/=, <) is a poset. By (d) = (b) = (¢), =
equals ~ . To show that < on X/ = is complete, suppose 4, B € X/~ and
A # B. Then A N B = @ since ~ is an equivalence relation by Theorem 1(a).
Hence a < b or b < a for some (a,b) € A X B. If a < b then (d) = 4 < B,
and if b < a then (d) = B < 4.

(e) = (a). Since (X, <) is a poset, < is asymmetric. To prove that < is
negatively transitive, let [x] denote the equivalence class in X/ = that contains
x. Suppose x < z. Then[x] N [z] = @.Givenany y € X, either[y] N [x]= &
or [y]N[z]= &. Suppose for definiteness that [y]N[x]= &. Then (e)
implies either [x] < [y] or [y] < [x]. If [x] < [y] then x < y, and if [ y] < [x]
then y < x, hence y < z by transitivity. Therefore x < z = (x < yor y < z),
so < is negatively transitive.

(a) = (f). Since (a) = (d), Sy(<) =< Ncd(=<). Since < is asymmetric
(see preceding paragraph), x <y < yd(<)x = not(xd(<)y) < xcd(<)y,
and therefore < C cd(<). Hence Sy(<) =<

[(f) and | X| < oo] = (a). The conclusion is obvious if < is empty. Assume
henceforth that Sy(<)= <+ @. Let Y be a maximum-cardinality linearly
ordered subset of (X, <) and let |Y| = m. The existence of Y is guaranteed by
the finiteness of X. Let

A, = { x: the maximum-cardinality chain in which x is the

final element has k elements}.

Clearly, x ~y when x,y € A,. This and the transitivity of < show that
(x €A,y €Ay, j <k)=not(y < x). Hence to prove that < is a weak
order, we need only show that 4, < 4, < --- < A4, Suppose this is false. Let
k be the smallest integer for which not(4, , < 4,). Then x, _; ~ x; for some
X, €A, and x; € A; with j > k. Choose x; for this so that j is as large
as possible. Then x, _,(~)(<)x, since, by the definition of 4, y,_, < x; for
some y, ; € A, . If z < x,_, then, by the choice of k, z <y, ,, hence
z < x;, hence not(x; ~ z < x;_,), so that (x4, x;) € cd((~)(<)). Moreover,
(x4-1- X)) € cd((<)(~)) since if x,(<)(~)x;_, then x; < v ~ x,_, for some
v, which contradicts the choice of ;. Since cd((~)<))Ncd((<)(~)) =
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cd((~)=<) U (=)~)), x4_1S0(<)x;, and therefore x, ; < x, by (f). But this
contradicts our hypothesis that x, ; ~ x;, and we conclude that 4, < 4, <
- <A4,. O

1.4 LINEAR EXTENSIONS

A linear extension of a poset (X, <) is a linearly ordered set (X, <*) for
which < C <*. This section first proves the extension theorem of Szpilrajn
(1930), then uses his theorem in the proof of a numerical representation
theorem for posets that have countably many = classes.

The proof of Szpilrajn’s theorem uses

Kuratowski’s Lemma. Each chain in a poset is included in a maximal chain of
the poset.

Kelley (1955, p. 33) notes that this is equivalent to several other set-theoretic
axioms, including the Axiom of Choice—if % is a set of nonempty sets, then
there is a function g on % such that g(A) € A for every 4 € #.

Theorem 3 (Szpilrajn). Every poset has a linear extension.

Proof. Let (X, <) be a poset. Assume that < is not complete since
otherwise (X, <) is a chain. Let ~ = sc(<), take x ~y for x # y, and
define <’ on X by

<'=<U[{ata<xora=x} x{b: y<bory=>b}]|.

It is routine to verify that (X, <’) is a poset. Moreover, < C <’ since x <'y.

Let 2 be the set of all partial orders P on X such that < C P, and order Z
by inclusion so that (2, C) is a poset. Let (#’, C) be any nonempty chain in
(2, ). Then, by Kuratowski’s lemma, there is a maximal chain (£*, C) in
(2, <) that includes (£’, ). Given such a (2*, C), let

<*=U{P: P eP*}.

Since 2* is linearly ordered by C , it is easily seen that <* is a partial order.
Suppose <* is not complete. Then, by the preceding paragraph, there is a
partial order <*” on X that properly includes <*. But then (£*, C) is not
maximal since P C <*' for every P € #* and we obtain a contradiction.
Therefore <* is complete, so it gives a linear extension of < . O

Since x and y can be interchanged in the first paragraph of the preceding
proof, it follows that for every (x, y) € sc(<) for which x # y, there are linear
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extensions of (X, <) in which x precedes y, and others in which y precedes x.
Consequently, the intersection of all linear extensions of a poset equals the
poset. The minimal cardinality over the sets of linear extensions whose
intersections equal the poset is called the dimension of the poset. We shall
return to this in Chapter 5.

We now use Szpilrajn’s theorem to prove

Theorem 4. Suppose (X, <) is a poset for which X/ = is countable when = is
defined as in the preceding section. Then there exists f: X — R such that, for all
x,y € X,

x=ye f(x)=f(y),
x<y=f(x)<f(y).
Remark 2. Theorems 2 and 4 imply that if (X, <) is a weakly ordered set

such that X/sc(<) is countable, then there exists f: X — R such that, for all
x,y € X,

x<yef(x)<f(y).

This is true also if (X, <) is a countable chain, but may be false when X is
uncountable. The latter case is discussed further in Chapter 7.

Proof. Given the hypotheses of Theorem 4, Theorems 1(d) and 3 imply

that there is a linear order <* on X/= that includes < on X/= . Since
X/ = is countable, it can be enumerated as 4,, 4,,... . Define F: X/=—> R
by

F(A,)=X{27: 4, <*4,},
where the summation is over those j for which 4, <*4,. If 4; <*A, then { j:
A, <*A;} C {j: A;<*A;} sothat F(A;) < F(A,).Since <*is a chain, all F
values are distinct. Moreover, if 4, B € X/= and A < B, then 4 <*B, so

F(A) < F(B). The conclusion of the theorem follows on defining f(x) as
F(A)forall x € Aandall 4 € X/ = . O

1.5 TRANSITIVE REORIENTATIONS

A reorientation of an asymmetric related set (X, R) is an asymmetric related
set (X, S) for which

Sud(S)=RUd(R).

Thus xRy = (xSy or ySx), and xSy = (xRy or yRx). A reorientation ( X, S)



Transitive Reorientations 9

of an asymmetric related set (X, R) is transitive if S is transitive, that is, if
(X, S) is a poset.

In this section we shall prove an intriguing result of Ghouila-Houri (1962)
which says that an asymmetric related set ( X, R) has a transitive reorientation
if it satisfies the pseudo-transitivity property R> € R U d(R), that is, if for all
x, y,and z in X,

(xRy, yRz) = (xRz or zRx).

The proof for finite X follows Ghouila-Houri (1962) and Berge (1973, pp.
365-366). The proof for infinite X is suggested by Wolk (1965) on the basis of
Rado’s theorem (Rado, 1949) which, as noted by Mirski and Perfect (1966),
has relevance for diverse problems.

I state Rado’s theorem without proof: see Mirski and Perfect (1966, p. 540)
for references to several proofs. A choice function g on a set % of nonempty
sets is a function g on % such that g(A) € A4 for every 4 € % . (Cf. Axiom of
Choice in the preceding section.)

Rado’s Theorem. Suppose J is a nonempty set, = { X1 j € J } is a family of
nonempty finite sets (one for each j, with or without duplications) and, for every
finite A C J, g, is a choice function on { X;: j € A}. Then there is a choice
function g on F such that, for every finite A C J there is a finite B C J for which
A C Band g(X,) = gg(X,) foralli € A.

If J is finite then the theorem is trivial: just take g = g,. Its general form
presumes the Axiom of Choice since it presumes the existence of a choice
function g on % regardless of the nature of J.

Theorem S (Ghouila-Houri). An asymmetric related set ( X, R) has a transitive
reorientation if R> C R U d(R).

Proof. Assume throughout that ( X, R) is asymmetric with R> € R U d(R).
Call x and y adjacent if xRy or yRx, and observe that if x, y, and z form an
R-cycle, say (x, y),(y, z),(z,x) € R, then every other point in X is adjacent
to 0, 2, or 3 of x, y, and :z.

We consider finite X first and proceed by induction on | X|, noting that each
nonempty restriction of (X, R) inherits the properties assumed for (X, R). The
theorem is clearly true when | X| = 1. Suppose |X| = n > 1 and the theorem
holds for sets with fewer than n points. Suppose in addition that R is not
transitive, since otherwise there is nothing to prove. Then there exist x,, x,,
and x; in X that cycle in R:

xRx,,x,Rx5, x3Rx,.

Two cases require analysis.



