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Preface

RISE 2004 was an international forum for researchers and practitioners inter-
ested in integrated and practical software engineering approaches that are part
of a methodological framework and which apply to both new and evolving appli-
cations, technologies and systems. The ERCIM (European Research Consortium
for Informatics and Mathematics) RISE working group selected application areas
such as the Web, mobility, high availability approaches, embedded approaches
and user interfaces in specific industry sectors comprising finance, telecommu-
nications, transportation (avionics, the automotive industry) and e-government.
Considered research issues in these areas pertain to the following software engi-
neering domains:

software/system architectures

— reuse

— testing

model transformation/model-driven engineering
— requirements engineering

lightweight formal methods

— ASE tools

|

I

All papers submitted to this workshop were reviewed by at least two mem-
bers of the International Program Committee. Acceptance was based primarily
on originality and contribution. We selected for these proceedings 12 papers
amongst 28 submitted, and an invited paper.

The organization of such a workshop represents an important amount of
work. We would like to acknowledge all the Program Committee members, all
the additional referees, all the Organization Committee members, the University
of Luxembourg, Faculty of Science, Technology and Communication administra-
tive, scientific and technical staff, and the Henri Tudor Public Research Center.

RISE 2004 was mainly the supported by ERCIM, the European Research
Consortium for Informatics and Mathematics, the “Ministere de I’enseignement
supérieur et de la recherche,” and by the “Fonds National pour la Recherche au
Luxembourg.”

November 2004 Nicolas Guelfi
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Integration of Software Engineering Techniques
Through the Use of Architecture, Process, and
People Management: An Experience Report

Christopher Nelson! and Jung Soo Kim?

! Siemens Corporate Research, Princeton NJ 08540, USA
Christopher.Nelson@siemens.com
2 Carnegie Mellon University, Pittsburgh PA 15213, USA

jungsoo@cmu.edu

Abstract. This paper reports on the experiences of integrating sev-
eral Software Engineering techniques by the Rapid Prototyping group
of Siemens Corporate Research. This experience was gained during our
recent project that involved developing a web-based, workflow-driven in-
formation system. The techniques integrated for this project included ag-
ile and iterative processes, user centered design, requirements discovery
and maturation, and test-driven development. These techniques were in-
tegrated and supported by a proprietary process entitled “Siemens Rapid
Prototyping” (S-RaP), a software architecture, and project management
techniques. This paper will detail the specific characteristics of S-RaP,
the software architecture, and the project management techniques that
supported the integration of the above listed software engineering tech-
niques. We will also report on our experience with their effectiveness and
our thoughts on future enhancements in all three areas.

1 Introduction and Background

Siemens Corporate Research, Inc. (SCR) is the Research and Development or-
ganization of Siemens USA. Over the past several years, the Siemens Rapid
Prototyping group at SCR has been developing, formalizing, and maturing an
agile and iterative process entitled S-RaP. This process was born from the ne-
cessity to manage a series of projects that were emphasizing usability, as well as
requiring the maturation of requirements throughout the development process.

To support projects with these characteristics, a process that incorporated
User Centered Design (UCD) was fundamental for success. Unacceptable to our
customers was a heavyweight requirements engineering phase, or for the addition
of UCD practices to lengthen the time-to-market. In addition to requirements
maturation and UCD practices, we also needed to include standard Software
Engineering practices such as software architecture, design, and testing.

The rest of this paper discusses characteristics of the S-RaP process, architec-
tural and design decisions, and characteristics of people management that we, at
SCR, have utilized to combine multiple Software Engineering techniques. This

N. Guelfi (Ed.): RISE 2004, LNCS 3475, pp. 1-10, 2005.
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2 C. Nelson and J.S. Kim

combination has allowed us to include requirements maturation and UCD prac-
tices into our processes without lengthening time-to-market for the prototypes
and products we develop.

2 S-RaP Process

The S-RaP process was designed and developed to aid in the execution of projects
such as the one described in this paper. Key characteristics of these projects
include a very short timeframe often in the order of 3 to 8 weeks from initial
requirement capture to final delivery, vague and very high-level requirements
that need to be explored and matured, and a heavy emphasis on usability.

The key aspects of the S-RaP process that allow it to successfully govern
such projects, as illustrated in Figure 1, are that it is iterative, incorporates
User Centered Design techniques, uses a single artifact throughout the life of
the project that facilitates communication between the different process threads
[9,10], and executes three parallel threads of Requirements Engineering (RE),
User Interface Design (UID), and Software Build (SB) [11].

2.1 Parallel Execution of Process Threads

By executing the three parallel threads of Requirements Engineering, User In-
terface Design, and Software Build in our process, we are able to integrate these
three software engineering techniques in a unique way to help make our projects
successful. Our process enables us to capture, over time, accurate requirements
by allowing the requirements to mature throughout the development phase, as
well as incorporating UCD techniques into our software development process.
We have been able to do so without increasing our expected time-to-market.

The parallel execution of these activities is notably different from the serial
execution of these activities, specifically in the coordination of, and communica-
tion among, the three threads in the process. With parallel execution, there is a
need for a well-defined channel or mechanism of communication between all the
groups involved. This is the case because parallel execution introduces a high
risk of duplication of effort, or wasted effort from work done by one group in a
direction inconsistent with the rest of the groups.

Our process incorporates the use of a single software specification artifact
throughout the life of the project [9], as well as the functional prototype as a
boundary object to facilitate communication between the groups functioning in
parallel [10]. Also used to help mitigate these risks were short iterations, the
co-location of all our team members and teams, and aspects of the architecture
discussed later.

2.2 Short Iterations

All phases and threads in our process are executed in an iterative manner with
very short iterations that are approximately one week in length. This serves sev-
eral purposes. First, it ensures constant communication between all the groups
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Fig. 1. Siemens Rapid Prototyping (S-RaP) Process Model

since inputs to one group for the start of an iteration are generated as outputs
from the iterations of the other groups [11]. This is important to keep all groups
in synch and to keep the team as a whole moving in a consistent direction as
directed by our customers. Second, it allows each group to mature their aspect of
the project based on feedback from the other groups. The RE team can mature
the requirements by presenting usability feedback and the latest version of the
application to the customer in design review meetings. The UID team can use
the most recent version of the application as well as the newest version of the
requirements to mature their UI definition and style guide, as well as continue
usability testing. The SB group can continue to evolve the application’s archi-
tecture, design, implementation, and tests based on matured requirements and
UI feedback. Third, it allows for continuous usability testing, acceptance testing,
unit testing, and market validation. This is important because of the dynamic
nature of the projects. It helps to catch and fix issues as early as possible and
acts as a safety net to protect against accidentally dropped tasks. This is very
important due to the increasing cost of change as a project progresses [2, 3, 4].

2.3 Co-located Multi-disciplinary Teams

In our project we tried to maintain the co-location of our team members, and our
teams. Our RE team was slightly distributed in the sense that two to three of the
members were from our customer’s organization which is located in a different
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state, and thus were not on site with the rest of the RE team. It is in this team
that we notice the most difficulty in maintaining constant and fluent communi-
cation. For this reason we assign a single point of contact from our organization
to our customer who is responsible for maintaining the flow of communication.

This seems to work well because it eases the burden of communication from
our customer’s perspective by eliminating redundant communication. The high
level of communication stemming from co-located teams simplified the integra-
tion of everything from the use of an agile process, to parallel threads of RE,
UID, and SB, to continuous testing.

In addition to facilitating communication, the co-location of multi-disciplinary
teams also made it easy to put together sub teams of individuals with comple-
mentary skill sets. This was especially beneficial when we had difficult problems
to solve that required expertise in several different areas such as Human Com-
puter Interaction (HCI) and Software Engineering.

In such situations we found or noticed two methods useful, one for predefined
complex tasks, and the second for emergent complex tasks. With the predefined
complex tasks with specific deadlines, defining formal multi-disciplinary teams
and assigning them to the task worked very well. In other cases, difficult problems
would just emerge from other tasks and would not have concrete completion
dates. In this case we often noticed impromptu hall meetings between members
of the different teams. This was made possible by the co-location of the teams.
In both cases, the co-location of teams really helped in integrating the UID team
and UCD practices with the rest of the core team and practices.

3 System Architecture

The given business context of the project imposed a few significant risks on us
that had to be dealt with on system architecture level. Multiple releases were
to be made in sequence, and each release was tied to a very short timeframe
with a strict deadline. Thus, we required parallel development of requirements
and no-overhead integration. The customer did not have specific and concrete
requirements from the beginning and usually asked us to demonstrate tangible
and executable artifacts to get their ideas particularized. Moreover, the require-
ments changed frequently throughout the development. Therefore, we desired the
ability to easily modify the existing implementation, at a given point in time,
without breaking down the other existing parts. Yet, the user interface should be
highly usable and consistent across different workflows and releases. Obviously
development-from-scratch would not work at all under such circumstances, and
a more structured and systemized design method was necessary. [6, 7, §]

At the beginning we started with a very simple architecture of a client-server
style and used MVC pattern [5] in the server. Throughout the development,
however, we found the need for a better architecture that would facilitate dealing
with the business constraints, and as a consequence, the architecture evolved. In
this section we will explain the key aspects of the current architecture and its
evolution throughout the development process.
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3.1 Three-Tiered Style

Our system architecture is a typical example of a three-tiered style with a client
tier, a server tier, and a database tier. The client tier is the simplest and thinnest
tier of the system, consisting of a single standard web browser that can send
HTTP requests and render returned HTML pages on the screen. The database
tier is responsible for storing operational data, as well as providing a mechanism
for read and write access for the data. The server tier sits in between the client
tier and database tier. It recognizes requests from the client tier, fetches data
from the database tier if needed, and provides results back to the client tier.
Each tier is allowed to interact only with the other adjacent tiers through the
specified communication protocol as illustrated in the Figure 2.

When the project was started there was no database tier, and the system
consisted of a very thin client tier and a monolithic server tier. Throughout the
development there were a lot of requirement changes, most of which are related
to the Ul requirements. We factored out the part of system that were not affected
by such Ul requirement changes and made it into a separated database tier.

This architectural evolution of logical separation facilitated application of sev-
eral SE techniques to the project. Incorporating requirement changes was made
easier because only the server tier was to be modified, leaving the database tier
untouched or just adding new data objects without modifying the data access
protocol. Macro-level testing was done more efficiently because each tier could be
tested separately and independently. Especially the testing of database tier was
conducted using the data access protocol without the server tier, and this elim-
inated a big source of defects, which reduced the time to locate and fix a defect
dramatically. Also parallel development of a new workflow was done more sys-
tematically because Ul parts and non-UI parts could be developed concurrently
and integrated using the data access protocol.

For the design of the data model, we employed the actual object model from
an existing Siemens product. Though it was an over-specified design, due to a
few aspects of the data model that were not used in our development, we found
this was a wise move because the overhead was from a product from which we

incomingl events

HTTP request

Data access request

Fig. 2. Three-tiered architecture with hierarchical event-based style
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could derive future requirements of our system. There actually were a few cases
where we received new requirements from our customer, and the data support
was already implemented in the database tier.

3.2 Event-Based Style

The internal architecture of the server tier is an instance of event-based style,
which was a very natural decision because its job is to process asynchronous
requests from the client tier. In other words, its execution is triggered only by
the requests from the client tier, which are to be interpreted into events and
processed in the server tier. Internally the server tier is structured as a collection
of small event handlers, and each is responsible for handling specific events in
specific contexts.

What distinguishes our architecture from general event-based style with mul-
tiple event handlers is that the relation between event handlers is hierarchical.
Some event handlers have more privileges and responsibilities, but also some
event handlers receive events directly from the client tier and selectively forward
events to the other event handlers in the lower level of the hierarchy. Of the
event handlers in the top level of the hierarchy, only one event handler is made
active at any given point in time. The active event handler always receives in-
coming events, and is responsible for activating its replacement event handler
when necessary.

When the project was started there was no hierarchy between event handlers.
This was because each event handler was responsible for an independent portion
of the requirements. This enabled easy allocation of requirements to developers.
Throughout the development we found that there was a lot of redundancy in the
event handlers that were implementing similar requirements. Such redundancy
not only wasted our development resources, but also caused confusion and con-
flicts. The continuously changing requirements made maintaining consistency
between redundant implementations a source of pain and defects. For the rapid
prototyping we needed to eliminate that redundancy, and as a result we factored
out common functionality from similar requirements into separate reusable event
handlers that could be used by the originating event handlers. As a result the
architecture was evolved accordingly to incorporate such structural changes in
the design level.

For this reuse of event handlers we designed a unified event forwarding mecha-
nism so that plugging in a new event does not cause any structural inconsistency
or side-effects. Then, the implementation of an event handler simply involved fill-
ing in a template that already had the event forwarding mechanism built-in with
the new functional behavior. Moreover, the internal details of an event handler
were completely independent of the hierarchy of event handlers because event
handlers have no way of telling where the events come from. The structure of
the hierarchy was only important in the integration of event handlers.

This architectural evolution gave us a new edge in business. As stated, elimi-
nation of redundancy reduced the time for delivery. This gain has accumulated as



