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Preface

The 13th International Symposium on Graph Drawing (GD 2005) was held in
Limerick, Ireland, September 12-14, 2005. One hundred and fifteen participants
from 19 countries attended GD 2005.

In response to the call for papers the Program Committee received 101 submis-
sions, each detailing original research or a system demonstration. Each submission
was reviewed by at least three Program Committee members; each referee’s com-
ments were returned to the authors. Following extensive discussions, the commit-
tee accepted 38 long papers, 3 short papers and 3 long system demos, each of which
were presented during one of the conference’s 12 sessions. Eight posters were also
accepted and were on display throughout the conference.

Two invited speakers, Kurt Mehlhorn and George Robertson, gave fascinating
talks during the conference. Prof. Mehlhorn spoke on the use of minimum cycle
bases for reconstructing surfaces, while Dr. Robertson gave a perspective, past
and present, on the visualization of hierarchies.

As is now traditional, a graph drawing contest was held during the conference.
The accompanying report, written by Stephen Kobourov, details this year’s con-
test. This year a day-long workshop, organized by Seok-Hee Hong and Dorothea
Wagner, was held in conjunction with the conference. A report on the “Workshop
on Network Analysis and Visualization,” written by Seok-Hee Hong, is included
in the proceedings.

We are indebted to many people for the success of the conference. The Pro-
gram Committee and external referees worked diligently to select only the best
of the submitted papers. The Organizing Committee under the co-chairmanship
of Nikola Nikolov worked tirelessly in the months leading up to the conference.
In particular, a big debt is owed to Aaron Quigley for his Herculean fund-raising
efforts, to Alex Tarassov for his system maintenance, to Karol Lynch for his
web page development, and to Gemma Swift and Nuala Kitson for their ad-
ministrative support and constant good humor. Thanks are also due to Vincent
Cunnane, who opened the conference. Last, but not least, we thank Peter Eades,
who provided valuable direction and kept a steady head throughout.

The conference received assistance from Science Foundation Ireland (Benefac-
tor); Intel Corp., Microsoft Corp. and Tom Sawyer Software (Gold Sponsors);
National ICT Australia, Enterprise Ireland, Féilte Ireland, ILOG Inc., AbsInt
Angewandte Informatik GmbH (Silver Sponsors); Lucent Technologies, Jameson
Irish Whiskey and Dell Inc.

The 14th International Symposium on Graph Drawing (GD 2006) will be held
September 18-20, 2006 in Karlsruhe, Germany, co-chaired by Michael Kaufmann
and Dorothea Wagner.

October 2005 Patrick Healy
Nikola S. Nikolov
Limerick



Steering Committee

Franz-J. Brandenburg
Giuseppe Di Battista
Peter Eades

Hubert de Fraysseix
Patrick Healy
Michael Kaufmann
Takao Nishizeki
Janos Pach

Pierre Rosenstiehl
Roberto Tamassia
Ioannis (Yanni) G. Tollis
Dorothea Wagner

Sue Whitesides

Program Committee

Ulrik Brandes
Giuseppe Di Battista
Peter Eades
Jean-Daniel Fekete
Emden Gansner
Patrick Healy
Seok-Hee Hong
Michael Kaufmann
Jan Kratochvil
Giuseppe Liotta
Kim Marriott
Patrice de Mendez
Petra Mutzel

Jénos Pach

Helen Purchase

Md. Saidur Rahman
Ben Shneiderman
Ondrej Sykora (R.I.P.)
Sue Whitesides
Steve Wismath
David Wood

Organization

Universitat Passau

Universita degli Studi Roma

National ICT Australia Ltd., Univ. of Sydney
Centre d’Analyse et de Mathematique Sociale
University of Limerick

University of Tibingen

Tohoku University

City College and Courant Institute, New York
Centre National de la Recherche Scientifique
Brown University

University of Crete

Universitat Karlsruhe

McGill University

Universitdt Konstanz

Universita degli Studi Roma
NICTA, University of Sydney (Co-chair)
INRIA, Paris

AT&T Labs

University of Limerick (Co-chair)
NICTA, University of Sydney
Universitat Tiibingen

Charles University

Universita degli Studi di Perugia
Monash University

Centre National de la Recherche Scientifique
Universitat Dortmund

City College and Courant Institute
University of Glasgow

BUET

University of Maryland
Loughborough University

McGill University

University of Lethbridge

Universitat Politecnica de Catalunya



X Organization

Organizing Committee

Patrick Healy
Stephen Kobourov
Karol Lynch
Joseph Manning
Nikola S. Nikolov
Aaron Quigley
Gemma Swift
Alexandre Tarassov

Contest Committee

Christian Duncan
Stephen Kobourov
Dorothea Wagner

External Referees

Greg Aloupis
Radoslav Andreev
Christian Bachmaier
Therese Biedl
Manuel Bodirsky
Nicolas Bonichon
Prosenjit Bose
Christoph Buchheim
Markus Chimani
Robert Cimikowski
Pier Francesco Cortese
Jurek Czyzowicz
Walter Didimo
Emilio Di Giacomo
Vida Dujmovié
Adrian Dumitrescu
Zdenék Dvorak

Tim Dwyer

Daniel Fleischer
Michael Forster
Hubert de Fraysseix

University of Limerick (Co-chair)

University of Arizona

University of Limerick

University College Cork
University of Limerick ( Co-chair)
University College Dublin ( Treasury Chair)
University of Limerick
University of Limerick

University of Miami

University of Arizona ( Chair)

Universitat Karlsruhe

Markus Geyer
Carsten Gutwenger
Stefan Hachul
Martin Harrigan
Hongmei He
Nathaline Henry
Petr Hlinény
Martin Hoefer
David Kirkpatrick
Karsten Klein
Yehuda Koren
Katharina Lehmann
Jiirgen Lerner
Karol Lynch

Jifi Matousek
Sascha Meinert
Bernd Meyer
Kazuyuki Miura
Pat Morin
Maurizio Patrignani
Merijam Percan

Christian Pich
Emmanuel Pietriga
Maurizio Pizzonia
Catherine Plaisant
Rados Radoicic
Aimal Tariq Rextin
Bruce Richter
Adrian Rusu

Georg Sander
Thomas Schank
Barbara Schlieper
Karl-Heinz Schmitt
Martin Siebenhaller
Matthew Suderman
Laszlo Szekely
Gabor Tardos
Geza Toth

Imrich Vrto
Michael Wybrow



Organization XI

Sponsoring Institutions

f;\%ﬁ Intal.

science foundation ireland

Tom Sawger

SOFTWARE

(‘w{%gﬁ% Gj ENTERPRISE

IRELAND

S ke
S

6
oy el
Fé I [te I re la n d Changing the rules of business™

a DAL

Absint

Angewandte Informatik GmbH

Lucent Technologies 0
Bell Labs Innovations



Table of Contents

Papers

Crossings and Permutations
Therese Biedl, Franz J. Brandenburg, Xiaotie Deng ................

Morphing Planar Graphs While Preserving Edge Directions
Therese Biedl, Anna Lubiw, Michael J. Spriggs ....................

Dynamic Spectral Layout of Small Worlds
Ulrik Brandes, Daniel Fleischer, Thomas Puppe ...................

Exact Crossing Minimization
Christoph Buchheim, Dietmar FEbner, Michael Jinger,
Gunnar W. Klau, Petra Mutzel, René Weiskircher .................

On Embedding a Cycle in a Plane Graph
Pier Francesco Cortese, Giuseppe Di Battista, Maurizio Patrignani,
Maurizio Pizzonia ...... ... ... ..

On Rectilinear Duals for Vertex-Weighted Plane Graphs
Mark de Berg, Elena Mumford, Bettina Speckmann ................

Bar k-Visibility Graphs: Bounds on the Number of Edges, Chromatic
Number, and Thickness
Alice M. Dean, William Evans, Ellen Gethner, Joshua D. Laison,
Mohammad Ali Safari, William T. Trotter ........................

Drawing K, in Three Dimensions with One Bend Per Edge
Olivier Devillers, Hazel FEverett, Sylvain Lazard, Maria Pentcheva,
Stephen K. Wismath ........... oo

Small Area Drawings of Outerplanar Graphs
Giuseppe Di Battista, Fabrizio Frati .............c.ccouuuiuniino...

Volume Requirements of 3D Upward Drawings
Emilio Di Giacomo, Giuseppe Liotta, Henk Meijer,
Stephen K. Wismath .......... ... i

How to Embed a Path onto Two Sets of Points
Emilio Di Giacomo, Giuseppe Liotta, Francesco Trotta .............



X1V Table of Contents

Upward Spirality and Upward Planarity Testing
Walter Didimo, Francesco Giordano, Giuseppe Liotta...............

Graph Treewidth and Geometric Thickness Parameters
Vida Dujmovié, David R. Wood ........... ... ... .. .c...cvooun..

Stress Majorization with Orthogonal Ordering Constraints
Tim Dwyer, Yehuda Koren, Kim Marriott ........................

Fast Node Overlap Removal
Tim Dwyer, Kim Marriott, Peter J. Stuckey ................ ... ...

Delta-Confluent Drawings
David Eppstein, Michael T. Goodrich, Jeremy Yu Meng ............

Transversal Structures on Triangulations, with Application to
Straight-Line Drawing
Eric FUSY ... oottt e e e

A Hybrid Model for Drawing Dynamic and Evolving Graphs
Marco Gaertler, Dorothea Wagner ............c..cciviiuieeien...

Two Trees Which Are Self-intersecting When Drawn Simultaneously
Markus Geyer, Michael Kaufmann, Imrich Vrto ...................

C-Planarity of Extrovert Clustered Graphs
Michael T. Goodrich, George S. Lueker,
Jonathan Z. Sun ... ..... ..

Non-planar Core Reduction of Graphs
Carsten Gutwenger, Markus Chimani .................cc.coove....

An Experimental Comparison of Fast Algorithms for Drawing General
Large Graphs
Stefan Hachul, Michael Jinger ........... ... ... .0 e ...

Hierarchical Layouts of Directed Graphs in Three Dimensions
Seok-Hee Hong, Nikola S. Nikolov................c...c.oiivn.i..

Layout Effects on Sociogram Perception
Weidong Huang, Seok-Hee Hong, Peter Eades .....................

On Edges Crossing Few Other Edges in Simple Topological Complete
Graphs
Jan Kyncl, Pavel Valtr ......... ... .



Table of Contents XV

On Balloon Drawings of Rooted Trees
Chun-Cheng Lin, Hsu-Chun Yen .......... ..., 285

Convex Drawings of Plane Graphs of Minimum Outer Apices
Kazuyuki Miura, Machiko Azuma, Takao Nishizeki ................. 297

Energy-Based Clustering of Graphs with Nonuniform Degrees
Andreas NOGCK . ... oot e e 309

A Mixed-Integer Program for Drawing High-Quality Metro Maps
Martin Néllenburg, Alexander Wolff ...... .. .. .. ... ... ... ..... 321

Crossing Number of Toroidal Graphs
Jdnos Pach, Géza TOth .. .. ..o 334

Drawing Graphs Using Modular Decomposition
Charis Papadopoulos, Constantinos Voglis......................... 343

Applications of Parameterized st-Orientations in Graph Drawing
Algorithms
Charalampos Papamanthou, Ioannis G. Tollis . .................... 355

Complexity Results for Three-Dimensional Orthogonal Graph Drawing
Maurizio POtTignami . .......ue oo 368

On Extending a Partial Straight-Line Drawing
Mourizio Palrigrami . c.ecas cavws ows o ass sa s smsos eus o sns suis 380

0Odd Crossing Number Is Not Crossing Number
Michael J. Pelsmager, Marcus Schaefer, Daniel Stefankovié ......... 386

Minimum Depth Graph Embeddings and Quality of the Drawings: An
Experimental Analysis
Mourizio PIzZonit s covwsme o5 sasdns g3 g9 ame 055 msvs ims pwsws 09 397

No-bend Orthogonal Drawings of Series-Parallel Graphs
Md. Saidur Rahman, Noritsugu Fgi, Takao Nishizeki ............... 409

Parallel-Redrawing Mechanisms, Pseudo-Triangulations and Kinetic
Planar Graphs
Tleana SEreinu . ... ..o 421

Proper and Planar Drawings of Graphs on Three Layers
Matthew SUETTAT o sviiws vasns asess sasansisvs it st odsmenmons 434



XVI Table of Contents

Incremental Connector Routing
Michael Wybrow, Kim Marriott, Peter J. Stuckey ..................

An Application of Well-Orderly Trees in Graph Drawing
Huaming Zhang, Xin He ... .ccviinivsiovsiinsnsimonsensininvenes

Software Demonstrations

GEOMI: GEOmetry for Maximum Insight
Adel Ahmed, Tim Dwyer, Michael Forster, Xiaoyan Fu, Joshua Ho,
Seok-Hee Hong, Dirk Koschiitzki, Colin Murray, Nikola S. Nikolov,
Ronnie Taib, Alexandre Tarassov, Kai Xu. .. ...

WhatsOnWeb: Using Graph Drawing to Search the Web
Emilio Di Giacomo, Walter Didimo, Luca Grilli,
Giuseppe LIOTta . .. ..ot

Drawing Clustered Graphs in Three Dimensions
Joshua Ho, Seok-Hee HONG . .. ..o

Posters

BLer: A Boundary Labeller for Technical Drawings
Michael A. Bekos, Antonios SYmuvonis .............c.coveuviunina...

D-Dupe: An Interactive Tool for Entity Resolution in Social Networks
Mustafa Bilgic, Louis Licamele, Lise Getoor, Ben Shneiderman ... ...

A New Method for Efficiently Generating Planar Graph Visibility
Representations
John M. BOYET . .ot e

SDE: Graph Drawing Using Spectral Distance Embedding
Ali Civril, Malik Magdon-Ismail, Eli Bocek-Rivele ..................

MultiPlane: A New Framework for Drawing Graphs in Three Dimensions
Seok-Hee HONG : s vurws vasmsini s amisns emssmiss obedsnitiesiomsa

Visualizing Graphs as Trees: Plant a Seed and Watch It Grow
Bongshin Lee, Cynthia Sims Parr, Catherine Plaisant,
Benjamin B. Bederson .............couuuiaiii

On Straightening Low-Diameter Unit Trees
Sheung-HUung PO0T v wsme s susowrmsngimsmiams oo sd&ims £ 5566 056,555



Table of Contents

Mixed Upward Planarization - Fast and Robust

Martin Siebenhaller, Michael Kaufmann .........................

Workshop on Network Analysis and Visualisation

Network Analysis and Visualisation

Seok-Hee HONG . ..ot e e e

Graph Drawing Contest

Graph-Drawing Contest Report

Christian A. Duncan, Stephen G. Kobourov, Dorothea Wagner .. ...

Invited Talks

Minimum Cycle Bases and Surface Reconstruction

Kurt Mehlhorn . ...

Hierarchy Visualization: From Research to Practice

George G. RODETESOM ... ..o uivii i

Author Index . ... ... .

XVIIL



Crossings and Permutations*

Therese Biedl!, Franz J. Brandenburg?, and Xiaotie Deng®

1 School of Computer Science, University of Waterloo, ON N2L3G1, Canada
biedl@uwaterloo.ca
2 Lehrstuhl fiir Informatik, Universitit Passau, 94030 Passau, Germany
brandenb@informatik.uni-passau.de
3 Department of Computer Science, City University of Hong Kong,
83 Tat Chee Avenue, Kowloon Tong, Hong Kong, SAR, China
csdeng@cityu.edu.hk

Abstract. We investigate crossing minimization problems for a set of
permutations, where a crossing expresses a disarrangement between ele-
ments. The goal is a common permutation 7* which minimizes the num-
ber of crossings. This is known as the Kemeny optimal aggregation prob-
lem minimizing the Kendall-7 distance. Recent interest into this problem
comes from application to meta-search and spam reduction on the Web.

This rank aggregation problem can be phrased as a one-sided two-
layer crossing minimization problem for an edge coloured bipartite graph,
where crossings are counted only for monochromatic edges.

Here we introduce the max version of the crossing minimization prob-
lem, which attempts to minimize the discrimination against any permuta-
tion. We show the NP-hardness of the common and the max version for & >
4 permutations (and k even), and establish a 2-2/k and a 2-approximation,
respectively. For two permutations crossing minimization is solved by in-
specting the drawings, whereas it remains open for three permutations.

1 Introduction

One-sided crossing minimization is a major component in the Sugiyama algo-
rithm. The one-sided crossing minimization problem has gained much interest
and is one of the most intensively studied problems in graph drawing [8, 15]. For
general graphs the crossing minimization problem is known to be NP-hard [13].
The NP-hardness also holds for bipartite graphs where the upper layer is fixed,
and the graphs are dense with about n1n2/3 crossings [10], or alternatively, the
graphs are sparse with degree at least four on the free layer [17]. The special
case with degree 2 vertices on the free layer is solvable in linear time, whereas
the degree 3 case is open.

The rank aggregation problem finds a consensus ranking on a set of alterna-
tives, based on preferences of individual voters. The roots for a mathematical

* The work of the first author was supported by NSERC, and done while the author
was visiting Universitdt Passau. The work of the second and third authors was
partially supported by a grant from the German Academic Exchange Service (Project
D/0506978) and from the Research Grant Council of the Hong Kong Joint Research
Scheme (Project No. G_HK008/04).

P. Healy and N.S. Nikolov (Eds.): GD 2005, LNCS 3843, pp. 1-12, 2005.
© Springer-Verlag Berlin Heidelberg 2005



2 T. Biedl, F.J. Brandenburg, and X. Deng

investigation of the problem lie in voting theory and go back to Borda (1781) and
Condorcet (1785). Rank aggregations occur in many contexts, including sport,
voting, business, and most recently, the Internet. ”Who is the winner?” In gym-
nastics, figure skating or dancing this is decided by averaging or ranking the
points of the judges. In Formula 1 racing and similarly at the annual European
Song Contest the winner is who has the most points. Is this scheme fair? Why
not deciding the winner by the majority of first places?

Also, the organizers of GD2005 are confronted with our crossing minimization
problem. They have to make many decisions. For example, which beer (wine,
food) shall be served at the GD conference dinner? What is the best choice for
the individual taste of the participants? Or, more specific: which beer is the best?

In their seminal paper from the WWW10 conference, Dwork et al. [9] have
used rank aggregation methods for web searching and spam reduction. A search
engine is called good if it behaves close to the aggregate ranking of several
search engines. Besides experimental results they have investigated the theo-
retical foundations of the rank aggregation problem. One of the main results is
the NP-hardness of computing a so-called Kemeny optimal permutation of just
four permutations, here called PCM-4. However, the given proof has some flaws,
and is repaired here. In addition, we show a relationship to the feedback arc
set problem and establish a 2-2/k approximation, which is achieved by the best
input permutation.

The common rank aggregation methods take the sum of all disagreements over
all permutations. Here we introduce the mazimum version, PCMyax-k, which
expresses a fair aggregation and attempts to avoid a too severe discrimination
of any participant or permutation. With the optimal solution, nobody should
be totally unhappy. We show the NP-hardness of PCMax-k for all £ > 4 and
establish a 2-approximation, which is achieved by any input permutation. This
parallels similar results for the Kemeny aggregation problem [1,9] and for the
Coherence aggregation problem [5]. The case PCMax-2 with two permutations
is efficiently solvable, whereas the case k = 3 remains open.

Besides the specific results, this work aims to bridge the gap between the
combinatorics of rank aggregations and crossing minimizations in graph drawing,
with a mutual exchange of notions, insights, and results.

In Section 2 we introduce the basic notions from graph drawing and rank
aggregations, and show how to draw rank aggregations. In Section 3 we state the
NP-hardness of the crossing minimization problems for just four permutations,
and prove the approximation results, and in Section 4 we investigate the special
cases with two and three permutations.

2 Preliminaries

Given a set of alternatives U, a ranking m with respect to U is an ordering of
a subset S of U such that 7 = (z1,z2,...,2,) with z; > z;41, if z; is ranked
higher than z;4; for some total order > on U.
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For convenience, we assign unique integers to the items of U and let U =
{1,...,n}. We call m a (full) permutation, if S = U, and a partial permutation,
if S C U. A permutation is represented by an ordered list of items, where the
rank of an item is given by its position in the ordered list, with the highest, most
significant, or best item in first place.

The rank aggregation or the crossings of permutations problem is to combine
several rankings 71, ..., m on U, in order to obtain a common ranking 7*, which
can be regarded as the compromise between the rankings. The goal is the best
possible common ranking, where the notion of ‘better’ depends on the objective.
It is formally expressed as a cost measure or a penalty between the m; and 7*;
the common version takes the sum of the penalties, the max version is introduced
here. Several of these criteria have a correspondence in graph drawing.

A prominent and frequently studied criterion is the Kendall-7 distance [3, 5,9,
16]. The Kendall-T distance of two permutations over U = {1,...,n} measures
the number of pairwise disagreements or inversions, K (m,7) = [{(u,v) | m(u) <
m(v) and 7(u) > 7(v)}|. This value is invariant under renaming, or the application
of a permutation ¢ on both 7 and 7, and such that 7 becomes the identity.
For a set of permutations P = {m,..., 7} this generalizes by collecting all
disagreements, K (P, 7*) = 2?:1 K (m;,m*).

The value K (P, 7*) can be expressed in various ways. For every pair of distinct
items (u, v), the agreement Ap(u,v) is the number of permutations from P which
rank u higher than v, and the disagreement is Dp(u,v) = k — Ap(u,v). Clearly,
the agreement on (u,v) equals the disagreement on the reverse ordering (v, u).
For every (unordered) pair of items, let A(u,v) = |k — 2Ap(u,v)| express the
difference between the agreement and the disagreement of u and v.

There is an established lower bound for the number of unavoidable crossings
for the permutations of P, which is the sum over the least of the agreements and
disagreements,

LB(P) = Z min{Ap(u,v), Dp(u,v)}.

u<v

Then the disagreement against a common permutation 7* is

K(P,m*) = LB(P) + > A(u,v).

7*(u)<m*(v) and Dp (u,w)>Ap(u,v)

Thus A(u,v) is added as a penalty if 7* disagrees with the majority of the
permutations. If there is a tie for the ranking of u and v in P, then just the term
from the lower bound is taken into account.

Recall that for the crossing minimization problem of two layered graphs the
agreement and disagreement of two free vertices u and v is the crossing number
of the edges incident with u and v and placing u left of v, or vice versa. The so
obtained lower bound is often ‘good’ and close to the optimum value [14].

Another popular measure for the distance between permutations is the Spear-
man footrule distance, which accumulates the linear arrangement or the length
between two permutations over {1,...,n} by f(7,7) = 3. |r(i) — 7(i)|. Again
this extends to a set P of permutations by summation f(P, 7*) = Z?:l flmi, 7).
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These measures can be scaled by individual weights, and they can be ex-
tended to partial permutations 71, ..., 7, where each permutation operates on
its subset of the universe, see [9].

Given a set of (full or partial) permutations P = {m,..., 7t} on a universe
U = {1,...,n}, the crossing number of P is the number of crossings against
the best permutation m* with respect to the Kendall-7-distance, i.e., CR(P) =
min,~ K(P,7*). The crossing minimization problem is finding such a permuta-
tion 7*. We will refer to the crossing minimization problem of k permutations
as the PCM-k problem.

A new cost measure is the maz crossing number, which attempts to minimize
the number of crossings for any permutation. For a set of k permutations P
and a target permutation 7* let Ko (P, 7*) = max{K(m;, 7*)|m; € P} and
define the max crossing number of P by CRpmaz(P) = ming. Kpez (P, 7*). The
permutation 7* giving the value C'R,,q.(P) is a solution to the max crossing
minimization problem. This problem is referred to as the PCMy ax-k problem.
One could similarly consider a maximum version for the Spearman footrule dis-
tance; we have not investigated the latter further.

The following fact is readily seen.

Lemma 1. For a set of k permutations P = {my,..., Tk},
CRma:r(P) < CR(P) < k- CRmaI(P)-

The crossing number represents an aggregation, which is the best compromise
for the given lists of preferences and minimizes the number of disagreements.
The minimal number of crossings does not necessarily distribute them uniformly
among the given permutations; one can construct examples where C R4, (P) >
[CR(P)/2] and not CRpmaz(P) = [CR(P)/k] as one would hope. The latter
equation holds for £ = 2. The objective behind the max crossing number is
an aggregation, which is fair and treats every permutation equally well and
minimizes the discrimination of each participant. Clearly, both objectives can
be combined to the best possible permutation 7* which minimizes the sum of
crossings and then balances their distribution.

2.1 Drawing Permutations

We now translate rank aggregations to graph drawing. Two permutations m and
7 on a universe U = {1,...,n} are drawn as a two-layer bipartite graph with the
vertices 1,...,n on each layer in the order given by 7 and 7 and a straight-line
edge between the two occurrences of each item v on the two layers.

A set of k permutations 7y, ..., 7, and a common permutation 7* are repre-
sented by a sequence of pairs of permutations, where the lower layer is fixed in all
drawings. For convenience, we let the lower layer be the identity with 7*(i) = 1.
We can merge the permutations into the coloured permutation graph G, which
is a bipartite graph with k edge colours, such that there are vertices 1,...,n on
each layer. There is an edge in the i-th colour between u on the upper layer and
j on the lower layer if and only if m;(u) = j. See also Fig. 1.
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Fig. 1. Coloured permutation graph for m = (6,3,1,4,2,5) (green and solid), m2 =
(3,5,2,6,1,4) (blue and dashed), and 73 = (4,1,5,3,6,2) (red and dotted)

Obviously, for two full or partial permutations 7 and 7, the Kendall-7 dis-
tance K (m, *) is the number of edge crossings in a straight-line drawing of their
bipartite graph. It ranges between 0 and n(n —1)/2 and can be efficiently com-
puted either by accumulating for every ¢ the number of items, which are greater
than 3 and occur to the left of 7 in 7, provided 7* is the identity, or by techniques
from counting crossings in two-layer graphs in [21].

Lemma 2. The Kendall-t distance K(m,7*) of two permutations over U =
{1,...,n} can be computed in O(nlogn) time.

2.2 Penalty Graphs

There is a direct relationship between the crossing minimization problem and the
feedback arc set problem, which has been established at several places. Recall that
the feedback arc set problem is finding the least number of arcs F' in a directed
graph G = (V, E), such that every directed cycle contains at least one arc from
F, ie., the graph G' = (V,E — F) is acyclic. In the more general weighted
case, the objective is a set of arcs with least weight. In the two-layer crossing
minimization problem, the penalty graph has arcs with weights corresponding to
the difference between the number of crossings among the edges incident with
two vertices u and v, if u is placed left of v, or vice versa.

In their seminal paper, Sugiyama et al. [20] have introduced the penalty di-
graph for the two-layer crossing minimization problem, and in [2] it is used for
voting tournaments. Demetrescu and Finocchi [6] have used this approach for
the two-sided crossing minimization problem and have tested several heuristics.
Recently, Ailon et al. [1] have established improved randomized approximations
for aggregation and feedback arc set problems.

For the crossing minimization problem for permutations, the penalty graph
can be applied in the same spirit, but we use the difference in the majority counts
A(u,v) as edge weights. Thus, for a set of permutations P over {1,...,n} the
penalty digraph of P is a weighted directed graph H = (V, A, w) with a vertex for
each item u and an arc (u,v) with weight A(u,v) if and only if a strict majority
of permutations rank u higher than v, i.e., if (u —v) - (Dp(u,v) — Ap(u,v)) <
0. Let w(FAS(P)) denote the weight of the optimum feedback arc set in the
penalty digraph.



