. IBM
Microcomputer

in10 _
Programming
Lessons

Dl Julio Sanchez / Maria P. Canton

PRENTICE HALL PROGRAMMING SKILLS SERIES



IBM"~ Microcomputer C
in 10 Programming Lessons

Julio Sanchez
Northern Montana College

Maria P. Canton

Skipanon Software Co.

PRENTICE HALL, Englewood Cliffs, New Jersey 07632



Library of Congress Cataloging-in-Pubiication Data

Sanchez, Julio

IBM microcomputer C in 10 programming lessons / Julio Sanchez,

Maria P. Canton.
p. cm.
Includes bibliographical references (p.
ISBN 0-~13-726423~2
1. IBM Personal Computer--Prograaming.

0A76.8.12584524 1992

005.265--dc20
Acquisitions editor: Marcia Horton
Production editor: Bayani Mendoza de Leon
Cover designer: Wanda Lubelska
Copy editor: Brenda Melissaratos
Prepress buyer: Linda Behrens
Manufacturing buyer: Dave Dickey
Editorial assistant: Dolores Mars

© 1992 by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

2. C (Computer program
language) I. Canton, Maria P, II. Title.

92-19617
CIP

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the
development, research, and testing of the theories and programs to determine their effectiveness. The author and
publisher make no warranty of any kind, expressed or implied. with regard to these programs or the documentation
contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages
in connection with, or arising out of, the furnishing, performance, or use of these programs.

All rights reserved. No part of this book may be
reproduced, in any form or by any means,
without permission in writing from the publisher.

Printed in the United States of America

09 8 7 6 5 4 3 21

ISBN 0-13-72k423-c

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Svdney
Prentice-Hall Canada Inc.. Toronto

Prentice-Hall Hispanoamericana. S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokvo

Simon & Schuster Asia Pte. Ltd., Singapore

Editoria Prentice-Hall do Brasil, Ltda., Rio de Janeiro

TRADEMARK INFORMATION

AT and XT are trademarks of International
Business Machines Corporation.

BASIC is a registered trademark of the Trustees of
Dartmouth College.

CP/M is a registered trademark of Digital Research
Inc.

IBM, IBM PC/XT/AT and PC-DOS are registered
trademarks of International Business Machines
Corporation.

Intel is a registered trademark of Intel Corporation.

MS-DOS is a trademark of Microsoft Corporation.

Microsoft is a registered trademark of Microsoft
Corporation.

UNIX is a registered trademark of AT&T
(Bell Laboratories).



Preface

Twelve or fifteen years ago computer languages, at the college level, were taught almost
exclusively to students of computer science and electrical or electronic engineering. As
computing machines became an established fact of our culture, as well as a major tool
in business and technology, these programming courses started appearing in non-com-
puter science curricula; business programs began requiring Cobol and engineering
schools ALGOL or Pascal. At present, many college programs in both science and
humanities require theoretical courses in elementary computer science and skill courses
in programming languages. Moreover, computer courses are rapidly migrating into the
general education component of many curricula, to join, justifiably or not, the traditional
freshman courses in English, speech, and mathematics.

The result of this shift is that part of the student population enrolled in computer
programming courses either have no plans for using these skills professionally, have little
natural inclination for the subject matter, or have had little previous contact with
computers and programming, For them an encounter with a programming language can
be a frightening experience. Those of us who, through daily association, are familiar with
the intricacies of computer terminology and programming must make efforts to recall
the intimidation and confusion that can result from a first confrontation with a computer
language.

This series is an attempt at reducing some of the inherent difficulty and the
psychological consternation usually associated with a first course in a computer pro-
gramming language. The task is not trivial, especially if it is to be achieved without
patronizing the reader, overdoing illustrations, or sacrificing correctness. Nevertheless,
the simplification of a naturally complex subject must be achieved at some expense;
namely, less rigor in the material presented, less elegance in the code samples, and the
exclusion of the more intricate topics. Thus, we have bypassed certain subjects that we
feel are not strictly required at the elementary level. Since performance of any skill must
be acquired gradually, we have felt free to limit our present aim at providing a first and
unpretentious level of programming achievement.

On the other hand we have stressed certain subjects and programming habits that
we feel should be emphasized from the start. Students often approach a programming
project by turning on the computer and executing the editor program, unaware that
programming is not merely typing the code, but also designing, planning, thinking, and
organizing. We have tried to stress the preparatory phase by underlining the usefulness
of flowcharts, which are introduced in the first chapter and used in illustrations and

xiii



xiv Preface

examples throughout the text, and by relating programming with the fundamentals of
computer organization and architecture, introducing such topics as number systems,
microprocessors, memory, operating system services, and video display hardware.

The titles in the Prentice Hall Programming Skills Series are designed for use in a
computer lab setting, in which each student has access to a machine or terminal. The
ideal teaching environment includes a computer screen or an overhead projector. Each
programming lesson contains one or more sample programs that illustrate the concepts,
keywords, and language elements covered in the chapter. Except for some introductory
material presented in the first session, each class meecting can be approached as a
discussion of the sample programs. Additionally, the code samples projected on ascreen
at class time can serve the instructor as unobtrusive lecture notes. A vocabulary list,
questions, and programming exercises are included in each chapter. The exercises have
been designed at several levels of complexity, allowing some individualization of the
course contents, within its elementary nature. The text is compatible with all popular C
language compilers for IBM microcomputers, including the various Microsoft, IBM, and
Borland C compilers.

The authors would like express their appreciation to students, friends and associ-
ates who have provided help and support in this project. The course was classroom tested
at the Great Falls campus in the Fall of 1991. At this time several students helped in
revising and corroborating the material. The authors are particularly thankful to Darwin
Stull, Frank Peirce, Maria Elena Lazaga, and Robert Keaster for locating typos, errors,
and imprecisions in the original. We would also like to thank Marcia Horton, series editor
at Prentice Hall, and her assistant Diana Penha, as well as Dr. Martha Ann Dow, Kevin
Carlson, Sharon Lowman, and Marna Singleton at Northern Montana College.

Great Falls, Montana Julio Sanchez
Maria P. Canton



Contents

PREFACE

1. THE C LANGUAGE, MS-DOS, FLOWCHARTS, AND TOOLS

1.0

11

12

13

14

What Is C Language? 1

Advantages of C Language 2

Disadvantages of C Language 2

C Language Authorities 2

Implementations of C in IBM Microcomputers 3

The IBM Microcomputer 3

Machine Description 5
Starting the System 6

Programming Logic 7
The Flowchart 8
MS-DOS 10

Executing a Program 11

Drives and Directories 11

The Pathname 12

Files and Filenames 12

The Directory Tree 12

MS-DOS Wildcard Characters 13
MS-DOS DIR Command 13
Formatting 14

Reproducing a Diskette or Microdisk 15

C Programming Tools 15

The Editor 16

The Compiler 17

The Linker 17

Debuggers 18

Other Development Tools 18
Vocabulary 19

xiii



vi

Questions 19
Exercises 20

2. PROGRAM STRUCTURE. OUTPUT FUNCTIONS

20

21

2.2

23

3.0

31

The Elements of a C Program 21

Comments 22

The #include Preprocessor Directive 22
The #define Preprocessor Directive 23
Identifiers 24

Reserved Words 24

Functions 24

Function Arguments 25

Variables 25

Expressions and Statements 27

Library Functions 27

Structured Programming 28
Coding Style 29
Output Facilitiecs In C 30

The printf() Function 30

Elements of the printf() Function 31
Escape Sequences 32

Conversion Specifications 33

The puts() Function 35

The putchar() Function 36

Stream Qutput Functions 37

Source Listing for DEMO2.C 38

Vocabulary 42
Questions 43
Exercises 43

NUMBERS, DATA TYPES, AND COMPUTER MEMORY

Numbers for Computer Work 44

Binary Numbers 45
Hexadecimal Numbers 46

Data Storage and Representation 46

Variables and Constants 47
Variable Declaration 48

Contents

21

44



Contents

32

33

vii

Scope and Lifetime of a Variable 48
Numeric Data 50

Alphanumeric Data 51

Arrays of Alphanumeric Data 52
Arrays of Numeric Data 53

Computer Memory 54
Encoding of Computer Data 56
Source Listing for DEMO3.C 57

Vocabulary 59
Questions 60
Exercises 60

INDIRECTION. INPUT OPERATIONS 62

40

4.1

42

Name, Contents, and Address of a Variable 62

Storage of C Language Variables 63
Address-of Operator 64

The Indirection Operator 64
Pointers to Array Variables 65
Pointer Arithmetic 66

Input Functions in C 67

The scanf() Function 67

Input Specifications in scanf() 68
The gets() Function 70

The getch() and getche() Functions 71
The fflush() Function 72

Source Listing for DEMO4.C 73

Vocabulary 78
Questions 78
Exercises 79

C LANGUAGE OPERATORS 80

5.0

51

Fundamental Operators 80

The Simple Assignment Operator 81
Arithmetic Operators 82

Operators That Evaluate to True or False 83

Relational Operators 83
Logical Operators 84



viil

52

53

54

55
5.6

Contents

The Bitwise Operators 85

The AND Operator 86

The OR Operator 87

The XOR Operator 88

The NOT Operator 88

Shift-left and Shift-right Operators 89

Convenience Operators 89

Increment and Decrement Operators 89
Compound Assignment Operators 90
Data-type and Evaluation Operators 91

Address-of and Indirection Operators 91
The Sizeof Operator 92
The Comma Operator 92

Hierarchy of Operators 92
Source Listing for DEMOS5.C 94

Vocabulary 96
Questions 96
Exercises 96

DECISION 98

6.0
6.1

6.2
63
6.4

Conditional Statements 98
The if and if-else Constructs 99

Statement Blocks 100
Nested if Construct 101
The if-else Construct 102

The Switch Construct 103
Conditional Expressions 106
Source Listing for DEMO6.C 107

Vocabulary 113
Questions 113
Exercises 113

LOOPS AND JUMPS 114

7.0

Iterative Statements 114

Elements of a Program Loop 114
Structure of the for Loop 115



Contents

7.1

72

73

Compound Statement in Loops 119
Structure of the while Loop 119
Structure of the do while Loop 121
Selecting a Loop Construct 122

Jump Statements 125

The goto Statement 125
The break Statement 125
The continue Statement 126

Programming Techniques Using Loops 127
Coding a Keystroke Handler 127
Source Listing for MONITOR.C 129

Vocabulary 133
Questions 133
Exercises 133

FUNCTIONS

8.0

8.1

8.2

83

84

A Tool for Structured Programming 135
Modular Construction 136
The Structure of a Function 136

Prototypes and Tradition K&R C 136
The Prototype 137

The Definition 138

The Function Call 139

The Return Keyword 140

Matching Arguments and Parameters 142
Returning an MS-DOS Error Code 144

Visibility of Function Arguments 146
Using External Variables 146
Passing Data by Reference 147

Pointers and Functions 148
Passing Array Variables 149

Function-like Macros 150

The Macro Argument 150
Vocabulary 152
Questions 152

Exercises 153

135



x Contents

9. STRUCTURES, UNIONS, AND BITMAPS 154
9.0 The Concept of a Data Record 154
9.1 Structure Declaration 155

The Structure Type Declaration 155
The Structure Variable Declaration 156

9.2 Accessing Structure Elements 157

Initializing Structure Variables 158
Manipulating a Bit Field 159

Type Casting 162

Unions 162

93 Structures and Functions 163

Pointers to Structures 163
The Pointer-member Operator 164
Passing Structures to Functions 164

9.4 Overview of the 80x86 Microprocessors 166

80x86 Architecture 167

The General-Purpose Registers 167
The Index and Pointer Registers 168
The Segment Registers 169

The Control and Status Registers 169

9.5 The IBM BIOS 169

The int86() Library Function 170
Using the BIOS Services 171
Vocabulary 175

Questions 175

Exercises 176

10. MEMORY AND VIDEO 177

10.1 The 80x86 Memory Space 177

Segmented Memory 177

Physical and Logical Addresses 178
Addressing Memoryin C 179

Far Pointers 179

Reading Memory Data 180

10.2 1BM Video Systems Architecture 182

Video Modes 182
Characters and Attributes 183



Contents

10.3 Video Programming in C 185

Access to the Video Buffer 185
Storing Data in Memory 186
Direct Access Video Programming 187

10.4 The Program ASCPAGE.C 189

Vocabulary 198
Questions 198
Exercises 198

APPENDICES

A IBM Character Set 200
B BIOS Services 202

BIBLIOGRAPHY

INDEX

xi

210

213



The C Language,
MS-DOS, Flowcharts,
and Tools

1.0 WHAT IS C LANGUAGE ?

Cis a computer programming language originally designed and implemented by Dennis
Ritchie in 1972 while working at the Bell Laboratories. The first version of C language
ran under the UNIX operating system on a DEC PDP-11 machine. The predecessor of
Cis a language called BCPL (Basic Combined Programming Language) developed in
1969 by Martin Richards of Cambridge University. The name C language originated in
the fact that Bell Laboratories’ version of BCPL, which was developed by Ken Thomp-
son, is named B.

Cis often described as a relatively small, compact, and simple high-level program-
ming language suitable for general use. During the 1970s the C language was generally
associated with the UNIX operating system. In fact, the newer versions of UNIX are
written in C. C language became more popular in the 1980s, mainly due to its use in
microcomputers. During this period several major software and hardware companies
adopted C language as their preferred programming medium. Today C language is
available in most microcomputers and in many mainframe and mini computers.

It is generally accepted that C is a member of the ALGOL family of programming
languages. Therefore, it is closely related to the algebraic languages, such as ALGOL
and Pascal, and not as similar to BASIC or FORTRAN.



2 The C Language, MS-DOS, Flowcharts, and Tools

Advantages of C Language

The following are the most often-cited advantages of C language:

1. C is not a specialized programming language; therefore, it is suitable for
developing a wide range of applications, from major system programs to minor utilities.

2. Although C is a small language, it contains all the necessary operators, data
types, and control structures to make it generally useful.

3. C includes an abundant collection of library functions for dealing with
input/output, data and storage manipulations, system interface, and other functions not
directly implemented in the language.

4. C data types and operators closely match the characteristics of the computer
hardware. This makes C programs efficient as well as easy to interface with assembly
language programs.

5. The C language is not tied to any particular environment or operating system.
The language is available on machines that range from microcomputers to mainframes.
For this reason, C programs are portable; that is, they are relatively easy to adapt to other
computer systems.

Disadvantages of C Language

The following are the most often noted disadvantages of C:

1. Because C is not a language of very high level, it is not the easiest to learn.
Beginners find that some constructions in C language are complicated and difficult to
grasp.

2. The rules of C language are not very strict, and the compiler often permits
considerable variations in the coding. This allows some laxity in style, which often leads
to incorrect or inelegant programming habits.

3. Although the language itself is small and portable, most of the C library
functions are devised to operate on a specific machine. This sometimes complicates the
conversion of C language software to other implementations or systems.

C Language Authorities

The traditional authority on C languages is a book titled The C Programming Language,
by Brian W. Kernighan and Dennis M. Ritchie (Prentice-Hall, 1978). This book, some-
times known as the “white book” due to its cover color, contained the original definition
of C and became a de facto standard for the language which is referred to as “K & R C.”

In 1982 a technical committee of the American National Standards Institute
(ANSI) proposed a standard for C language. This standard, referred to as ANSI C, was
approved in 1989. In this manner ANSI C became the industry-level authority for the
language and its implementations.



Sec. 1.1 THE IBM MICROCOMPUTER 3

In some respects ANSI C maintained the original design and essence of the C
language, but in certain fields the standard tried to overcome limitations of K & R C.
One of the consequences of these efforts on the part of the ANSI C developers has been
a considerable expansion of the language, sometimes estimated at twice its original size,
and also more complex. In the course of this book we will point out any differences
between the C language as originally described by Kernighan and Ritchie and by the
ANSI C standard.

Implementations of C in IBM Microcomputers

Several software companies have developed C compilers for the IBM microcomputers.
Some of these products have gained and lost popular favor as other new versions or
implementations of C were introduced to the market. Some of the better-known im-
plementations of C for the IBM microcomputers are the Microsoft C and Quick C
compilers, IBM C-2 compiler (which is a version of Microsoft C licenced to IBM), Intel
iC-86 and iC-286 compilers, Borland Turbo C, Turbo C Professional, and C + +, Lattice
C, Aztec C, Zortech C, and Metaware High C. The Microsoft and Borland C language
development systems are discussed in some detail in Section 1.4.

1.1 THE IBM MICROCOMPUTER

In 1981 IBM introduced the first member of its microcomputer family, named the
Personal Computer, or PC. Since then, many models of this machine have been devel-
oped and marketed. The PC XT, which included a fixed disk drive, was released in 1983.
In 1985, IBM unveiled a more powerful personal computer, named the PC AT, and a
home-market model named the PCjr. In 1987 the Personal Computer line was replaced
with a new generation of machines called the Personal System /2 line. This new line
includes the low-end models 25 and 30, the more advanced models 50, 55, and 60, and
the high-end machines model 70 and 80. In 1990 IBM revived the idea of a home
computer with a line of inexpensive desktops called the Personal System /1. In 1991 it
introduced the high-end model 90 and model 95 which use a more powerful micropro-
cessor and are equipped with a new graphics system.

In addition to IBM, many other companies manufacture computers that use similar
hardware component and software. These machines are often called IBM-compatible
microcomputers. Companies that manufacture IBM-compatible microcomputers in-
clude Tandy Corporation (Radio Shack), Compaq, and Hewlett-Packard.

In spite of variations in the different models of the IBM microcomputers and
compatible machines, there are certain features that have remained unchanged:

1. AllIBM microcomputers use a central processing unit (CPU) of the Intel iAPX
80x86 family, These chips include the 8088 CPU, used in the original PC; the 8086, used
in some versions of the model 25 and 30, the 80286, used in the PC AT and some machines



4q The C Language, MS-DOS, Flowcharts, and Tools

of the PS/2 line, the 80386, used in the model 70 and 80. The newest member of the Intel
iAPX 80x86 family, the 486, is used in the IBM model 90 and model 95 as well as in some
non-IBM machines. There is also a 486 upgrade option for some versions of the PS/2
model 70.

2. AllIBM and the IBM-compatible microcomputers are furnished with a funda-
mental program named Basic Input/Output System (BIOS). The BIOS program, which
gains control automatically when the power switch is turned on, checks memory, tests
and initializes the hardware components, and hands control over to the disk operating
system program (MS-DOS). BIOS provides many programmer’s services that are acces-
sible to assembly language programs. We will use many of these services in the program-
ming lessons. Although the BIOS program has been modified and updated in practically
every new IBM machine, the fundamental services and storage locations have remained
unchanged.

3. All IBM microcomputers are furnished with the MS-DOS disk operating
system, developed by Microsoft Corporation. Five major versions and over a dozen
sub-versions of MS-DOS have been introduced since 1981. However, Microsoft has
maintained the operating system’s fundamental structure and services.

monitor (CRT)

system unit
4 \ monitor switch
x / L/ / fixed disk drive
main switch

floppy
disk
drives

N L \

5002

. A\

U ] i L e i) TN
M YO I s, rarmmm

M e a1 /) hﬁﬁ“
L rarnrrarorrare M
o mm M —r
— — 1
printer
keyboard

Fiigure 1.1 Principal Components of an IBM Microcomputer



Sec. 1.1 THE IBM MICROCOMPUTER 5

Machine Description

Figure 1.1 shows the essential components of a typical IBM microcomputer system.

System unit. The system unit is the enclosure that holds the fundamental elements
of a computer system. In an IBM microcomputer the system unit contains a board of
electronic components, sometimes called the motherboard. The motherboard contains
the central processing unit, memory, the BIOS program chips, and the auxiliary control-
lers. Also in the system unit are connectors for expansion cards, a socket for an optional
mathematical coprocessor chip, storage devices, such as floppy and fixed disk drives,
and electronic ports for communicating with other devices.

Floppy disk drives. Floppy disks or diskettes are removable electromagnetic
devices used for storing computer data and programs. The diskette drive is often
described as being similar to a record player turntable. The diskette holds data magnet-
ically recorded on its surface, which is made of a special plastic called mylar. The floppy
disk has a central hole that engages in a drive mechanism, This mechanism makes the
diskette spin on its axis while a read-write arm moves radially along the diskette’s
recorded surface.

AIIIBM microcomputers are equipped with at least one diskette drive. The older
machines use a 5 1/4 inch diameter floppy disk. The newer machines use a 3 1/2 inch
version of the floppy disk which is encased in a plastic shell. The 3 1/2 inch model is
usually called a microdisk. The capacity of a diskette drive is measured in the number
of units of information (bytes) that can be stored in each diskette. The capacity of the
floppy disk on IBM microcomputers has gone from 160 thousand bytes in the original
personal computer to over 1.4 million bytes in some of the newer models.

Fixed disk drive. The fixed disk drive is an electromagnetic device for storing data
and programs; it is quite similar to the diskette drive previously described. Fixed disks
are also called hard disks or Winchester drives. The main difference between the diskette
and the fixed disk system is that in the fixed disk the storage media are not removable
from the drive. Hard disk drives usually contain several metal disks coated with a
magnetic substance similar to the one used in the floppics. These metals disks are called
Dlatters.

Another difference between the floppy and the fixed disk drives is that the floppy
drives spin the diskette only when data is being accessed, while the platters of a fixed
drive start spinning when the computer is turned on. This determines that data can be
accessed much more rapidly on a fixed disk since the fixed disk platters do not have to
be brought up to speed before each read or write operation. In addition, fixed disk drives
are built to a higher precision than floppy drives and are scaled from airborne particles
that can damage the recording surface.

The capacity of a fixed disk drive is usually measured in megabytes of data that can
be stored on its surface. One megabyte (1 Mb) is approximately equal to 1 million bytes.
Popular fixed disk drive sizes in IBM microcomputers are 20, 40, 60, 80, and 120
megabytes.



