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Le bruit des vagues était encore plus paresseux, plus
étale qu’a midi. C’était le méme soleil, la méme
lumiéere sur le méme sable qui se prolongeait ici.

A. Camus — L’étranger

1. INTRODUCTION

. Motivations and a little history. Almost mathematics made its official debut
in Faltings’ fundamental article [33], the first of a series of works on the subject
of p-adic Hodge theory, culminating with [34]. Although almost ring theory is de-
veloped here as an independent branch of mathematics, stretching somewhere in
between commutative algebra and category theory, the original applications to p-
adic Hodge theory still provide the main motivation and largely drive the evolution
of the subject.

Indeed, one of the chief aims of our monograph is to supply adequate founda-
tions for [34], and to pave the way to further extensions of Faltings’ methods (espe-
cially, of his deep “almost purity” theorem), that we plan to present in a future work.
For these reasons, it is fitting to begin this introduction with some background, lead-
ing up to a review of the results of [33]. (Besides, we suspect that all but the most
dedicated expert of p-adic Hodge theory will require some inducement before de-
ciding to plunge into close to 300 pages of foundational arcana.)

The starting point of p-adic Hodge theory can be located in Tate’s paper [74]
on p-divisible groups. An important example of p-divisible group is the p-primary
torsion subgroup A,~ of an abelian scheme A defined over the valuation ring K+
of a complete discretely valued field K of characteristic zero. We assume that the
residue field x of K is perfect of characteristic p > 0; also, let 7 be a uniformizer
of K't, K™ the algebraic closure of K and denote by C' the completion of K*; the
Galois group G := Gal(K?®/K) acts linearly on the étale cohomology of A, and
actually A,~ and the Galois module H},(Af-.Z,) determine each other. G also
acts semilinearly on C', whence a natural continuous semilinear action of G on the
tensor product of Galois modules

H (A, C) = Hg(Aks, Z,) ®z, C.

At first sight, it would seem that, in replacing a linear Galois representation by a
semilinear one, we are trading a simpler object by a more complicated one. In fact,
the opposite holds: as a consequence of his general study of p-divisible groups, Tate
showed that for every i < 2dim(A) there exists a natural equivariant isomorphism

(1.1.1) (Aka, @ HI(A, Q%) @k C(—k)

J+k=i

where, for every integer j € Z, we define C'(j) := Q,(j) ®q, C, and Q,(j) is
the j-th tensor power of the one-dimensional p-adic representation Q,,(1) on which
G acts as the p-primary cyclotomic character. Tate conjectured that an equivariant
decomposition such as (1.1.1) should exist for any smooth projective variety defined
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over K. To put things in perspective, let us turn to consider the archimedean counter-
partof (1.1.1): if X is a smooth, proper complex algebraic variety, one can combine
deRham’s theorem with Grothendieck’s theorem on algebraic deRham cohomology
[42], to deduce a natural isomorphism

(1.12) H*(X*,Z) ®z C ~ H3p(X)

between the singular and deRham cohomologies. The two sides of (1.1.2) contribute
complementary information on X; namely, singular cohomology supplies an in-
tegral structure for H*( X", R) (the lattice of periods) and deRham cohomology
gives the Hodge filtration: neither of these two structures is reducible to the other.

The above conjecture of Tate is rather startling because it implies that in the
non-archimedean case, étale cohomology and deRham cohomology should not be
complementary: rather, étale cohomology, viewed as a Galois module, would al-
ready detect, if not quite the Hodge filtration, at least its associated graded subquo-
tients, each of them clearly recognizable by the different weight (or Tate twist) with
which it appears in H2, (Ag-,C') (now this graded Galois module is known as the
Hodge-Tate cohomology and often denoted Hyyp(—)).

On the other hand, working around the same time as Tate, Grothendieck real-
ized that the deRham cohomology of an abelian scheme carries more structure than
it would appear at first sight: using his crystalline Dieudonné theory he showed that
H(‘IR(A) comes with a canonical K-structure (where Ky is the field of fractions
of the ring W (k) of Witt vectors of «), namely the K-vector space M QW (x) Ko
where M is the Dieudonné module of the special fibre of A~ (see [43]). Further-
more, this K-vector space is endowed with an automorphism ¢ which is semilinear,
i.e. compatible with the Frobenius automorphism of K. Grothendieck even proved
that A~ is determined up to isogeny by Hj;(A) together with its Hodge filtra-
tion, K-structure and automorphism ¢. Taking into account the above theorem of
Tate, he was then led to ask the question of describing an algebraic procedure that
would allow to pass directly from Hj;(A) to H}, (Ak=,Q,) without the interme-
diary of the p-divisible group A,~; he also expected that such a procedure should
exist for the cohomology in arbitrary degree (he baptized' this as the problem of the
“mysterious functor™).

The question in degree one was finally solved by Fontaine, several years later
([37]); he actually constructed a functor in the opposite direction, i.e. from the cat-
egory of p-adic Galois representations to the category of filtered K-modules with
additional structure as above. The construction of Fontaine hinges on a remarkable
ring (actually a whole hierarchy of increasingly complex rings), endowed with both
a Galois action and a filtration (and eventually, additional subtler structures). The
simplest of such rings is the graded ring Byt := @;czC (i), with its obvious mul-
tiplication; with its help, Tate’s decomposition can be rewritten as an isomorphism
of graded K -vector spaces:

'The name entered the folklore, even though Grothendieck apparently only ever used it
orally, and we could find no trace of it in his writings
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(Hi(Ake.Qp) ®g, Bur)? ~ € HI(A.QY).
Jtk=i

Fontaine proved that his functor solves Grothendieck’s problem for the H!, and
proposed a precise conjecture (the C.is conjecture) in arbitrary degree, for schemes
X that are proper and smooth over K and have good reduction over K.

1.2. The method of almost étale extensions. The C.,;s conjecture is now com-
pletely proved, as well as some later extensions (e.g. to schemes with not necessarily
good reduction, or not necessarily proper). There are actually at least two very dif-
ferent methods that both have led to a proof: one — due to Fontaine, Kato, Messing
and crowned by Tsuji’s work [75] — relies on so-called syntomic cohomology and a
delicate study of vanishing cycles; the other, due to Faltings, is based on his theory
of almost étale extensions (for the case of varieties of good reduction, Niziol has
found yet another method, that uses a comparison theorem from étale cohomology
to K -theory as a go-between: see [63]).

We won’t say anything about the first and the third approaches, but we wish to
give a rough overview of the method of almost étale extensions, which was first pre-
sented in [33], where Faltings used it to prove the sought comparison with Hodge-
Tate cohomology; in subsequent papers the method has been refined and amplified,
and its latest incarnation is contained in [34]. However, many important ideas are
already found in [33], so it is on the latter that we will focus in this introduction.

For simplicity we will assume that our varieties have good reduction over K T,
hence we let X be a smooth, connected and projective K T-scheme. The idea is
to construct an intermediate cohomology .7#°( X ), with values in C-vector spaces,
receiving maps from both étale and Hodge-Tate cohomology, and prove that the
resulting natural transformations

He (X, Zy) @z, C — A(X) and  Hur(Xg) — H(X)

are isomorphisms of functors. In order to motivate the definition of J#(X), it is
instructive to consider first the case of a point, i.e. X = Spec K . In this case étale
cohomology reduces to Galois cohomology, and the calculation of the latter was the
main technical result in [74].

Tate’s calculation can be explained as follows. The valuation v of K extends
uniquely to any algebraic extension, and we want to normalize the value group in
such a way that v(p) = 1 in every such extension. Let £ be a finite Galois ex-
tension of K, with Galois group G . Typically, one is given a discrete £ [G g]-
module M (such that the I'-action on M is semilinear, that is, compatible with the
G p-action on E1), and is interested in studying the (modified) Tate cohomology
H' := H'(Gp, M) (for i € Z). (Recall that [ agrees with Galois cohomology
R'TY# M for i > 0, with Galois homology for i < —1, and for i = 0 it equals
M= /Tr ;1 (M), the G ;-invariants divided by the image of the trace map).

In such a situation, the scalar multiplication map £ ®7 M — M induces
natural cup product pairings

ﬁI(G,{ E+) Rz ﬁj =3 i‘ii+j.
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Especially, the action of (ET)%% = K+ on H' factors through K*/Trp, k(ET);
in other words, the image of £ under the trace map annihilates the modified Tate
cohomology.

If now the extension F is tamely ramified over K, then Trg /i (E™) = K™, so
the H' vanish forall i € Z. Even sharper results can be achieved when the extension
is unramified. Indeed, in such case E is a G g-torsor for the étale topology of KT,
hence, some basic descent theory tells us that the natural map

Et @k+ RTCEM — M[0]

is an isomorphism in the derived category of the category of £ |G g]-modules
(where we have denoted by M [0] the complex consisting of M placed in degree
7€ro).

In Tate’s paper [74] there occurs a variant of the above situation : instead of the
finite extension E one considers the algebraic closure K'* of K, so that Gga = G
is the absolute Galois group of A, and the discrete G-module M is replaced by
the topological module C'(x), obtained by “twisting” the natural G-action on C
via a continuous character y : G — K *. Then the relevant H® is the continuous
Galois cohomology H?, (G, C(x)), which is defined in general as the homology
of a complex of continuous cochains. Under the present assumptions, H' can be
computed by the formula:

H! W (G.C(x)) := (lim H'(G,K*"(x) ®z Z/p"Z)) ®z Q.
Let now K, be a totally ramified Galois extension with Galois group H isomorphic
to Z,,. Tate realized that, for cohomological purposes, the extension K plays the
role of a maximal totally ramified Galois extension of A. More precisely, let L be

any finite extension of K, and set L,, := L - K,,, where K, is the subfield of K
fixed by HP" ~ p" - Zy. The extension K,, C L,, is unramified if and only if the
different ideal &,, := O/'f”, JK} equals L' In case this fails, the valuation v(4,,) of

a generator 9,, of &,, will be a strictly positive rational number, giving a quantitative
measure for the ramification. With this notation, [74, §3.2, Prop.9] reads

(1.2.1) lim »(d,) =0

n—ocC
(indeed, v(d,,) approaches zero about as fast as p~"). In this sense, one can say
that the extension K, C Lo = L - K. is almost unramified. One immediate
consequence is that the maximal ideal m of K is contained in Tr;, /5 _(LL).If,
additionally, L is a Galois extension of K, we can consider the subgroup

G~ = Gal(Lx/K+) C Gal(L/K)
and the foregoing implies that m annihilates H'(G .., M), for every i > 0, and
every L1 [G]-module M. More precisely, the homology of the cone of the natural
morphism
(1.2.2) L

is annihilated by m in all degrees, i.e. it is almost zero. Equivalently, one says that
the maps on homology induced by (1.2.2) are almost isomorphisms in all degrees.

o0

T ®p+ RTC>M — M[0]
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A first generalization of (1.2.1) can be found in the work [38] by Fresnel and
Matignon; one interesting aspect of this work is that it does away with any consider-
ation of local class field theory (which was used to get the main estimates in [74]);
instead, Fresnel and Matignon write a general extension L as a tower of monogenic
subextensions, whose structure is sufficiently well understood to allow a direct and
very explicit analysis. The main tool in [38] is a notion of different ideal Zp+ /g +
for a possibly infinite algebraic field extension K C FE; then the extension K, con-
sidered in [74] is replaced by any extension £ of K such that Zp+ i+ = (0), and
(1.2.1) is generalized by the claim that Zp+ .+ = F'*, for every finite extension
EcCF.

In some sense, the arguments of [38] anticipate those used by Faltings in the
first few paragraphs of [33]. There we find, first of all, a further extension of (1.2.1):
the residue field of K is now not necessarily perfect, instead one assumes only that
it admits a finite p-basis; then the relevant K is an extension whose residue field
is perfect, and whose value group is p-divisible. The assertion (1.2.1) under such
assumptions represents the one-dimensional case of the almost purity theorem. In
order to state and prove the higher dimensional case, Faltings invents the method of
“almost étale extensions”, and indeed sketches in a few pages a whole program of
“almost commutative algebra”, with the aim of transposing to the almost context as
much as possible of the classical theory. So, for instance, if A is a given K1 -algebra,
and M is an A-module, one says that M is almost flat if, for every A-module N,
the natural map of complexes

L
M @4 N — M &4y N[()]

induces almost isomorphisms on homology in all degrees. Similarly, M is almost
projective if the same holds for the map of complexes

Hom (M, N)[0] — RHom4 (M, N).

Then, according to [33], a map A — B of K1 -algebras is called almost étale if
B is almost projective as an A-module and as a B ® 4 B-module (moreover, B is
required to be almost finitely generated : the discussion of finiteness conditions in
almost ring theory is a rather subtle business, and we dedicate the better part of
section 2.3 to its clarification).

With this new language, the almost purity theorem should be better described
as an almost version of Abhyankar’s lemma, valid for morphisms A — B of
K " -algebras that are étale in characteristic zero and possibly wildly ramified on
the locus of positive characteristic. The actual statement goes as follows. Sup-
pose that A admits global étale coordinates, that is, there exists an étale map
KH[TE, ., TH'] — A (following Faltings, one calls small such an algebra);
whereas in the tamely ramified case a finite ramified base change K+ — K*[r!/"]
(with (p,n) = 1) suffices to kill all ramification, the infinite extension

Ao Ao i= ATEVPT L TEVP @ps K2

is required in the wildly ramified case, to kill almost all ramification, which means
that the normalization B, of A, ®4 B is almost étale over A...



6 Chapter 1: Introduction

Faltings has proposed two distinct strategies for the proof of his theorem : the
first one, presented in [33], consists in adapting Grothendieck’s proof of Zariski-
Nagata’s purityz; a more recent one ([34]) uses the action of Frobenius on some
local cohomology modules, and is actually valid under more general assumptions
(one does not require the existence of étale coordinates, but only a weaker semi-
stable reduction hypothesis on the special fibre).

As a corollary, one deduces cohomological vanishings generalizing the forego-
ing : indeed, suppose that the extension of fraction fields Frac(A) C Frac(B) is
Galois with group G p; then, granting almost purity, B, is an “almost G g-torsor”
over A, therefore, for any B [G g]-module M, the natural map of complexes

By ®a. RTY5M — M[0]
induces almost isomorphisms on homology.

We are now ready to return to the construction of .#’(X ). Let A be a K-
algebra that is small in the above sense; let d be the relative dimension of A over
K. We denote by A the integral closure of A in a maximal algebraic extension
of the field of fractions of A which is unramified over A[p~!]; also let A" be the
m-adic completion of A : this is an algebra over the w-adic completion C* of K+,
The fundamental group

A(A) := 1 (Spec A @+ K?)

is the subgroup of the Galois group of Frac(A) over Frac(A) that fixes Aya+ =
A @+ K*'. The (continuous) Galois cohomology
H*(A) = HS (A(A), A™)

can be computed by the functorial simplicial complex ©*(A(A), A") such that

¢"(A(A), A") := continuous maps A(A)" — A",
Let A(A)~ be the kernel of the natural surjective homomorphism:

A(A) = Gal(A [Aga+) =~ Z2°.
As a consequence of the foregoing almost vanishings, the Hochschild-Serre spectral
sequence
B HE (23 HY (A(A)oo, A)) = 27T(4)

p
degenerates up to m-torsion, and one obtains a natural Gal( K*/ K')-equivariant iso-
morphism
(1.2.3) HO(A) ~ Ay @z, A3 (Zp(—1))7) & (rest)

where A7, is the m-adic completion of A .+ and Ai“ denotes the exterior algebra
of the free Z,-module that is the sum of d copies of Z;,(—1). The (rest) is a module
annihilated by p'/(P—1)

Moreover, for any étale map A — B of small K *-algebras, the induced map:

(1.2.4) H*(A)®a, ., Brs+ — H°(B)

Ka

At the time of writing, there are still some obscure points in this proof
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is an almost isomorphism.

Let X be a smooth projective K T-scheme; we take an arbitrary (Zariski) hyper-
covering U, — X consisting of small affine open subschemes, meaning that each
U is the spectrum of a small K T-algebra. By applying termwise the functor 4’® we
deduce a bicosimplicial K *-module ™*(A(U, ), U,), whose diagonal is a cosim-
plicial complex that we denote by 2°(X ). The intermediate cohomology .77 (X))
is defined as the homology of 2°(X) ®y+ K.

Using the fact that (1.2.4) is an almost isomorphism, a standard argument shows
that 2°(X) is independent — up to natural almost isomorphisms — on the choice
of hypercovering. Functoriality on X is also clear, and one can even define cup
products, Kunneth isomorphisms for products of varieties, as well as versions with
torsion coefficients.

Finally, since étale cohomology is a globalization of Galois cohomology, it is
not difficult to construct a natural transformation

(1.2.5) RTe(Xka, Zp) ®z, Ct — 2°(X)

(for this, one needs to know that X admits a basis of open subsets consisting of étale
K (m, 1)-spaces, and this is also shown in [33]). The proof that (1.2.5) induces an
almost isomorphism on cohomology is laborious, but not exceedingly difficult.

The relationship with Hodge-Tate cohomology is very direct, and can already
be scented from (1.2.3); Faltings also spends a little extra effort to wring out some
integral refinements (i.e., to control the powers of p appearing in the denominators
of the isomorphism map).

This is the basic outline of Faltings’ proof; the method can even be extended
to treat cohomology with not necessarily constant coefficients (see [34]), thereby
providing the most comprehensive approach to p-adic Hodge theory found so far.

1.3. Contents of this book. Since each chapter is preceded by its own detailed
introductory remarks, we will bound ourselves to a general overview of the orga-
nization of the monograph. The purpose of chapters 2 through 5 is to fully work
out the foundations of “almost commutative algebra” outlined by Faltings; in the
process we generalize and simplify considerably the theory, and also extend it in
directions that were not explored in [33], [34].

It turns out that most of almost ring theory can be built up satisfactorily from a
very slim and general set of assumptions: our basic setup, introduced in section 2.1,
consists of a ring V' and an ideal m C V such that m = m?; starting from (2.5.14)
we also assume that m &y m is a flat V-module : simple considerations show this
to be a natural hypothesis, often verified in practice.

The V-modules killed by m are the objects of a (full) Serre subcategory ¥ of
the category V-Mod of all V-modules, and the quotient V*-Mod := V-Mod/%
is an abelian category which we call the category of almost V -modules. It is easy to
check that the usual tensor product of V-modules descends to a bifunctor ® on al-
most V-modules, so that V“-Mod is a monoidal abelian category in a natural way.
Then an almost ring is just an almost V-module A endowed with a “multiplication”
morphism A © A — A satisfying certain natural axioms. Together with the obvious
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morphisms, these gadgets form a category V“-Alg. Given any almost V -algebra
A, one can then define the notion of A-module and A-algebra, just like for usual
rings. The purpose of the game is to reconstruct in this new framework as much as
possible (and useful) of classical linear and commutative algebra.

Essentially, this is the same as the ideology informing Deligne’s paper [23],
which sets out to develop algebraic geometry in the context of abstract tannakian
categories. We could also claim an even earlier ancestry, in that some of the leading
motifs resonating throughout our text, can be traced as far back as Gabriel’s memoir
[40] “Des catégories abéliennes”. Furthermore, it has been recently pointed out to us
that Roos, in a series of works dating from the mid-sixties, had already discovered
much of the homological algebra that forms the backbone for our more systematic
study of almost modules (see e.g. [68], [69]).

A pervasive theme — recurring throughout the text — is the study of deforma-
tions of various interesting objects, may they be almost algebras, almost modules,
or almost group schemes. Especially, the analysis of nilpotent deformations of étale
almost algebras and of almost projective modules is important for the proof of the al-
most purity theorem; whereas Faltings used Hochschild cohomology to this aim, we
employ the cotangent complex; this gives us shorter proofs of essentially stronger
results (and answers some questions of Faltings). Nilpotent deformations usher the
way to formal deformations, hence to the definition of adic topologies on almost
rings and modules; this in turns leads straight to the study of henselian deforma-
tions and to the notion of henselian pair in almost ring theory.

Another important thread is descent theory for almost algebras; faithfully flat
descent is easy, but in [34] one needs also some cases of non-flat descent, so we
give a comprehensive treatment of the latter.

Closely related to descent is the problem of constructing quotients under flat
equivalence relations, and we dedicate section 4.5 to this question.

The third main ingredient in the newer proof of the almost purity theorem is
the Frobenius endomorphism of almost algebras of positive characteristic: this is
investigated in section 3.5.

In many instances, our results go well beyond what is strictly necessary in order
to justify Faltings’ proof of almost purity; this is mainly because our emphasis is on
supplying natural frameworks and — as much as possible — pure thought arguments,
rather than choosing the most economical presentation. Another reason is that we
plan to discuss and extend the almost purity theorem in a future work: some of the
extra generality gained here will pay off then.

Chapters 6 and 7 are dedicated to applications, respectively to valuation theo-
ry and to p-adic analytic geometry: especially the reader will find there our own
contributions to almost purity. Much in these two chapters pertains to subjects that
border on — but have, strictly speaking, no intersection with — almost ring theory;
however, at some crucial junctures, the methods developed in the previous chapters
intervene in an essential way and link up the discussion with almost mathematics.
Two notable examples are:
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(a) theorem 6.3.23, that generalizes the relationship between the module of
differentials and the different ideal; this is classical in the case of a finite
separable extension of discrete valuation rings, but new for general valua-
tions of rank one, where the map is not any longer finite, but only almost
finite;

(b) proposition 7.5.15 on the semicontinuity of the discriminant function, for
a finite étale map of rings; again, this is a result of (usual) commutative
algebra, whose statement and proof would both be very ackward without
the machinery of almost rings.

We hope to demonstrate with these samples that almost ring theory has something
to offer even to mathematicians that are not directly involved with p-adic Hodge
theory.

We close with an appendix collecting some miscellanea: a sketch of a theory
of the fundamental group for almost algebras, and the construction of the derived
functors of some standard non-additive functors defined on almost modules.

1.4. The view from above. Inevoking Deligne’s and Gabriel’s works, we have un-
veiled another source of motivation whose influence has steadily grown throughout
the long gestation of our paper. Namely, we have come to view almost ring theory as
a contribution to that expanding body of research of still uncertain range and shift-
ing boundaries, that we could call “abstract algebraic geometry”. We would like to
encompass under this label several heterogeneous developments: notably, it should
include various versions of non-commutative geometry that have been proposed in
the last twenty years (e.g. [70]), but also the relative schemes of [47], as well as
Deligne’s ideas for algebraic geometry over symmetric monoidal categories.

The running thread loosely unifying these works is the realization that ”"geome-
tric spaces” do not necessarily consist of set-theoretical points, and — perhaps more
importantly — functions on such “spaces” do not necessarily form (sheaves of) com-
mutative rings. Much effort has been devoted to extending the reach of geometric
intuition to non-commutative algebras; alternatively, one can retain commutativity,
but allow “structure sheaves” which take values in tensor categories other than the
category of rings.

As a case in point, to any given almost ring A one can attach its spectrum
Spec A, which is just A viewed as an object of the opposite of the category V*-Alg.
Spec A has even a natural flat topology, which allows to define more general almost
schemes by gluing (i.e. taking colimits of) diagrams of affine spectra; all this is ex-
plained in section 5.7, where we also introduce quasi-projective almost schemes and
investigate some basic properties of the smooth locus of a quasi-projective almost
scheme.

By way of illustration, these generalities are applied in section 5.8 in order to
solve a deformation problem for torsors over affine almost group schemes; let us
stress that the problem in question is stated purely in terms of affine objects (i.e.
almost rings and “almost Hopf algebras”), but the solution requires the introduction
of certain auxiliary almost schemes that are not affine.
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2. HOMOLOGICAL THEORY

As explained in the introduction, in order to define a category of almost modu-
les one requires a pair (V, m) consisting of a ring V' and an ideal m C V such
that m = m?. In section 2.1 we collect a few useful ring-theoretic preliminaries
concerning such pairs. In section 2.2 we introduce the category V“-Mod of almost
modules : it is a quotient V-Mod/¥ of the category of V-modules, where ¥ is
the thick subcategory of the V-modules killed by m. V“-Mod is an abelian tensor
category and its commutative unitary monoids, called almost algebras, are the chief
objects of study in this work. The first useful observation is that the localization
functor V-Mod — V“-Mod admits both left and right adjoints. Taken together,
these functors exhibit the kind of exactness properties that one associates to open
embeddings of topoi, perhaps a hint of some deeper geometrical structure, still to be
unearthed.

After these generalities, we treat in section 2.3 the question of finiteness condi-
tions for almost modules. Let A denote an almost algebra, fixed for the rest of this
introduction. It is certainly possible to define as usual a notion of finitely generated
A-module, however this turns out to be too restrictive a class for applications. The
main idea here is to define a uniform structure on the set of isomorphism classes
of A-modules; then we will say that an A-module is almost finitely generated if its
isomorphism class lies in the topological closure of the subspace of finitely gen-
erated A-modules. Similarly we define almost finitely presented A-modules. The
uniform structure also comes handy when we want to construct operators on almost
modules: if one can show that the operator in question is uniformly continuous on
a class ¢ of almost modules, then its definition extends right away by continuity
to the topological closure @ of ¢ This is exemplified by the construction of the
(almost) Fitting ideals for A-modules, at the end of section 2.3.

In section 2.4 we introduce the basic toolkit of homological algebra, beginning
with the notion of flat almost module, which poses no problem, since we do have a
tensor product in our category. The notion of projectivity is more subtle : it turns out
that the category of A-modules usually does not have enough projectives. The useful
notion is almost projectivity: simply one uses the standard definition, except that the
role of the Hom functor is played by the internal alHom functor. The scarcity of
projectives should not be regarded as surprising or pathological: it is quite ana-
logous to the lack of enough projective objects in the category of quasi-coherent
O x -modules on a non-affine scheme X.

Section 2.5 introduces the cotangent complex of a morphism of almost rings, and
establishes its usual properties, such as transitivity and Tor-independent base change
theorems. These foundations will be put to use in chapter 3, to study infinitesimal
deformations of almost algebras.

2.1. Some ring-theoretic preliminaries. Unless otherwise stated, every ring is
commutative with unit. This section collects some results of general nature that will
be used throughout this work.
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2.1.1.  Our basic setup consists of a fixed base ring V' containing an ideal m such
that m? = m. Starting from (2.5.14), we will also assume that m := m ®y mis a
flat V-module.

Example 2.1.2. (i) The main example is given by a non-discrete valuation ring
(V| -|) of rank one; in this case m will be the maximal ideal.

(i1) Take m := V. This is the “classical limit”. In this case almost ring theory
reduces to usual ring theory. Thus, all the discussion that follows specializes to, and
sometimes gives alternative proofs for, statements about rings and their modules.

2.1.3. Let M be a given V-module. We say that M is almost zero ift mM = 0.
A map ¢ of V-modules is an almost isomorphism if both Ker ¢ and Coker ¢ are
almost zero V' -modules.

Remark 2.1.4. (i) It is easy to check that a V-module M is almost zero if and only
if m@y M = 0. Similarly, amap M — N of V-modules is an almost isomorphism
if and only if the induced map m @y M — m®y N is an isomorphism. Notice also
that, if m is flat, then m ~ m.

(ii) Let V" — W be a ring homomorphism. For a V-module M set My, :=
W &y M. We have an exact sequence

(2.1.5) 00— K —-my —mW —0
where K := Tor}'(V/m. W) is an almost zero W-module. By (i) it follows that
m®@y K ~ (mW) @y K ~ 0. Then, applying my @y — and — @y (mW) to
(2.1.5) we derive

My Dw My =~ My Oy (mH') et (mH) Qw (mH')

i.e. myy ~ (mW)™~. In particular, if m is a flat V-module, then (mW )~ is a flat W-
module. This means that our basic assumptions on the pair (V, m) are stable under
arbitrary base extension. Notice that the flatness of m does not imply the flatness of
mW. This partly explains why we insist that m, rather than m, be flat.

2.1.6. Before moving on, we want to analyze in some detail how our basic as-
sumptions relate to certain other natural conditions that can be postulated on the
pair (V, m). Indeed, let us consider the following two hypotheses :

(A) m = m? and m is a filtered union of principal ideals.
(B) m = m? and, for all & > 1, the k-th powers of elements of m generate m.

Clearly (A) implies (B). Less obvious is the following result.

Proposition 2.1.7. (i) (A) implies that wm is flat.
(i1) If m is flat then (B) holds.

Proof. Suppose that (A) holds, so that m = ('Olillll V., where I is a directed set
ae

parametrizing elements z, € m (and o« < 3 & Vi, C Vp). Forany o € I we
have natural isomorphisms

(2.1.8) Vi, ~V/Amy(z,) ~ (Vr,) @y (Va,).



