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Preface

This second volume incorporates a number of results which were discovered
and/or systematized since the first volume was being written. Again, I limit
myself to the cyclotomic fields proper without introducing modular func-
tions. .

As in the first volume, the main concern is with class number formulas,
Gauss sums, and the like. We begin with the Ferrero-Washington theorems,
proving Iwasawa’s conjecture that the p-primary part of the ideal class
group in the cyclotomic Z,-extension of a cyclotomic field grows linearly
rather than exponentially. This is first done for the minus part (the minus
referring, as usual, to the eigenspace for complex conjugation), and then it
follows for the plus part because of results bounding the plus part in terms
of the minus part. Kummer had already proved such results (e.g. if p ¥ h,
then p ¥ h;). These are now formulated in ways applicable to the Iwasawa
invariants, following Iwasawa himself.

After that we do what amounts to “ Dwork theory,” to derive the Gross—
Koblitz formula expressing Gauss sums in terms of the p-adic gamma
function. This lifts Stickelberger’s theorem p-adically. Half of the proof
relies on a course of Katz, who had first obtained Gauss sums as limits of
certain factorials, and thought of using Washnitzer-Monsky cohomology
to prove the Gross-Koblitz formula.

Finally, we apply these latter results to the Ferrero-Greenberg theorem,
showing that L(0, x) # 0 under the appropriate conditions. We take this
opportunity to introduce a technique of Washington, who defined the p-adic
analogues of the Hurwitz partial zeta functions, in a way making it possible
to parallel the treatment from the complex case to the p-adic case, but in a
much more efficient way.

All of these topics form a natural continuation of those of Volume I. Thus
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chapters are numbered consecutively, and the bibliography (suitably ex-
panded) is similarly updated.

I am much indebted to Larry Washington and Neal Koblitz for a number
of suggestions and corrections; and to Avner Asch for helping with the
proofreading.

Larry Washington also read the first volume carefully, and made the
following corrections with no other changes in the proofs:

Chapter 5, Theorem 1.2(ii), p. 127: read e, = dn + ¢, f>r some constant
Co.
Chapter 7, Theorem 1.4, p. 174: the term 1/k? should be (—1)*/k - k!
instead.

Chapter 8, Formulas LS 6, p. 207 : one needs to assume that [z](X) is a
polynomial. This is satisfied if the formal group is the basic Lubin-Tate
group, and the theorems proved are invariant under an isomorphism of such
groups, so the proofs are valid without further change.

Washington also pointed out the reference to Vandiver [Va 2], where in-
deed Vandiver makes the conjecture:

. . . However, about twenty-five years ago I conjectured that this number was never
divisible by / [referring to A*). Later on, when I discovered how closely the question
was related to Fermat’s Last Theorem, I began to have my doubts, recalling how
often conjectures concerning the theorem turned out to be incorrect. When I visited
Furtwingler in Vienna in 1928, he mentioned that he had conjectured the same thing
before I had brought up any such topic with him. As he had probably more experi-
ence with algebraic numbers than any mathematician of his generation, I felt a little
more confident . . .

On the other hand, many years ago, Feit was unable to understand a step
in Vandiver’s “proof” that p yh* implies the first case of Fermat’s Last
Theorem, and stimulated by this, Iwasawa found a precise gap which is such
that the proof is still incomplete.

New Hauven, Connecticut SERGE LANG
1980
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Notation

As in the first volume, if A4 is an abelian group and N a positive integer, we
iet Ay be the kernel of multiplication by N, and

A(N) = A/NA.

If p is a prime, we let A”) be the subgrouf) of p-primary elements, that is,
those elements annihilated by a power of p.



Measures and
Iwasawa Power Series

This chapter gives a number of complements to Chapter 4. In §1 we extend the
formalism of the associated power series to the change of variables

X e y*

for x € Z, and y equal to a topological generator of 1+pZ,. A measure on
1+ pZ, then corresponds to a measure on Z,, and we give relations between
their associated power series. This is then applied to express Bernoulli
numbers B, , as values of power series. We write

x =0~ = 6,y,

where first 0 is an even character on Z(dp)* (d prime to p), w is the Teichmuller
character, and y is a characteron 1 + pZ,. Let { = y/(y). Then

1
k Bk.x = fox(l—1),

where f, , depends only on 6 and k. This allows a partial asymptotic deter-
mination of ord, B, , when @ is fixed, and the conductor of ¥ tends to infinity,
due to Iwasawa [Iw 14], §7. This gives rise to the corresponding asymptotic
estimate for the minus part of class numbers of cyclotomic extensions.

The Iwasawa expressions for the Bernoulli numbers gives an asymptotic
value for their orders:

ord, By g4 = mp" + An + ¢



10. Measures and Iwasawa Power Series

for n sufficiently large, cond ¥ = p"*!.In order that m # 0, Iwasawa showed
that a system of congruences had to be satisfied (essentially that the coeffi-
cients of the appropriate power series are =0 (mod p)). We derive these
congruences here in each case successively. The next chapter is devoted to
the proofs by Ferrero-Washington that these congruences cannot all be
satisfied, whence the Iwasawa invariant m is equal to 0.

At the end of their paper, Ferrero-Washington conjecture that the in-
variant 4, for the cyclatomic Z ,-extension of Q(p,) satisfies a bound

log p
§ —.
P " loglogp

I am much indebted to Washington for communicating to me the exposition
of the steps which lead to this conjecture, and which were omitted from their

paper.

§1. Iwasawa Invariants for Measures

We let p be an odd prime for simplicity. The multiplicative group 1 + pZ,
is then topologically cyclic, and we let y denote a fixed topological generator.
Then ymod p" generates the finite cyclic group 14 pZ,mod p" for each
positive integer n. For instance, we may take

y = 1+p.

[Note: If p = 2, then one has to consider 1+4Z, instead of 1+2Z,.]
There is an isomorphism

Z,- 1+pZ,
given by

Xy~

Its inverse is denoted by «, so that by definition
a(y*) = x.

Let d > 1 be a positive integer prime to p. We shall consider measures on
the projcctive system of groups

Z, = Z(dp") = Z/dp'Z = 2(d) x Z(p").



§1. Iwasawa Invariants for Measures

The projective limit is simply denoted by
Z=171(d)x Z,.

A measure is then determined by a family of functions u, on Z,, as in
Chapter 2, §2. We let

Z* =Z(d) x Zy and Z**=Z(d)* x Z}.
An element z € Z* can be written uniquely in the form
z = (29, M) = (20, 2p) with z, € Z(d),nep,_,, xe Z,.
We define the horﬁomorphism
wZ*—>Z, by a(ze,m") = x.
We define as usual
(2, =<2 =Lz, =7

so that «(z) = «({z)). As above, we usually omit the index p on {z},.

A continuous function on Z, gives rise to a continuous function on 1 +pZ,
by composition with a, and conversely.

As in Chapter 2, §1 we let v be the ring of p-integers in C,, and we let u
be an o-valued distribution, i.e. a measure.

By the basic correspondence between functionals and measures, we obtain
the following theorem.

Theorem 1.1. Let u be a measure on Z with support in Z*. Then there exists
a unique measure o, u on Z, such that for any continuous function ¢ on
1+pZ, we have

f o(<ad) du(a) = f o) d(@y 1) ().
z Z

We now describe the power series associated with o, u modulo the poly-
nomial

h(X)=(1 + X)” — 1.



10. Measures and Iwasawa Power Series

Thus we fix a value of n > 0, and for each a € Z* we let r(a) be the unique
integer such that

0<ra)<p" and r(a) = a(a) mod p".
Theorem 1.2. Let f be the power series associated with a, yi. Let
Zy = Z(d) x L(p"*")*
Then

fX)= Y pass(@(1+ XY mod hy(X).

aeZn+:

Proof. By the definition of the associated power series, we have

=1

JX) = Y (@mr)1+X).

r=0

But letting char denote the characteristic function, we have:

(e, 4)(r mod p") = J.z (char of r mod p") d(a, 1)

= L‘(char of Z(d) x p,—y x ¥*7"%r)du
(by Theorem 1.1)
=2 tns 11y mod p"* 1)
n
where this last sum is taken over n € Z(d) x p,_,. This proves the theorem.

Corollary 1. Let Y be a nontrivial character of 1+pZ,, with conductor

p"* . Define Y(a) = Y({a)). Let
Y(y) = { = primitive p"-th root of unity.

Let f be the power series associated with o, u. Then

Ydp = f((=1)
z;



§1. Iwasawa Invariants for Measures

Proof. We have

[wau= [ womdame by Theorem 11)
z* z,

- f 0= d(oty 1) (%)
Z,

= f((-1). (by Theorem 1.2 of Chapter 4).
This proves the corollary.

We continue with the same notation as in the theorem. We shall use the
notation

B, 1) = Lw di= ¢, — 1).

Suppose that there exists a rational number m such that the power series f
can be written in the form

fX)=p"co+ X+ + i X+ XA+ )

where ¢, is a unit in o, and ¢y, . .., ¢;_; € m, the maximal ideal of 0. We call
m, A the Iwasawa invariants of u, or f. If the measure p has values in the
maximal ideal of the integers in a field where the valuation is discrete (which
is the case in applications), then f has coefficients in that ring, and such m,
Aexist if f # 0. If m = 0, then A is the Weierstrass degree of f. In any case,
A is the Weierstrass degree of p~™f.

As usual, we shall write

x~Yy
to mean that x, y have the same order at p.

Corollary 2. There exists a positive integer n, (depending only on f) such
that if n > ny and cond Y = p", then

By, p) ~ p(¢ —1)*
where { is a primitive p"-th root of unity.

Proof. As n — oo, the values |{ — 1| approach 1, and so the term ¢ ({ —1)*
dominates in the power series f({— 1) above.
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Corollary 3. For some constant ¢ = c(f), we have

ord, [[ BW,u=mp"+ in+ c(f)

cond ¥ =pt
np<t<n

Proof. Since

the formula is immediate, since the product taken for ny < t < n differs by
only a finite number of factors (depending on n,) from the product taken over
all t, and we can apply Corollary 2 to get the desired order.

In the light of Corollary 3, we shall call m the exponential invariant, and
4 the linear invariant.
Let f be as above, the power series associated with a, u, and put

¢ =) pus(ny” mod p"*Y).
n

Then

n—1

f(X)= Y ¢"™(1+X) modh,

r=0
p—1
= Y a"X" mod h,,
r=0
where the coefficients o™ are obtained from the change of basis from
LX,...,Xx"!
to
L1+X,...,(1+X)"" L

We can rewrite ¢ in terms of the variable u = )’, namely

c"(u) = Z M+ 1(nu mod p"* 1)
n

These coefficients ¢ (u) will be called the Iwasawa coefficients.

6



§1. Iwasawa Invariants for Measures

Theorem 1.3. Let n be an integer > 0 such that ¢ is a p-unit for some integer
r with

0<r<p"—-1L

Then the exponential Iwasawa invariant m of p is equal to 0, and we have
ALt

Proof. Some coefficient a® must also be a p-unit with r in the same range,
and we can write
-1

fX)= 3 aPX" + g,(X)X” + pgy(X),

r=0

where ¢,(X), g,(X) € o[[X]]. Hence the coefficient a, of f(X) is itself a
p-unit, whence the theorem follows.

We shall sometimes deal with certain measures derived by the following
operation from . Let s € Z,. We define the s-th twist of u to be the measure
defined on Z* by

KN a) = <ay*u(a),

and equal to 0 outside Z*. In that case, the coefficients ¢ should be indexed
by s, i.e.

ey = ey

Since y™ is a p-adic unit, it follows that the same power of p divides all ¢{"}
as divides c!™. Thus Theorem 1.3 also applies to the twisted measure and the
power series f; associated with o (4*) instead of f in the theorem, and we
find:

Theorem 1.4. Let my, A, be the Iwasawa invariants of u®. If my = 0 for some

s, then my = 0 for all s. Suppose this is the case, and let n be the positive
integer such that

Pl < P
Then we also have
pn—l S ls <pn

for all s.
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§2. Application to the Bernoulli Distributions

Let B, be the k-th Bernoulli polynomial (cf. Chapter 2). We had defined the
distribution E, at level N by

EM(x) = N*! % Bh(<%>).
We shall now use
N = adp,
where d is a positive integer prime to the prime number p.
We continue using the notation of the preceding section. An element

of Z = Z(d) x Z, is described by its two components

x = (Xg, Xp)-

Let c € Z(d)* x Z} = lim Z(dp")*. We define

E{)(x) = EM(x) — & EM(c'x)

for x € Z(N). The multiplication ¢~ 'x is defined in Z(N)*.

Note. In Chapter 2, we took c to be a rational number. This is not neces-
sary, and restricts possible applications too much. When ¢ occurs as a coef-
ficient in Chapter 2, we must use ¢, instead of ¢, i.e. we must use its projection
on Z3. When ¢ occurs inside a diamond bracket, then no change is to be made
for the present case. For instance, we have

El EM(x) = <%> - c,<c—N—’f> +5 (=)

Similarly, formula E 2 and Theorem 2.2 of Chapter 2 yield the relation

E2. E, (x) = x;7'E, (x)

symbolically for x € Z. We then obtain the integral representations of the
Bernoulli numbers as follows.

'

1 1
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