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INTRODUCTION

These notes contain a largely expository introduction to the theory of
finite rank torsion free abelian groups developed since the publication of
"Infinite Abelian Groups," Vol. II, L. Fuchs, in 1973. As reflected in
Chapter XIII of that text, the subject consists of a satisfactory theory for
direct sums of rank 1 groups due to R. Baer in 1937; a uniqueness of quasi-
direct sum decompositions up to quasi-isomorphism due to B. Jénsson in 1959;

a realization of subrings of finite dimensional Q-algebras as endomorphism
rings due to A.L.S, Corner in 1963; a variety of pathological direct sum de-
compositions; and some apparently miscellaneous results largely relegated to
the exercises.

Substantial progress has been made in the subject since 1973. Most
notable are the stable range conditions proved by R.B. Warfield, near isomorphism
as introduced by E.L. Lady, and the application of properties of subrings of
finite dimensional Q-algebras to finite rank torsion free abelian groups via
a Morita-like duality developed by E.L. Lady and the author. Consequently,
some older results of R. Beaumont, R. Pierce, and J. Reid (c. 1960) involving
subrings of finite dimensional Q-algebras gain new importance. Thus a sys-
tematic introduction to the theory of finite rank torsion free abelian groups
and subrings of finite dimensional O-algebras seems timely.

The theory of direct sums of rank-1 torsion free abelian groups has been
combined with the theory of totally projective groups to characterize a class of
mixed abelian groups (Warfield [7 ] and Hunter-Richman [1]). The category Walk, as
discussed in Warfield [ 7], has- been used to invesfigate mixed abelian groups.

A secondary goal of these notes is to survey the known results for finite rank
torsion free abelian groups with an eye towards eventual application to mixed

groups of finite torsion free rank via the category Walk. Some progress
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along these lines is reported by Warfield [7 ]. Other potential applications
include the study of mixed abelian groups of finite torsion free rank via the
category Warf, as discussed in Arnold - Hunter - Richman [1], and valuated finite
direct sums of torsion free cyclic groups, as discussed in a series of papers by
E. Walker, F. Richman, R. Hunter, and the author. In particular, Rotman [1] shows
that finite rank torsion free groups are characterized in terms of valuated finite
direct sums of torsion free cyclic groups.

These notes were developed for a graduate course taught by the author as
part of the Year of Algebra at the University of Connecticut during academic
year 1978-1979. The students were assumed to have had a graduate course in
algebra (fundamental concepts and classical theory of artinian rings are given
in Section 0 and the exercises) but little or no exposure to finite rank
torsion free abelian groups or subrings of finite dimensional Q-algebras.

Except for portions of Sections 0, 1, and 2 there is little overlap with
the results proved in Fuchs [ 7], Vol. II. There are exercises at the end of
each section, some of which are contributed by others as noted, devoted to an
extension and elaboration of the results presented or of the requisite back-
ground material. No attempt has been made to state or prove results in maximum
generality, but in most cases references are given for more general theorems.

Sections 1-4 include a classical introduction to the subject of finite
rank torsion free abelian groups as well as some generalizations of type and
applications (Richman [ 1] and Warfield [1]) in Section 1; properties of
rank-2 groups in terms of their typeset (Beaumont-Pierce [2]) in Section 3;
and characterizations of pure subgroups of finite rank completely decomposable
groups (Butler [ 1]) in Section 4.

Generalizations of such topics as finite rank completely decomposable
groups and Baer's Lemma are developed in Sections 5-6 as derived by Arnold-

Lady [ 1] and Arnold-Hunter-Richman [ 1].



Section 7 includes a proof of the Krull-Schmidt Theorem in additive
categories with J6nsson's quasi-decomposition theorem and some essential
properties of near isomorphism, due to Lady [ 1], as corollaries,

Stable range conditions are considered in Section 8 (Warfield [5]) as
well as cancellation and substitution properties (Warfield [ 5], Fuchs-
Loonstra [ 2], and Arnold-Lady [1]), exchange properties (Warfield [5],

Monk [1 ], Crawley-Jénsson [1]) and self-cancellation (Arnold [ 7]).

Sections 9-11 include an extensive introduction to the subject of
subrings of finite dimensional Q-algebras, including a proof of the Jordan-
Zassenhaus Theorem for Z-orders, derived in part from Reiner [1 ] and
Swan-Evans [ 1]. The fact that the additive groups of such rings are finite
rank torsion free is exploited to avoid completions in the derivation of the
theory. Moreover, localization at primes of Z is consistently used instead of
localization at prime ideals of more general domains.

The relationship between near isomorphism and genus class of lattices
over orders is examined in Section 12. Classical properties of genus classes
of lattices over orders are derived and used to develop properties of near
isomorphism of finite rank torsion free abelian groups.

The structure of Grothendieck groups of finite rank torsion free abelian
groups is considered in Section 13, as developed by Lady [ 2] and Rotman [2].

Section 14 includes characterizations of additive groups of subrings of
finite dimensional Q-algebras, due to Beaumont-Pierce [1] and [ 3], including
a proof of the Wedderburn principal theorem and a simplified proof of the analog
for subrings of finite dimensional Q-algebras.

Several classes of groups are given in Section 15, providing an appropriate
setting for the development of Murley groups (Murley [1]) and strongly homo-
geneous groups (Arnold [6]).

The author expresses his appreciation to the University of Connecticut
Department of Mathematics for the invitation to participate in the Year of

Algebra. Special thanks are due to R. Pierce, J. Reid, C. Vinsonhaler, W. Wickless,
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R. Weigand, S. Weigand, T. Faticoni, and J. Chung for their encouragement,
assistance, and extraordinary patience with the development of these notes. The
author is also indebted to E.L. Lady for the opportunity to read an unpublished

set of lecture notes on the subject, R. B, Warfield, Jr. for numerous dis-

cussions regarding the contents of these notes, and D. Boyer, A. Mader, M. Maher,

K. Rangaswamy, T. Giovannitti, J. Moore, U. Albrecht and J. Stelzer for their
helpful comments and suggestions. A special note of thanks is due to Lorna Schriver
for her accurate and efficient typing of these notes as well as her remarkable
ability to interpret the author's frequently illegible handwriting. Finally, any

errors that remain are directly attributable to the author.
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§0. Notation and Preliminaries

It is assumed that rings have identities and that ring homomorphisms

preserve identities. In particular, if R 1is a subring of S then

Suppose that R is a ring, A is a right R-module and B is a
left R-module. Then A®RB is defined to be F/N where F 1is the free
abelian group with elements of AxB as a basis and N 1is the subgroup
of F generated by f{(a; *+a,, b) - (2, b) - (a,, b), (a, rb) - (ar, b),
e A

2 2

and T € R}. Write a ® b for (a, b) + N so that if x ¢ A®RB

(a, b, + b)) - (a, b)) - (a, bz)]a, aj, a, ¢ A; b, by, b

then x = L a.®b. for some a. ¢ A, b. ¢ B. Then y : AxB - A® B,
i1 1 1 R

defined by Y(a,b) = a®b is an R bi-linear map. Furthermore, if G 1is an
abelian group and g : AXB + G 1is an R bi-linear map then there is a unique
homomorphism { : A@RB + G with ¢y = g.

With the above properties, one can prove that

(1) A@R (oBi) ~ @ (A@RBiL

(ii1) If f € HomR(A, A') and g € HomR(B, B') then
feg: A@RB -+ A'@RB', induced by (f ® g)(a ® b) = f(a) ® g(b), is a
homomorphism of abelian groups;

s . * .
(iii) A@R and ®RB are functors, e.g., if f ¢ HomR(Bl, B2)
and g € HomR(Bz, BS) then (1A®g)(1A®f) = 1A®gf $ A@RB1 - A@RB3 and
lel : A@RA > A®RA is the identity homomorphism;

(iv) If 0 ~+ B, - B, > B3 + 0 1is an exact sequence of left R-modules

1 2
then A@RB1 ¥ AeRB2 - A@RB3 + 0 1is an exact sequence of abelian groups
and if 0 - A1 & A2 + A3 -+ 0 1is an exact sequence of right R-module
then Al®RB - A2®RB * A3®RB + 0 1is an exact sequence of abelian groups;
and (v) Torsion free abelian groups are flat, i.e., if
0~ B1 > B2 # B3 + 0 1is an exact sequence of abelian groups and if A is a
torsion free abelian group then 0 - A®Z-Bl * A®ZB° > A@zB3 + 0 1is exact,

where Z 1is the ring of integers.



Let Q be the field of rational numbers and let A be an abelian group. Then
Q®ZA is a Q-vector space. If A 1is a torsion group then Q®ZA = 0.

If A is a torsion free group define rank(A) = dimQ(Q®ZA). Note that
rank (A) = cardinality of a maximal Z-independent subset of A since if {ai} is a
maximal Z-independent subset of A then F = GZai is a subgroup of A with A/F
torsion. Thus, Q®ZF = Q®ZA is a Q-vector space with dimension = cardinality of
{ai}. If rank(A) =n and F 1is a free subgroup of A of rank n then there is
an exact sequence 0 > F ~ Q®ZA > T >0 where T 1is the direct sum of n copies
of Q/Z since 0+ Z > Q> Q/Z > 0 exact implies that 0 ~ Z®ZF > Q®ZF *

(Q/Z)®ZF > 0 is exact. If 0~ B1 * B2 -+ B3 + 0 1is an exact sequence of finite
rank torsion free abelian groups then rank(Bl) + rank(Bs) = rank(Bz) as a con-
sequence of (v).

An abelian group A is torsion free iff A 1is isomorphic to a subgroup of
Q®ZA via a > 1®a since Z < Q implies that A = Z®ZA is isomorphic to a sub-
group of Q®ZA whenever A 1is torsion free by (v). Thus, we may assume that
A E.Q®ZA, (Q®ZA)/A is torsion, and every element of Q®ZA is of the form gqa for
q€ Z, a€ A. Consequently, if B 1is a subgroup of A with A/B torsion then
A/B 1is isomorphic to a subgroup of the direct sum of rank(A) copies of Q/Z.

If A and B are torsion free of finite rank then A®ZB is torsion free with
rank(A®ZB) = rank (A) rank(B) since a monomorphism A - Q®ZA induces a monomorphism
A®ZB -+ (Q®ZA)®ZB and (Q®ZA)®ZB % (Q®ZA)®Z (Q®ZB) is a vector space of dimension =
dim(Q®ZA) dim(QﬁzB).

If A and B are torsion free of finite rank and f € HomZ(A,B) then f
extends uniquely to f € HomQ(Q®ZA, Q®ZB). Thus HomZ(A,B) is a finite rank
torsion free group with rank < rank(A) rank(B) = dimQ(HomQ(Q®ZA, Q®ZB)).

A subgroup B of a torsion free group A 1is pure in A if BmmA = nB for
all n e Z. Note that B is pure in A iff A/B 1is torsion free. If S is a
subset of A let <S> be the subgroup of A generated by S and <S>, =

{a € Alna € <S> for some 0 # n € Z}, the pure subgroup of A generated by S,

noting that, in fact, <S>, 1is a pure subgroup of A and the smallest pure sub-
group of A containing S. If S = {x} then <S> is denoted by Zx and <S>,

by <x>,.



If B is a pure subgroup of the torsion free group A and if C is an
abelian group then 0 ~ CSZB 2% C®ZA is exact. Moreover, if Bi is a pure
subgroup of the torsion free group Ai for i =1, 2 then Bl®ZB2 is isomorphic

to a pure subgroup of A ®ZA2’ the isomorphism being given by b1®b2 > b1®b2.

1
If p is a prime of Z and A 1is an abelian group then A/pA = (Z/pZ)@ZA.

Define p-rank(A) = dim Z(A/pA). If 0>A~>B~>C~+0 1is an exact sequence

Z/p
of torsion free abelian groups, each having finite p-rank, then p-rank(A) +

p-rank(C) = p-rank(B) since 0 =+ A/pA > B/pB > C/pC » 0 1is exact.

Theorem 0.1. If A is a torsion free abelian group of finite rank and if
0#ne Z then A/nA 1is finite. Moreover, p-rank(A) < rank(A) for each

prime p of Z.

e e
Proof. If n = pl1 L phh is a product of powers of distinct primes of Z then
1 “h 1 “h
A/nA = A/p1 Ae® ... @ A/ph A since Z/nZ = Z/p1 Z@ ... 9 Z/ph Z and

e.
A/nA = (Z/nZ)GZA. If A/piA is finite for each Py then A/pilA is finite

by induction on e -

It is now sufficient to assume that n = p 1is a prime and to prove that

p-rank(A) = dimz/pZ(A/pA) < rank(A). Let a + pA, ... , a + PA be independent
in A/pA. Then {al, ik B an} is a Z-independent subset of A for if
m a; P ma = 0 with m, € Z and g.c.d. (ml, Ceey mn) = 1 then

m.a, € pA for each i, whence mi/p € Z for each i, a contradiction. ///
If T is a torsion abelian group and p 1is a prime then define

Tlp] = {x e T|px = 0}, a Z/pZ-vector space.

Theorem 0.2. Suppose that 0 > A > B> T > 0 1is an exact sequence of abelian
groups where A and B are finite rank torsion free and T 1is torsion. Then
dim(T[p]) + p-rank(B) = p-rank(A) + p-rank(T). In particular, if T 1is finite
then p-rank(A) = p-rank(B).

Proof. There is an exact sequence 0 -+ K = A/pA - B/pB - T/pT -+ 0 where

K= (A n pB)/pA. Now T[p] = C/A, where C = {x e B|px ¢ A}. Define



6 : C/A>K by 6 (c+ A) =pc + pA, a well-defined isomorphism. Thus
dim(K) + dim(B/pB) = dim(A/pA) + dim(T/pT) as desired. Finally, if T is
finite then dim(T[p]) = dim(T/pT) so that p-rank(A) = p-rank(B). ///

A torsion free group A is divisible if A 1is a Q-vector space, i.e.,
nA = A for all 0#ne Z. If A 1is a torsion free group then there is a
unique maximal divisible subgroup d(A) of A with d(A/d(A)) = 0. Moreover,
A =d(A) B for some B and B is reduced (i.e., d(B) = 0). If A is
reduced then the endomorphism ring of A 1is reduced as a group.

Let p be a prime and define Zp = {m/n € ng.c.d.(n,p) = 1}, the

localization of Z at p. If A 1is a group then let Ap = Zp@ZA, a Zp—module.

If A 1is finite rank torsion free then p—rank(Ap) = p-rank(A) since

A/pA = A_/pA_. Moreover, A c A < Q®,A for each prime and A =n_A_.
/P ol PA; £H; 18y P P p'p
If 0>A~>B~>C~>0 is an exact sequence of abelian groups then

0~ Ap - Bp - Cp + 0 1is an exact sequence of Zp—modules. Consequently, if B

is torsion free and A 1is pure in B then Bp is torsion free and Ap is pure

in B_.
P

EXERCISES

0.1: Prove any statement in Section 0 that you have not previously proved.
(Properties of tensor products are standard, e.g., Hungerford [1], and the re-

maining unproved statements may be found in Fuchs [7].)



§1. Types and rank - 1 groups

A height sequence, o = (ap), is a sequence of non-negative integers,
together with «, indexed by the elements of I, the set of primes of Z.

Given a torsion free group A, an element a of A and a prime p of

Z, define the p-height of a in A, hg(a), to be n if there is a non-

negative integer n with a ¢ pnA\pn+1A and « if no such n exists. The

height sequence of a in A, hA(a) = (h:(a)), is a height sequence.

If a = (up) is a height sequence and m 1is a positive integer define
mo = (Bp), where Bp = hﬁ(m) + ap for each p ¢ II (agreeing that
o + k = o for each non-negative k). Two height sequences a = (ap) and
B = (Bp) are equivalent if there are positive integers m and n with
ma = nB, i.e., o = B for all but a finite number of p and a_ =8

P P P P
if either a_ = « or Bp = ., This relation is easily seen to be an
equivalence relation. An equivalence class T of height sequences is called

a type, written T = [a] for some height sequence a.

Define the type of a in A, typeA(a), to be [hA(a)]. The group A

is homogeneous if any two non-zero elements of A have the same type, the
common value being denoted by type(A).

A rank-1 torsion free group A 1is homogeneous since if a and b are
non-zero elements of A then ma = nb for some non-zero integers m and n.
Thus, IthA(a) = hA(ma) = hA(nb) = fnlhA(b) so that type, (a) = [hA(a)] =
()] = type, (b).

For example, type(Z) = [(ap)], where ap = 0 for each p and
type(Q) = [(BP)], where Bp = o for each p. The set of types is a com-

plete set of invariants for torsion free groups of rank 1:

Theorem 1.1.

(a) Suppose A and B are rank-1 torsion free groups. Then A and B
are isomorphic iff type(A) = type(B).

(b) If T 1is a type then there is a torsion free group A of rank 1

with type(A) = T.



Proof.

(a) (») 1is a consequence of the observation that if f : A+ B is
an isomorphism then hA(a) = hB(f(a)) for each a ¢ A.

(+*) If 0z2zaecA and 0= b e B then [hA(a)] = [hB(b)]. Choose

L . . A A B B

positive integers m and n with h (ma) = mh (a) = nh (b) = h (nb).
The correspondence ma > nb 1ifts to an isomorphism f : A -+ B since
for integers k and & the equation kx = fma has a solution x in A
iff ky = nb has a solution y in B. Moreover, the solution of either
equation is unique since A and B are torsion free.

(b) Let T = [(ap)] and define A to be the subgroup of Q
generated by {1/p'|p ¢ 1,0 < i = up}. Then type(a) = T, since
A
h'(1) = (@). ///

p
The set of height sequences has a partial ordering given by

a = (o <B=(B if a < B for each e m. The operations
(p) (p) b B p P

sup{a, B}

structure on the set of height sequences, The set of height sequences is

(max {a_, B }) and inf {o, B} = (min {a_, B }) induce a lattice
P P - p P

closed under the operation o + f = (ap +Bp).
If a, b e A, a torsion free group, then hA(a+b) > inf {hA(a), hA(b)}.

: B A . A
Furthermore, if A = A @A, and a,6 ¢ A; then h (al+a2) = inf fh (@),
A
h(a,)}.

The partial order on the set of height sequences induces a partial order

on the set of types where 1T < o if there is o e T and B € 0 with

o < B. To show, for example, that this relation is anti-symmetric assume that

A

T <0 and o0 < 1. There are o, a'e T and B, B'eoc with a < R and

B' < a'. Choose positive integers m and n with mB = nB'. Then

mo < mB np' < na' so that kmf = na' for some positive integer k. Thus
o=1[R] = [a'] = T. For types T = [a] and o = [B], define

T+ 0 = [a+B], a well-defined operation.

The partial order on the set of types corresponds to the existence of

non-zero homomorphisms between rank-1 groups:



Proposition 1.2. Let A and B be rank-1 torsion free groups. Then the
following are equivalent:
(a) Hom(A,B) = 0;
(b) There is a monomorphism A -+ B;
(c) type(A) < type(B).
Proof. (a) » (b) Since A and B are rank-1 torsion free every non-zero
homomorphism from A to B is a monomorphism.
(b) > (¢) If f : A~> B is a monomorphism and 0 # a ¢ A then
0 = f(a) e B with hA(a) < hB(f(a)).
(c) > (a) Choose 0 %acA and 0#be B with h'(a) < h>(b).

Then a + b extends to a non-zero homomorphism A - B. ///

Corollary 1.3. Let A and B be torsion free groups of rank 1. Then the
following are equivalent:

(a) A and B are isomorphic;

(b) Hom(A,B) = 0 and Hom(B,A) = 0;

(c) There is a monomorphism f : A > B such that B/f(A) is finite.
Proof. (a) » (c) 1is clear.

(¢) = (b) Suppose that nB < f(A) < B for some 0 # n e Z. Then

0= f—ln : B> A is a well defined homomorphism.

(b) -+ (a) As a consequence of Corollary 1.2, type(A) = type(B)

so that Theorem 1.1 applies. ///

The following theoremgives a description of quotients of rank-1 torsion free
groups, as well as an alternative definition for the height of an element.
For a prime p and a non-negative integer i, Ilet Z(pi) denote the cyclic
group of order pi. Define Z(pm) to be the p-torsion subgroup of Q/Z. If
C 1is a subgroup of Z(pw) then C = Z(pi) for some 0 < i < « and

Z(p/C=2(p), or C=121(p).



Theorem 1.4: Assume that 0 # b ¢ B, a subgroup of a rank-1 torsion free
i
group A. Then A/B = epZ(p Py where hA(b) = (Zp), hB(b) & (kp), and

i =4 -k (agreeing that o« - ©® = (0 and ® - k = ® if k < =),
p P p g g )

Proof: In view of the exact sequence 0 - B/Zb - A/Zb - A/B » 0 it is

sufficient to prove that A/Zb = ep Z(plp). As noted in Section 0, A/Zb is
isomorphic to a subgroup of Q/Z so that A/Zb = @pcp with Cp <€ Z(px).
But Cp = Z(plp) since plx = nb with g.c.d. (p,n) = 1 has a soluticn

A

5 ; A
A ff < h (b) =h =L .
X € i i< p( ) p(nb) P 11/

The types of Hom(A,B) and A®ZB, where A and B are rank-1
groups, may be computed from the types of A and B. A type T is non-nil

if there is a = (ap) € T with ap =0 or « for each p.

Theorem 1.5: Suppose that A and B are torsion free groups of rank-1.
(a) If type(A) < type(B) then Hom(A,B) 1is a rank-1 torsion free
group with type = [(mp)], where 0 # a e A, 0=Db e B,
B

A . .
h (a) = (k <h (b)) = (), m = if & =o0o and m =2 -k if
(a) = ( p) () = ( p) s o n Ly - .

L < o
P
(b) If type(A) = [(kp)] then type(Hom(A,A)) = [(mp)] is non-nil,
where m_= oo if k_ =e and m_ =0 if k < =,
P p p P

(c) A®ZB is a torsion free group of rank 1 with type(AezB) =

type(A) + type(B).

(a) As noted in Section 0, the group
Hom(A,B) is torsion free of rank 1. Define ¢ : Hom(A,B) » B by ¢(f) = f(a).
Then Image (¢) < C = {x ¢ B[h®(x) > h™(a)} since nB(f(a)) = W (a) for each
f € Hom(A,B). On the other hand, G c Image(¢) for if x ¢ B and
hB(x) > hA(a) then there is f : A > B with f(a) = x. Hence

type(Hom(A,B)) = type(G) = [(mp)] as desired.



(b) 1is a consequence of (a).

(c) There is an embedding A®ZB - Q@ZQ ~ Q so that A®ZB is torsion
free of rank 1. If 0 #ae A and 0 = b e B then hAQB(a®b) > hA(a) + hB(b)
since a = ma' and b = nb' imply that a®b = mn(a'®b'). Therefore,
type(A@ZB) > type(A) + type(B).

To show that type(A@ZB) < type(A) + type(B), it suffices to prove
that if pix = a®b, with hg(a) = hg(b) = 0, has a solution x in A@ZB
then i = 0. By Exercise 1.4, x = a'®b' for some a' ¢ A, b' e B.

Thus pi(a'eb') = a®b. Choose non-zero integers k and £ with ka' = fa
and p prime to k. Then k(a®b) = (pika')®b' :(piﬂa)®b' so that
a®(kb) = a®(pi£b'). Thus kb = pilb', hence i = 0, since

g.c.d. (p,k) =1 and hi(b) =0. /]

Corollary 1.6. Assume that A 1is a torsion free group of rank-1. The
following are equivalent:

(a) A has non-nil type;

(b) type(A) + type(A) = type(A);

(c) A = Hom(A,A);

(d) A 1is isomorphic to the additive group of a subring of Q;

(e) A®ZA =~ A;

(f) If 0=#ae A then A/Za =T ® D, where T 1is a finite torsion
group and D = epESZ(pw) for some subset S of II.

Proof: Exercise 1.9. ///

The preceding results, due essentially to Baer [ 2], demonstrate that
the set of types is a useful set of invariants for torsion-free groups of
rank 1. In general, however, the type of a group provides little informa-
tion about the structure of the group.

The remainder of this section is devoted to several generalizations of

the notion of type, due to Warfield [1 ] and Richman [1].



