Nicolas Guelfi (Ed.)

Rapid Integration A
of Software Engineering
Techniques

First International Workshop, RISE 2004
Luxembourg-Kirchberg, Luxembourg, November 2004
Revised Selected Papers

LNCS 3475

@ Springer

Nicolas Guelfi (Ed.)

Rapid Integration
of Software Engineering
Techniques

First International Workshop, RISE 2004
Luxembourg-Kirchberg, Luxembourg, November 26, 2004
Revised Selected Papers

@ Springer

Volume Editor

Nicolas Guelfi

University of Luxembourg

Faculty of Science, Technology and Communication
1359 Luxembourg, Luxembourg

E-mail: nicolas.guelfi@uni.lu

Library of Congress Control Number: 2005925572

CR Subject Classification (1998): D.2, F.3, K.6.15 K.6.3

ISSN 0302-9743
ISBN-10 3-540-25812-4 Springer*Berlin Heidelberg New York
ISBN-13 978-3-540-25812-4 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11423331 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA

Demetri Terzopoulos
New York University, NY, USA

Doug Tygar
University of California, Berkeley, CA, USA

Moshe Y. Vardi
Rice University, Houston, TX, USA

Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3475

Preface

RISE 2004 was an international forum for researchers and practitioners inter-
ested in integrated and practical software engineering approaches that are part
of a methodological framework and which apply to both new and evolving appli-
cations, technologies and systems. The ERCIM (European Research Consortium
for Informatics and Mathematics) RISE working group selected application areas
such as the Web, mobility, high availability approaches, embedded approaches
and user interfaces in specific industry sectors comprising finance, telecommu-
nications, transportation (avionics, the automotive industry) and e-government.
Considered research issues in these areas pertain to the following software engi-
neering domains:

software/system architectures

— reuse

— testing

model transformation/model-driven engineering
— requirements engineering

lightweight formal methods

— ASE tools

|

I

All papers submitted to this workshop were reviewed by at least two mem-
bers of the International Program Committee. Acceptance was based primarily
on originality and contribution. We selected for these proceedings 12 papers
amongst 28 submitted, and an invited paper.

The organization of such a workshop represents an important amount of
work. We would like to acknowledge all the Program Committee members, all
the additional referees, all the Organization Committee members, the University
of Luxembourg, Faculty of Science, Technology and Communication administra-
tive, scientific and technical staff, and the Henri Tudor Public Research Center.

RISE 2004 was mainly the supported by ERCIM, the European Research
Consortium for Informatics and Mathematics, the “Ministere de I’enseignement
supérieur et de la recherche,” and by the “Fonds National pour la Recherche au
Luxembourg.”

November 2004 Nicolas Guelfi

Organization

RISE 2004 was organized by the University of Luxembourg, Faculty of Science,

Technology and Communication.

Program Chair

Guelfi, Nicolas

University of Luxembourg, Luxembourg

International Program Committee

Arve Aagesen, Finn
Bertolino, Antonia
Bicarregui, Juan
Bolognesi, Tommaso
Born, Marc

Buchs, Didier
Dony, Christophe
Guelfi, Nicolas
Haajanen, Jyrki
Issarny, Valérie
Klint, Paul
Moeller, Eckhard
Monostori, Laszlo
Pimentel, Ernesto
Romanovsky, Sacha
Rosener, Vincent

Savidis, Anthony
Schieferdecker, Ina

Organizing Committee

Amza, Catalin
Berlizev, Andrey
Capozucca, Alfredo
Guelfi, Nicolas
Mammar, Amel
Perrouin, Gilles

NTNU, Norway

CNR-ISTI, Italy

CCLRC, UK

CNR-ISTI, Italy

Fraunhofer FOKUS, Germany

SARIT, University of Geneva, Switzerland

LIRMM, University of Montpellier, France

FNR, University of Luxembourg, Luxembourg

VTT, Finland

INRIA, France

CWI, The Netherlands

Fraunhofer FOKUS, Germany

SZTAKI, Hungary

SpaRCIM, University of Malaga, Spain

DCS, University of Newcastle, UK

FNR, Henri Tudor Public Research Center,
Luxembourg

FORTH, Greece

Fraunhofer FOKUS, Germany

University of Luxembourg/DISI, Genoa, Italy
University of Luxembourg, Luxembourg
University of Luxembourg, Luxembourg
University of Luxembourg, Luxembourg
University of Luxembourg, Luxembourg
University of Luxembourg, Luxembourg

VIII Organization

Pruski, Cédric
Reggio, Gianna
Ries, Angela
Ries, Benoit
Sterges, Paul

Sponsoring Institutions

Extopsan Foseuch Cormrian 4%

-
:

m
=

University of Luxembourg, Luxembourg
DISI, Genoa, Italy

University of Luxembourg, Luxembourg
University of Luxembourg, Luxembourg
University of Luxembourg, Luxembourg

.]

This workshop was supported by ERCIM, the “Ministere
I’enseignement supérieur et de la recherche”, and by the “Fonds National pour

la Recherche au Luxembourg.”

fonds national de la

recherche

de

Lecture Notes in Computer Science

For information about Vols. 1-3381

please contact your bookseller or Springer

Vol. 3525: A.E. Abdallah, C.B. Jones, J.W. Sanders (Eds.),
Communicating Sequential Processes. XIV, 321 pages.
2005.

Vol. 3517: H.S. Baird, D.P. Lopresti (Eds.), Human Inter-
active Proofs. IX, 143 pages. 2005.

Vol. 3510: T. Braun, G. Carle, Y. Koucheryavy, V. Tsaous-
sidis (Eds.), Wired/Wireless Internet Communications.
XIV, 366 pages. 2005.

Vol. 3508: P. Bresciani, P. Giorgini, B. Henderson-Sellers,
G. Low, M. Winikoff (Eds.), Agent-Oriented Information
Systems II. X, 227 pages. 2005. (Subseries LNAI).

Vol. 3503: S.E. Nikoletseas (Ed.), Experimental and Effi-
cient Algorithms. XV, 624 pages. 2005.

Vol. 3501: B. Kégl, G. Lapalme (Eds.), Advances in Artifi-
cial Intelligence. XV, 458 pages. 2005. (Subseries LNAI).

Vol. 3500: S. Miyano, J. Mesirov, S. Kasif, S. Istrail, P.
Pevzner, M. Waterman (Eds.), Research in Computational
Molecular Biology. XVII, 632 pages. 2005. (Subseries
LNBI).

Vol. 3498: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part III. L, 1077 pages.
2005.

Vol. 3497: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part II. L, 947 pages.
2005.

Vol. 3496: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part II. L, 1055 pages.
2005.

Vol. 3495: P. Kantor, G. Muresan, F. Roberts, D.D. Zeng,
F.-Y. Wang, H. Chen, R.C. Merkle (Eds.), Intelligence and
Security Informatics. XVIII, 674 pages. 2005.

Vol. 3494: R. Cramer (Ed.), Advances in Cryptology —
EUROCRYPT 2005. XIV, 576 pages. 2005.

Vol. 3492: P. Blache, E. Stabler, J. Busquets, R. Moot
(Eds.), Logical Aspects of Computational Linguistics. X,
363 pages. 2005. (Subseries LNAI).

Vol. 3489: G.T. Heineman, J.A. Stafford, H.W. Schmidt,
K. Wallnau, C. Szyperski, I. Cmkovic (Eds.), Component-
Based Software Engineering. XI, 358 pages. 2005.

Vol. 3488: M.-S. Hacid, N.V. Murray, Z.W. Ra§, S.
Tsumoto (Eds.), Foundations of Intelligent Systems. XIII,
700 pages. 2005. (Subseries LNAI).

Vol. 3475: N. Guelfi (Ed.), Rapid Integration of Software
Engineering Techniques. X, 145 pages. 2005.

Vol. 3467: J. Giesl (Ed.), Term Rewriting and Applica-
tions. XIII, 517 pages. 2005.

Vol. 3465: M. Bemardo, A. Bogliolo (Eds.), Formal Meth-
ods for Mobile Computing. VII, 271 pages. 2005.

Vol. 3463: M. Dal Cin, M. Kaéniche, A. Pataricza (Eds.),
Dependable Computing - EDCC 2005. XVI, 472 pages.
2005.

Vol. 3462: R. Boutaba, K. Almeroth, R. Puigjaner, S.
Shen, J.P. Black (Eds.), NETWORKING 2005. XXX,
1483 pages. 2005.

Vol. 3461: P. Urzyczyn (Ed.), Typed Lambda Calculi and
Applications. XI, 433 pages. 2005.

Vol. 3459: R. Kimmel, N.A. Sochen, J. Weickert (Eds.),
Scale Space and PDE Methods in Computer Vision. XI,
634 pages. 2005.

Vol. 3456: H. Rust, Operational Semantics for Timed Sys-
tems. XTI, 223 pages. 2005.

Vol. 3455: H. Treharne, S. King, M. Henson, S. Schneider
(Eds.), ZB 2005: Formal Specification and Development
in Z and B. XV, 493 pages. 2005.

Vol. 3454: J.-M. Jacquet, G.P. Picco (Eds.), Coordination
Models and Languages. X, 299 pages. 2005.

Vol. 3453: L. Zhou, B.C. Ooi, X. Meng (Eds.), Database
Systems for Advanced Applications. XXVII, 929 pages.
2005.

Vol. 3452: F. Baader, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. XI, 562
pages. 2005. (Subseries LNAI).

Vol. 3450: D. Hutter, M. Ullmann (Eds.), Security in Per-
vasive Computing. XI, 239 pages. 2005.

Vol. 3449: F. Rothlauf, J. Branke, S. Cagnoni, D.W. Corne,
R. Drechsler, Y. Jin, P. Machado, E. Marchiori, J. Romero,
G.D. Smith, G. Squillero (Eds.), Applications of Evolu-
tionary Computing. XX, 631 pages. 2005.

Vol. 3448: G.R. Raidl, J. Gottlieb (Eds.), Evolutionary
Computation in Combinatorial Optimization. XI, 271
pages. 2005.

Vol. 3447: M. Keijzer, A. Tettamanzi, P. Collet, J.v.
Hemert, M. Tomassini (Eds.), Genetic Programming.
XIII, 382 pages. 2005.

Vol. 3444: M. Sagiv (Ed.), Programming Languages and
Systems. XIII, 439 pages. 2005.

Vol. 3443: R. Bodik (Ed.), Compiler Construction. XI, 305
pages. 2005.

Vol. 3442: M. Cerioli (Ed.), Fundamental Approaches to
Software Engineering. XIII, 373 pages. 2005.

Vol. 3441: V. Sassone (Ed.), Foundations of Software Sci-

ence and Computational Structures. XVIII, 521 pages.
200S.

Vol. 3440: N. Halbwachs, L.D. Zuck (Eds.), Tools and
Algorithms for the Construction and Analysis of Systems.
XVII, 588 pages. 2005.

Vol. 3439: R.H. Deng, F. Bao, H. Pang, J. Zhou (Eds.),
Information Security Practice and Experience. XII, 424
pages. 2005.

Vol. 3437: T. Gschwind, C. Mascolo (Eds.), Software En-
gineering and Middleware. X, 245 pages. 2005.

Vol. 3436: B. Bouyssounouse, J. Sifakis (Eds.), Embedded
Systems Design. XV, 492 pages. 2005.

Vol. 3434: L. Brun, M. Vento (Eds.), Graph-Based Repre-
sentations in Pattern Recognition. XII, 384 pages. 2005.

Vol. 3433: S. Bhalla (Ed.), Databases in Networked Infor-
mation Systems. VII, 319 pages. 2005.

Vol. 3432: M. Beigl, P. Lukowicz (Eds.), Systems Aspects
in Organic and Pervasive Computing - ARCS 2005. X,
265 pages. 2005.

Vol. 3431: C. Dovrolis (Ed.), Passive and Active Network
Measurement. XTI, 374 pages. 2005.

Vol. 3429: E. Andres, G. Damiand, P. Lienhardt (Eds.),
Discrete Geometry for Computer Imagery. X, 428 pages.
2005.

Vol. 3427: G. Kotsis, O. Spaniol (Eds.), Wireless Systems
and Mobility in Next Generation Internet. VIII, 249 pages.
2005.

Vol. 3423: J.L. Fiadeiro, P.D. Mosses, F. Orejas (Eds.), Re-
cent Trends in Algebraic Development Techniques. VIII,
271 pages. 2005.

Vol. 3422: R.T. Mittermeir (Ed.), From Computer Literacy
to Informatics Fundamentals. X, 203 pages. 2005.

Vol. 3421: P. Lorenz, P. Dini (Eds.), Networking - ICN
2005, Part II. XXXV, 1153 pages. 2005.

Vol. 3420: P. Lorenz, P. Dini (Eds.), Networking - ICN
2005, Part I. XXXV, 933 pages. 2005.

Vol. 3419: B. Faltings, A. Petcu, F. Fages, F. Rossi (Eds.),
Constraint Satisfaction and Constraint Logic Program-
ming. X, 217 pages. 2005. (Subseries LNAI).

Vol. 3418: U. Brandes, T. Erlebach (Eds.), Network Anal-
ysis. XII, 471 pages. 2005.

Vol. 3416: M. Bohlen, J. Gamper, W. Polasek, M.A. Wim-
mer (Eds.), E-Government: Towards Electronic Democ-
racy. XIII, 311 pages. 2005. (Subseries LNAI).

Vol. 3415: P. Davidsson, B. Logan, K. Takadama (Eds.),
Multi-Agent and Multi-Agent-Based Simulation. X, 265
pages. 2005. (Subseries LNAI).

Vol. 3414: M. Morari, L. Thiele (Eds.), Hybrid Systems:
Computation and Control. XII, 684 pages. 2005.

Vol. 3412: X. Franch, D. Port (Eds.), COTS-Based Soft-
ware Systems. XVI, 312 pages. 2005.

Vol. 3411: S.H. Myaeng, M. Zhou, K.-F. Wong, H.-J.
Zhang (Eds.), Information Retrieval Technology. XIII,
337 pages. 2005.

Vol. 3410: C.A. Coello Coello, A. Herndndez Aguirre,
E. Zitzler (Eds.), Evolutionary Multi-Criterion Optimiza-
tion. XVI, 912 pages. 2005.

Vol. 3409: N. Guelfi, G. Reggio, A. Romanovsky (Eds.),
Scientific Engineering of Distributed Java Applications.
X, 127 pages. 2005.

Vol. 3408: D.E. Losada, J.M. Fernidndez-Luna (Eds.), Ad-
vances in Information Retrieval. XVII, 572 pages. 2005.

Vol. 3407: Z. Liu, K. Araki (Eds.), Theoretical Aspects of
Computing - ICTAC 2004. XTIV, 562 pages. 2005.

Vol. 3406: A. Gelbukh (Ed.), Computational Linguistics
and Intelligent Text Processing. XVII, 829 pages. 2005.

Vol. 3404: V. Diekert, B. Durand (Eds.), STACS 2005.
XVI, 706 pages. 2005.

Vol. 3403: B. Ganter, R. Godin (Eds.), Formal Concept
Analysis. XI, 419 pages. 2005. (Subseries LNAI).

Vol. 3402: M. Daydé, J.J. Dongarra, V. Hemndndez,
J.M.L.M. Palma (Eds.), High Performance Computing for
Computational Science - VECPAR 2004. XI, 732 pages.
2005.

Vol. 3401: Z. Li, L.G. Vulkov, J. Wasniewski (Eds.), Nu-
merical Analysis and Its Applications. XIII, 630 pages.
2005.

Vol. 3399: Y. Zhang, K. Tanaka, J.X. Yu, S. Wang, M. Li
(Eds.), Web Technologies Research and Development -
APWeb 2005. XXII, 1082 pages. 2005.

Vol. 3398: D.-K. Baik (Ed.), Systems Modeling and Sim-
ulation: Theory and Applications. XIV, 733 pages. 2005.
(Subseries LNAI).

Vol. 3397: T.G. Kim (Ed.), Artificial Intelligence and Sim-
ulation. XV, 711 pages. 2005. (Subseries LNAI).

Vol. 3396: R.M. van Eijk, M.-P. Huget, F. Dignum (Eds.),
Agent Communication. X, 261 pages. 2005. (Subseries
LNAI).

Vol. 3395: J. Grabowski, B. Nielsen (Eds.), Formal Ap-
proaches to Software Testing. X, 225 pages. 2005.

Vol. 3394: D. Kudenko, D. Kazakov, E. Alonso (Eds.),
Adaptive Agents and Multi-Agent Systems II. VIII, 313
pages. 2005. (Subseries LNAI).

Vol. 3393: H.-J. Kreowski, U. Montanari, F. Orejas, G.
Rozenberg, G. Taentzer (Eds.), Formal Methods in Soft-
ware and Systems Modeling. XXVII, 413 pages. 2005.

Vol. 3392: D. Seipel, M. Hanus, U. Geske, O. Barten-
stein (Eds.), Applications of Declarative Programming
and Knowledge Management. X, 309 pages. 2005. (Sub-
series LNAI).

Vol. 3391: C. Kim (Ed.), Information Networking. XVII,
936 pages. 2005.

Vol. 3390: R. Choren, A. Garcia, C. Lucena, A. Ro-
manovsky (Eds.), Software Engineering for Multi-Agent
Systems III. XII, 291 pages. 2005.

Vol. 3389: P. Van Roy (Ed.), Multiparadigm Programming
in Mozart/Oz. XV, 329 pages. 2005.

Vol. 3388: J. Lagergren (Ed.), Comparative Genomics.
VII, 133 pages. 2005. (Subseries LNBI).

Vol. 3387: J. Cardoso, A. Sheth (Eds.), Semantic Web
Services and Web Process Composition. VIII, 147 pages.
2005.

Vol. 3386: S. Vaudenay (Ed.), Public Key Cryptography -
PKC 2005. IX, 436 pages. 2005.

Vol. 3385: R. Cousot (Ed.), Verification, Model Checking,
and Abstract Interpretation. XII, 483 pages. 2005.

Vol. 3383: J. Pach (Ed.), Graph Drawing. XII, 536 pages.
2005.

Vol. 3382: J. Odell, P. Giorgini, J.P. Miiller (Eds.), Agent-
Oriented Software Engineering V. X, 239 pages. 2005.

Table of Contents

Integration of Software Engineering Techniques Through the Use of
Architecture, Process, and People Management: An Experience Report

Christopher Nelson, Jung Soo Kim

Supporting Virtual Interaction Objects with Polymorphic Platform
Bindings in a User Interface Programming Language
Anthony Savidis

Towards a Methodology for Component-Driven Design
Colin Atkinson, Oliver Hummel.

Automatic Translation of Service Specification to a Behavioral Type
Language for Dynamic Service Verification
Shanshan Jiang, Cyril Carrez, Finn Arve Aagesen

A Symbolic Model Checker for tccp Programs
Maria Alpuente, Moreno Falaschi, Alicia Villanueva

A Methodology and a Framework for Model-Based Testing
Levi Lucio, Luis Pedro, Didier Buchs..................ccoiio...

An Exception Monitoring System for Java
Heejung Ohe, Byeong-Mo Chang

Distributed Exception Handling: Ideas, Lessons and Issues with Recent
Exception Handling Systems

Aurélien Campéas, Christophe Dony, Christelle Urtado,

Stluadn Vautlier s s ssswsws swsns smsas qusms 5588 5008 55 693 55 895 45

A Model Based Approach to Design Applications for Network Processor
Sharareh Afsharian, Antonia Bertolino, Guglielmo De Angelis,
Paola Iovanna, Raffaela Mirandola

A MOF-Based Metamodel for SA/RT

Joakim Isaksson, Johan Lilius, Dragos Truscan

Modelling SystemC Process Behavior by the UML Method State
Machines
Elvinia Riccobene, Patrizia Scandurra

X Table of Contents

My Favorite Editor Anywhere
Hayco de Jong, Taeke Kooikerc..iiiiiiiiiiina...

Invited Paper
Combining System Development and System Test in a Model-Centric

Approach
Marc Born, Ina Schieferdecker, Olaf Kath, Chihaki Hirai

Anthor INAexc. ... o5 sosws iasmios s 5565 catas 056 s 585 ins 56 755 swsas

Integration of Software Engineering Techniques
Through the Use of Architecture, Process, and
People Management: An Experience Report

Christopher Nelson! and Jung Soo Kim?

! Siemens Corporate Research, Princeton NJ 08540, USA
Christopher.Nelson@siemens.com
2 Carnegie Mellon University, Pittsburgh PA 15213, USA

jungsoo@cmu.edu

Abstract. This paper reports on the experiences of integrating sev-
eral Software Engineering techniques by the Rapid Prototyping group
of Siemens Corporate Research. This experience was gained during our
recent project that involved developing a web-based, workflow-driven in-
formation system. The techniques integrated for this project included ag-
ile and iterative processes, user centered design, requirements discovery
and maturation, and test-driven development. These techniques were in-
tegrated and supported by a proprietary process entitled “Siemens Rapid
Prototyping” (S-RaP), a software architecture, and project management
techniques. This paper will detail the specific characteristics of S-RaP,
the software architecture, and the project management techniques that
supported the integration of the above listed software engineering tech-
niques. We will also report on our experience with their effectiveness and
our thoughts on future enhancements in all three areas.

1 Introduction and Background

Siemens Corporate Research, Inc. (SCR) is the Research and Development or-
ganization of Siemens USA. Over the past several years, the Siemens Rapid
Prototyping group at SCR has been developing, formalizing, and maturing an
agile and iterative process entitled S-RaP. This process was born from the ne-
cessity to manage a series of projects that were emphasizing usability, as well as
requiring the maturation of requirements throughout the development process.

To support projects with these characteristics, a process that incorporated
User Centered Design (UCD) was fundamental for success. Unacceptable to our
customers was a heavyweight requirements engineering phase, or for the addition
of UCD practices to lengthen the time-to-market. In addition to requirements
maturation and UCD practices, we also needed to include standard Software
Engineering practices such as software architecture, design, and testing.

The rest of this paper discusses characteristics of the S-RaP process, architec-
tural and design decisions, and characteristics of people management that we, at
SCR, have utilized to combine multiple Software Engineering techniques. This

N. Guelfi (Ed.): RISE 2004, LNCS 3475, pp. 1-10, 2005.
(@© Springer-Verlag Berlin Heidelberg 2005

2 C. Nelson and J.S. Kim

combination has allowed us to include requirements maturation and UCD prac-
tices into our processes without lengthening time-to-market for the prototypes
and products we develop.

2 S-RaP Process

The S-RaP process was designed and developed to aid in the execution of projects
such as the one described in this paper. Key characteristics of these projects
include a very short timeframe often in the order of 3 to 8 weeks from initial
requirement capture to final delivery, vague and very high-level requirements
that need to be explored and matured, and a heavy emphasis on usability.

The key aspects of the S-RaP process that allow it to successfully govern
such projects, as illustrated in Figure 1, are that it is iterative, incorporates
User Centered Design techniques, uses a single artifact throughout the life of
the project that facilitates communication between the different process threads
[9,10], and executes three parallel threads of Requirements Engineering (RE),
User Interface Design (UID), and Software Build (SB) [11].

2.1 Parallel Execution of Process Threads

By executing the three parallel threads of Requirements Engineering, User In-
terface Design, and Software Build in our process, we are able to integrate these
three software engineering techniques in a unique way to help make our projects
successful. Our process enables us to capture, over time, accurate requirements
by allowing the requirements to mature throughout the development phase, as
well as incorporating UCD techniques into our software development process.
We have been able to do so without increasing our expected time-to-market.

The parallel execution of these activities is notably different from the serial
execution of these activities, specifically in the coordination of, and communica-
tion among, the three threads in the process. With parallel execution, there is a
need for a well-defined channel or mechanism of communication between all the
groups involved. This is the case because parallel execution introduces a high
risk of duplication of effort, or wasted effort from work done by one group in a
direction inconsistent with the rest of the groups.

Our process incorporates the use of a single software specification artifact
throughout the life of the project [9], as well as the functional prototype as a
boundary object to facilitate communication between the groups functioning in
parallel [10]. Also used to help mitigate these risks were short iterations, the
co-location of all our team members and teams, and aspects of the architecture
discussed later.

2.2 Short Iterations

All phases and threads in our process are executed in an iterative manner with
very short iterations that are approximately one week in length. This serves sev-
eral purposes. First, it ensures constant communication between all the groups

Integration of Software Engineering Techniques 3

Concurrent Rapid Prototyping Process for Workflow-driven Web Interfaces
s e e

& Ui Guidelines

sligss Seap
Deflnition

Fig. 1. Siemens Rapid Prototyping (S-RaP) Process Model

since inputs to one group for the start of an iteration are generated as outputs
from the iterations of the other groups [11]. This is important to keep all groups
in synch and to keep the team as a whole moving in a consistent direction as
directed by our customers. Second, it allows each group to mature their aspect of
the project based on feedback from the other groups. The RE team can mature
the requirements by presenting usability feedback and the latest version of the
application to the customer in design review meetings. The UID team can use
the most recent version of the application as well as the newest version of the
requirements to mature their UI definition and style guide, as well as continue
usability testing. The SB group can continue to evolve the application’s archi-
tecture, design, implementation, and tests based on matured requirements and
UI feedback. Third, it allows for continuous usability testing, acceptance testing,
unit testing, and market validation. This is important because of the dynamic
nature of the projects. It helps to catch and fix issues as early as possible and
acts as a safety net to protect against accidentally dropped tasks. This is very
important due to the increasing cost of change as a project progresses [2, 3, 4].

2.3 Co-located Multi-disciplinary Teams

In our project we tried to maintain the co-location of our team members, and our
teams. Our RE team was slightly distributed in the sense that two to three of the
members were from our customer’s organization which is located in a different

4 C. Nelson and J.S. Kim

state, and thus were not on site with the rest of the RE team. It is in this team
that we notice the most difficulty in maintaining constant and fluent communi-
cation. For this reason we assign a single point of contact from our organization
to our customer who is responsible for maintaining the flow of communication.

This seems to work well because it eases the burden of communication from
our customer’s perspective by eliminating redundant communication. The high
level of communication stemming from co-located teams simplified the integra-
tion of everything from the use of an agile process, to parallel threads of RE,
UID, and SB, to continuous testing.

In addition to facilitating communication, the co-location of multi-disciplinary
teams also made it easy to put together sub teams of individuals with comple-
mentary skill sets. This was especially beneficial when we had difficult problems
to solve that required expertise in several different areas such as Human Com-
puter Interaction (HCI) and Software Engineering.

In such situations we found or noticed two methods useful, one for predefined
complex tasks, and the second for emergent complex tasks. With the predefined
complex tasks with specific deadlines, defining formal multi-disciplinary teams
and assigning them to the task worked very well. In other cases, difficult problems
would just emerge from other tasks and would not have concrete completion
dates. In this case we often noticed impromptu hall meetings between members
of the different teams. This was made possible by the co-location of the teams.
In both cases, the co-location of teams really helped in integrating the UID team
and UCD practices with the rest of the core team and practices.

3 System Architecture

The given business context of the project imposed a few significant risks on us
that had to be dealt with on system architecture level. Multiple releases were
to be made in sequence, and each release was tied to a very short timeframe
with a strict deadline. Thus, we required parallel development of requirements
and no-overhead integration. The customer did not have specific and concrete
requirements from the beginning and usually asked us to demonstrate tangible
and executable artifacts to get their ideas particularized. Moreover, the require-
ments changed frequently throughout the development. Therefore, we desired the
ability to easily modify the existing implementation, at a given point in time,
without breaking down the other existing parts. Yet, the user interface should be
highly usable and consistent across different workflows and releases. Obviously
development-from-scratch would not work at all under such circumstances, and
a more structured and systemized design method was necessary. [6, 7, §]

At the beginning we started with a very simple architecture of a client-server
style and used MVC pattern [5] in the server. Throughout the development,
however, we found the need for a better architecture that would facilitate dealing
with the business constraints, and as a consequence, the architecture evolved. In
this section we will explain the key aspects of the current architecture and its
evolution throughout the development process.

Integration of Software Engineering Techniques 5

3.1 Three-Tiered Style

Our system architecture is a typical example of a three-tiered style with a client
tier, a server tier, and a database tier. The client tier is the simplest and thinnest
tier of the system, consisting of a single standard web browser that can send
HTTP requests and render returned HTML pages on the screen. The database
tier is responsible for storing operational data, as well as providing a mechanism
for read and write access for the data. The server tier sits in between the client
tier and database tier. It recognizes requests from the client tier, fetches data
from the database tier if needed, and provides results back to the client tier.
Each tier is allowed to interact only with the other adjacent tiers through the
specified communication protocol as illustrated in the Figure 2.

When the project was started there was no database tier, and the system
consisted of a very thin client tier and a monolithic server tier. Throughout the
development there were a lot of requirement changes, most of which are related
to the Ul requirements. We factored out the part of system that were not affected
by such Ul requirement changes and made it into a separated database tier.

This architectural evolution of logical separation facilitated application of sev-
eral SE techniques to the project. Incorporating requirement changes was made
easier because only the server tier was to be modified, leaving the database tier
untouched or just adding new data objects without modifying the data access
protocol. Macro-level testing was done more efficiently because each tier could be
tested separately and independently. Especially the testing of database tier was
conducted using the data access protocol without the server tier, and this elim-
inated a big source of defects, which reduced the time to locate and fix a defect
dramatically. Also parallel development of a new workflow was done more sys-
tematically because Ul parts and non-UI parts could be developed concurrently
and integrated using the data access protocol.

For the design of the data model, we employed the actual object model from
an existing Siemens product. Though it was an over-specified design, due to a
few aspects of the data model that were not used in our development, we found
this was a wise move because the overhead was from a product from which we

incomingl events

HTTP request

Data access request

Fig. 2. Three-tiered architecture with hierarchical event-based style

6 C. Nelson and J.S. Kim

could derive future requirements of our system. There actually were a few cases
where we received new requirements from our customer, and the data support
was already implemented in the database tier.

3.2 Event-Based Style

The internal architecture of the server tier is an instance of event-based style,
which was a very natural decision because its job is to process asynchronous
requests from the client tier. In other words, its execution is triggered only by
the requests from the client tier, which are to be interpreted into events and
processed in the server tier. Internally the server tier is structured as a collection
of small event handlers, and each is responsible for handling specific events in
specific contexts.

What distinguishes our architecture from general event-based style with mul-
tiple event handlers is that the relation between event handlers is hierarchical.
Some event handlers have more privileges and responsibilities, but also some
event handlers receive events directly from the client tier and selectively forward
events to the other event handlers in the lower level of the hierarchy. Of the
event handlers in the top level of the hierarchy, only one event handler is made
active at any given point in time. The active event handler always receives in-
coming events, and is responsible for activating its replacement event handler
when necessary.

When the project was started there was no hierarchy between event handlers.
This was because each event handler was responsible for an independent portion
of the requirements. This enabled easy allocation of requirements to developers.
Throughout the development we found that there was a lot of redundancy in the
event handlers that were implementing similar requirements. Such redundancy
not only wasted our development resources, but also caused confusion and con-
flicts. The continuously changing requirements made maintaining consistency
between redundant implementations a source of pain and defects. For the rapid
prototyping we needed to eliminate that redundancy, and as a result we factored
out common functionality from similar requirements into separate reusable event
handlers that could be used by the originating event handlers. As a result the
architecture was evolved accordingly to incorporate such structural changes in
the design level.

For this reuse of event handlers we designed a unified event forwarding mecha-
nism so that plugging in a new event does not cause any structural inconsistency
or side-effects. Then, the implementation of an event handler simply involved fill-
ing in a template that already had the event forwarding mechanism built-in with
the new functional behavior. Moreover, the internal details of an event handler
were completely independent of the hierarchy of event handlers because event
handlers have no way of telling where the events come from. The structure of
the hierarchy was only important in the integration of event handlers.

This architectural evolution gave us a new edge in business. As stated, elimi-
nation of redundancy reduced the time for delivery. This gain has accumulated as

