Encyclopedia of Chemical Processing and Design

23

Executive Editor John J. McKetta

Encyclopedia of Chemical Processing and Design

EXECUTIVE EDITOR
ASSOCIATE EDITOR

John J. McKetta William A. Cunningham

23

Fluid Flow, Two-Phase Design to Froth Flotation

MARCEL DEKKER, INC.

NEW YORK AND BASEL

Library of Congress Cataloging in Publication Data (Revised)

Main entry under title:

Encyclopedia of chemical processing and design.

Includes bibliographical references.

1. Chemical engineering—Dictionaries. 2. Chemistry, Technical—Dictionaries. I. McKetta, John J. II. Cunningham, William Aaron.

II. Cunningham, William Aaron. TP9.E66 660.2'8'003

75-40646

ISBN 0-8247-2451-8 (v. 1)

COPYRIGHT © 1985 by MARCEL DEKKER, INC. ALL RIGHTS RESERVED.

Neither this book nor any part may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, microfilming, and recording, or by any information storage and retrieval system, without permission in writing from the publisher.

MARCEL DEKKER, INC. 270 Madison Avenue, New York, New York, 10016

LIBRARY OF CONGRESS CATALOG CARD NUMBER: 75-40646 ISBN: 0-8247-2473-9

Current printing (last digit): 10 9 8 7 6 5 4 3 2 1

PRINTED IN THE UNITED STATES OF AMERICA

International Advisory Board

RAY C. ADAM

Chairman of the Board N L Industries, Inc. New York, New York

M. A. ALLAWALA

Managing Director National Refinery Ltd. Karachi, Pakistan

HAMED H. AMER

Chairman Agiba Petroleum Co. Cairo, Egypt

R. G. ANTHONY

Professor, Department of Chemical Engineering Texas A & M University College Station, Texas

H. J. AROYAN

Vice President Chevron Research Company Richmond, California

F. SID ASKARI

President
Technolog, Inc.
Engineering and Industrial Consultants
Tehran, Iran

DONALD L. BAEDER

Executive Vice President—Science and Technology Occidental Petroleum Corporation Los Angeles, California

Wm. A. BAILEY, Jr.

Former Director, MTM Process Research and Development Lab Shell Development Company Houston, Texas

TRAVIS W. BAIN

Vice President National Sales, Inc. Jackson, Mississippi

GAREN BALEKJIAN

C. F. Braun Arcadia, California

CESAR BAPTISTE

Vice President Petroleos Mexicanos Mexico City, Mexico

LEON R. MARTINEZ BASS

Sales Manager—Northern Mexico Zincamex, S. A. Saltillo, Mexico

ROBERT O. BATHIANY

Technical Planner Weyerhauser Company Tacoma, Washington

LUCIANO BENINCAMPI

Manager of Public Relations CTIP—Compagnia Tecnica Industrie Rome, Italy

LLOYD BERG

Professor Department of Chemical Engineering Montana State University Bozeman, Montana

NEIL S. BERMAN

Professor of Engineering Engineering Center Arizona State University Tempe, Arizona

D. J. BLICKWEDE

Vice President and Director of Research Bethlehem Steel Corp. Bethlehem, Pennsylvania

M. J. P. BOGART

Fluor Engineers and Constructors, Inc. Santa Ana, California

Z. D. BONNER

Vice Chairman of the Board Tesoro Petroleum Corp. San Antonio, Texas

JOSEPH F. BOSICH

Consultant Humble, Texas

ARCHIE BROODO

President AID, Inc. Dallas, Texas

WARREN B. BROOKS

Manager, Computer and Telecommunications Department Vice President Mobil Telecom Inc. Mobil Oil

New York, New York ARTHUR W. BUSCH

Environmental Engineer Consultant Dallas, Texas

ROBERT C. BUTLER

Administrative Assistant and Planning Manager, Petroleum Chemicals Division

E. I. du Pont de Nemours and Co. Wilmington, Delaware

J. MORSE CAVENDER

President The Mactan Company Dusseldorf, Federal Republic of Germany

PRAMOTE CHAIYAVICH

Chief Technologist The Tahi Oil Refinery Co., Ltd. Bangkok, Thailand

FRANK CHRENCIK

Vulcan Materials Co. Birmingham, Alabama

C. W. COOK

Chairman, Executive Committee General Foods Corp. White Plains, New York

EARL J. COUCH

Research Associate Mobil Research and Development Corp. Dallas, Texas

JAMES R. COUPER

Professor Department of Chemical Engineering University of Arkansas Fayetteville, Arkansas

HORACE R. CRAWFORD

Senior Staff Engineer CONOCO, Inc. Houston, Texas

CALVIN S. CRONAN

Editorial Director Chemical Engineering, A McGraw Hill Publication New York, New York

ORAN L. CULBERSON

Chemical Engineer Oak Ridge National Lab Chemical Technology Division Oak Ridge, Tennessee

DONALD A. DAHLSTROM

Vice President, Research and Development
Process Equipment Group
Envirotech Corp.
Salt Lake City, Utah

PERRY P. DAWSON

Production Engineer Dow Chemical Co. Freeport, Texas

ELBERT M. DeFOREST

Director of Technology, Chemicals and Metals Vulcan Materials Co. Wichita, Kansas

ROBERT G. DENKEWALTER

Corporate Vice President— Technology Allied Corp. Morristown, New Jersey

J. P. de SOUSA

Publisher Chemical Age of India Technical Press Publication Bombay, India

JAMES D. D'IANNI

Former Director of Research The Goodyear Tire and Rubber Co. Akron, Ohio

JUAN M. DIAZ

Production General Manager Rohm and Haas Mexico, S. A. C. V. Mexico City, Mexico

WERNER DIMMLING

Dipl-Chemist
Friedrich Uhde GmbH
Dortmund, Federal Republic of Germany

BARRETT S. DUFF

Barrett S. Duff and Associates South Pasadena, California

P. K. DUTTA

Project Manager Chemical and Metallurgical Design Company, Private Ltd. New Delhi, India

WALTER EMRICH

Consultant Teterboro, New Jersey

E. FREDERICO ENGEL

Member of the Board of Management Chemische Werke Hüls AG Marl, Federal Republic of Germany

P. E. G. M. EVERS

Operations Manager Anzo Salt Chemical Delfzÿl Delfzÿl, The Netherlands

ALEXANDRE EVSTAFIEV

Director, Division of Technological Research and Higher Education UNESCO—Paris Paris, France

GERALD L. FARRAR

President

Gerald L. Farrar & Associates, Inc. Tulsa, Oklahoma

LOUIS FEUVRAIS

Directeur Général Ecole Nationale Supér

Ecole Nationale Supérieure D'Arts et Métiers

Paris, France

R. A. FINDLAY

Former Director, Fuels and Lubricants, Research and Development Phillips Petroleum Company Bartlesville, Oklahoma

WILLIAM B. FRANKLIN

Former Technical Manager of Baytown Refinery Exxon Company USA Baytown, Texas

DONALD E. GARRETT

President
Saline Processors
Ojai, California

L. W. GARRETT, Jr.

President Garrett Associates, Inc. San Mateo, California

JACOB M. GEIST

President Geist TEC Allentown, Pennsylvania

ION GHEJAN

Department of Chemical Engineering Institute of Petroleum, Gas, and Geology Bucharest, Romania

B. GENE GOAR

Goar, Arrington, and Associates, Inc. Tyler, Texas

MARCEL GOLDENBERG

SAMIN Corp., Inc. New York, New York

WILHELM GRAULICH

Director, Manager, Rubber Division Bayer AG Leverkusen, Federal Republic of Germany

Ecverkusen, rederar Republic of Ge

E. HENRY GROPPE

Groppe, Long, & Littell Houston, Texas

GIANFRANCO GUERRERI

INGECO Altech Group Societa per Azioni Con Sede in Milano Milan, Italy

KENNETH M. GUTHRIE

Cost Consultant Marina Del Rey, California

NORMAN HACKERMAN

President Rice University Houston, Texas

VLADIMIR HAENSEL

Vice President, Science and Technology Universal Oil Products Co. Des Plaines, Illinois

HENRY E. HALEY

Vice President Arthur D. Little, Inc. Cambridge, Massachusetts

R. L. HARVEL

Project Manager Dow Chemical International Ltd. Tokyo, Japan

J. W. HAUN

Vice President and Director of Engineering
General Mills, Inc.
Minneapolis, Minnesota

RUSSELL F. HECKMAN

Consulting Engineer Littleton, Colorado

TERUAKI HIGUCHI

President Japan Fody Corp.

JOHN R. HILL Jr.

Osaka, Japan

President and Chief Executive Officer Gifford-Hill & Co., Inc. Dallas, Texas

HAROLD L. HOFFMAN

Refining Editor Hydrocarbon Porcessing Houston, Texas

A. B. HORN, Jr.

Director—Vice President Ethyl Corporation Baton Rouge, Louisiana

NORBERT IBL

Professor

Eidg. Techn. Hochschule Zürich Techn.—Chemie Zürich, Switzerland

RUBEN F. INGA

Jefe División Téchnica-Technical Director de Refinería La Pampilla Petroleos del Peru Lima, Peru

JAMES R. JOHNSON

Former Executve Scienctist and Director, Advanced Research Programs Laboratory

3M Company, Central Research Labs Saint Paul, Minnesota

NAJI A. KADIR

President Scientific Research Council Baghdad, Iraq

JOHN E. KASCH

Vice President Standard Oil Indiana Escondido, California

RAPHAEL KATZEN

Managing Partner Ralph Katzen Associates Cincinnati, Ohio

JOHN J. KELLY

Department of Chemical Engineering University College, Dublin Dublin, Ireland

O. P. KHARBANDA

O. P. Kharbanda & Associates Cost and Management Consultants Bombay, India

WLODZIMIERZ KISIELOW

Professor of Petroleum Technology, Director of Research Department of Petroleum and Coal Centre of Polish Academy of Sciences Krzywoustego, Poland

MOHAN SINGH KOTHARI

Chief Consultant Punjab Industrial Consultancy Organisation Chandigarh, India

A. P. KUDCHADKER

Professor of Chemical Engineering and Dean of Student Affairs Indian Institue of Technology, Kan-Kanpur Kanpur, India

RALPH LANDAU

Chairman Halcon International, Inc. New York, New York

W. S. LANIER

Project Manager Seadrift Expansion Projects Union Carbide Corp. Houston, Texas

CLARK P. LATTIN, Jr.

President

The M. W. Kellogg Company

Houston, Texas

ISIDORO LAZARRAGA-LEANZA

Chief of Engineering and Control Empresa Nacional del Petroleo Viña del Mar, Chile

JEAN Le BRETON

Managing Director Elf Aquitaine Indonesie Jakarta, Indonesia

IRV LEIBSON

Vice President Petroleum, Inc.

Houston, Texas

PIERRE Le PRINCE

Director of Refining and Engineering Center

Institut Française du Petrole Malmaison, Françe

C. E. LETSCHER

Caltex Petroleum Company New York, New York

C. J. LIDDLE

White Young & Partners Ltd. Herts, England

DAVID C. K. LIN

Senior Engineer Owens Corning Fiberglass Corp. Newark, Ohio

CHARLES E. LOEFFLER

Technical Manager Celanese Chemical Company Pampa, Texas

T. N. LOLADZE

Vice-Rector, Professor of the Georgian Polytechnic Institue Tbilisi, USSR

STANLEY L. LOPATA

Chairman of the Board Carboline Company Saint Louis, Missouri

PHILIPS S. LOWELL

Consultant Austin, Texas

W. D. LUEDEKE

Former Planning Manager E. I. du Pont de Nemours Wilmington, Delaware

BRYCE I. MacDONALD

Manager, Environmental Engineering General Electric Company Fairfield, Connecticut

R. N. MADDOX

Sheerar Professor School of Chemical Engineering Oklahoma State University Stillwater, Oklahoma

F. DREW MAYFIELD

Drew Mayfield & Associates Baton Rouge, Louisiana

GUY McBRIDE

President Emeritus Colorado School of Mines Golden, Colorado

R. A. McKETTA

Chemical Engineer Purvin & Gertz, Inc. Houston, Texas

CLYDE McKINELY

Director, Allentown Labs Air Products and Chemicals, Inc. Allentown, Pennsylvania

RICARDO MILLARES

President Papel Satinado, S. A. Mexico City, Mexico

ROBERT L. MITCHELL

Vice Chairman of the Board Celanese Corp. New York, New York

RICHARD MOLLISON

General Manager Colpapel, S.A. Pereira, Columbia

M. PORTIS MORELAND

Process Engineer Worley Engineering, Inc. Houston, Texas

CARLOS EPSTEIN MURGUIA

General Manager and President of the Board Industrias Guillermo Murguia, S. A.

Naucalpan, Mexico TAKAYUKI NATE

Plastics Sales Department Tonen Petrochemical Co. Ltd. Tokyo, Japan

JAMES K. NICKERSON

Research Associate Esso Research and Engineering Company Summit, New Jersey

ALEX G. OBLAD

Distinguished Professor of Chemistry Mining, and Fuels Engineering University of Utah Salt Lake City, Utah

H. E. O'CONNEL

Former President Tenneco Chemicals Inc. Houston, Texas

I. O. OLADAPO

Dean of Engineering University of Lagos Lagos, Nigeria

GORDON F. PALM

President Gordon F. Palm & Associates Lakeland, Florida

F. F. PAPA-BLANCO

Advisor of Educational Technology Instituto Latino Americano de la Communicacion Educativa Mexico City, Mexico

MARCELLO PICCIOTTI

Technical Promotion Manager TechniPetrol-Rome Rome, Italy

THOMAS C. PONDER

Petrochemicals Editor Hydrocarbon Processing Houston, Texas

R. G. H. PRINCE

Professor, Head of Department Chemical Engineering University of Sydney Sydney, Australia

J. S. RATCLIFFE

Professor of Chemical Engineering University of New South Wales Kensington, Australia

FRANCIS E. REESE

Vice President and Managing Director International Monsanto Company Saint Louis, Missouri

AURELIO REITER

Former Research Manager of Esso Standard Italiana Roma-Italy Rome, Italy

LARRY RESEN

Consultant Wilton, Connecticut

FRANK S. RIORDAN, Jr.

Director, Technology Planning Monsanto Textiles Company Saint Louis, Missouri

LOUIS R. ROBERTS

Director, Planning and Source Evaluation Texas Air Control Board Austin, Texas

RICCARDO ROBITSCHEK

Direttore Divisione Resine Societa Italiana Resine Milano, Italy

ROBERTO RODRIQUEZ

INTEVEP

Caracas, Venezuela

GERHARD ROUVÉ

Director of the Institute for Water Resources Development Technical University Aachen Aachen, Federal Republic of Germany

HIDESHI SATO

General Manager Technical Information Office Technical Development Department Nippon Steel Corp. Tokyo, Japan

GEORGE E. SCHAAL

Manager, Research and Development Produits Chimiques Ugine Kuhlmann Pierre-Benite, France

GERT G. SCHOLTEN

Managing Director Edeleanu Gesellschaft mbH Frankfurt/Main, Federal Republic of Germany

MICHAEL W. SWARTZLANDER

Staff Engineer Union Carbide Corp. South Charleston, West Virginia

M. L. SHARRAH

Senior Vice President Continental Oil Company Stamford, Connecticut

JOHN W. SHEEHAN

Vice President, Manufacturing and Marketing Champlin Petroleum Company Kerrville, Texas

PIERRE SIBRA

Designer Esso Engineering Services Ltd. Surrey, England

PHILLIP M. SIGMUND Chemical Engineering Department University of Calgary

Alberta, Canada

ARTHUR L. SMALLEY, Jr.

President Matthew Hall Inc. Houston, Texas

CARL I. SOPCISAK

Technical Consultant Synthetic Fuels Wheat Ridge, Colorado

PETER H. SPITZ

Chemicals Systems Inc. Tarrytown, New York

JOSEPH E. STEINWINTER

Personnel Senior Coordinator C. F. Braun & Company Alhambra, California

SAM STRELZOFF

Consultant Marlboro, Vermont

Y. S. SURY

CIBA-Geigy Chemical Corp. Saint Gabriel, Louisiana

T. SZENTMARTONY

Associate Professor Technical University Budapest Budapest, Hungary

M. TAKENOUCHI

General Manager of Manufacturing Department Maruzen Oil Co., Ltd. Tokyo, Japan

SOONTHORN THAVIPHOKE

Managing Director S. Engineering Services Co., Ltd. Bangkok, Thailand

ROBERT S. TIMMINS

Core Laboratory Aurora, Colorado

T. W. TOMKOWIT

Manager-Logistics Section Chemicals and Pigments Dept. E. I. du Pont de Nemours Wilmington, Delaware

A. A. TOPRAC

Interchem-Hellas Athens, Greece

YORGI A. TOPRAKCLOGLU

Chairman of the Board of Directors Marshall Boya ve Vernik Sanayii A. S. Istanbul, Turkey

GOPAL TRIPAHTI

Vice Chancellor Lucknow University Lucknow, India

HERNANCO VASQUEZ-SILVA

President Hernando Vasqez & Associates, Ltd. Bogota, Colombia

M. A. VELA

President VELCO Engineering, Inc. Houston, Texas

JUAN JOSE URRUELA VILLACORTA

Ingeniero Fabrica de Jabon "La Luz, S.A." Guatemala

S. P. VOHRA

Managing Director Bakelite Hylam, Ltd. Bombay, India

A. L. WADDAMS

Manager, Marketing Services Division BP Chemicals International Ltd. London, England

T. J. WALKER

Production Manager Dow Chemical Europe S. A. Zürich, Switzerland

JAMES D. WALL

Gas Processing Editor Hydrocarbon Processing Gulf Publishing Company Houston, Texas

J. C. WALTER, Jr. Walter Oil & Gas Corp. Houston, Texas

THEODORE WEAVER

Director of Licensing Fluor Corporation Los Angeles, California

ALBERT H. WEHE

Chief, Cost and Energy U. S. Government Raleigh, North California

GUY. E. WEISMANTEL

President Weismantel International Houston, Texas

PAUL B. WEISZ

Distinguished Professor Chemical and Bio-Engineering Science University of Pennsylvania Philadelphia, Pennsylvania

D. L. WILEY

Senior Vice President Union Carbide Corp. College Station, Texas

JACK C. WILLIAMS

Former Vice President Texaco, Inc. Houston, Texas

MASAMI YABUNE

Section Head, Technical Section Tonen Pertochemical Co., Ltd. Tokyo, Japan

LEWIS C. YEN

Manager, Technical Data M. W. Kellogg Company Houston, Texas

STANLEY B. ZDONIK

Vice President and Manager Process Department Stone and Webster Engineering Corp. Boston, Massachusetts

- Adolfo Aguilo, Ph.D., Section Leader, Celanese Chemical Company Technical Center, Corpus Christi, Texas: Formic Acid
- Burton W. Arnold, P.E., Senior Research Engineer, Shell Development Company, Houston, Texas: Fluidized Beds, Optimum Catalyst Fines Recovery
- Richard C. Davis, Richard C. Davis Associates, Research Triangle Park, North Carolina: Forecasting and Planning, Technological
- Ralph C. Downing, Research Associates, Chemicals and Pigments Department, E. I. du Pont de Nemours and Co., Inc., Wilmington, Delaware: Fluorocarbons
- Harry F. Fabisch, P.E., Supervising Control Systems Engineer, Fluor Engineers Inc., Irvine, California: Fluidics
- James R. Fair, Ph.D., P.E., Ernest & Virginia Cockrell Chair Professor, Chemical Engineering Department, The University of Texas at Austin, Austin, Texas: Formaldehyde
- Stig E. Friberg, Curator's Distinguished Professor, Chemistry Department, University of Missouri, Rolla, Missouri: Foams
- V. Ganapathy, Heat Transfer Specialist, ABCO Industries, Abilene, Texas: Fluidized Bed Combustors, Performance of; Fluidized Beds, Estimating Velocity
- John E. Gwyn, Ph.D. P.E., Senior Research Associate, Shell Development Company, Houston, Texas: Fluidized Beds, Optimum Catalyst Fines Recovery
- J. S. Halow, Ph.D., Chief of Coal Conversion Projects Branch, Morgantown Energy Technical Center, D. O. E., Morgantown, West Virginia: Fluidized Beds and Gas Particle Systems
- Theodore Horlenko, Staff Chemist, Celanese Chemical Company Technical Center, Corpus Christi, Texas: Formic Acid
- Robert Kern, Hoffman-La Roche, Inc., Nutley, New Jersey: Fluid Flow, Two-Phase Design
- C. Judson King, Sc.D., Professor of Chemical Engineering and Dean, College of Chemistry, University of California, Berkeley, California: Freeze Drying
- Richard C. Kmetz, Senior Process Specialist, Monsanto Company, Springfield, Massachusetts: Formaldehyde

- John A. Kremers, P.E., Manager of Application Engineering, Armstrong Machine Works, Three Rivers, Michigan: Fluid Flow, Water Hammer
- Robert Lemlich, Ph.D., P.E., Professor of Chemical Engineering, University of Cincinnati, Cincinnati, Ohio: Foam Fractionation
- Paul Liang, Chemistry Department, University of Missouri, Rolla, Missouri: Foams
- Frederich W. Mader, Research Fellow, Chemicals and Pigments Department, E. I. du Pont de Nemours and Co., Inc., Wilmington, Delaware: Fluorocarbons
- J. M. Matsen, Ph.D., Engineering Associate, Exxon Research and Engineering Company, Florham Park, New Jersey: Fluidized Beds and Gas Particle Systems
- Gregory W. May, Senior Structural Engineer, Brown & Root, Inc., Houston, Texas: Foundation Design for Vessels
- Charles W. McKetta, Ph.D., Associate Professor of Forest Economics/Management, University of Idaho, Forest Resources Department, Moscow, Idaho: Forest Products: Economics of Timber Supply
- John J. McKetta, Ph.D., P.E., The Joe C. Walter Professor of Chemical Engineering, The University of Texas at Austin, Austin, Texas: Flourine; Fluorspar
- S. R. Rao, Visiting Scientist, Colorado School of Mines, Golden, Colorado: Froth Flotation
- S. J. Rossetti, Ph.D., Senior Staff Engineer, Exxon Research and Engineering Company, Florham Park, New Jersey: Fluidized Beds and Gas Particle Systems
- Rafik Soliman, P.E., Principal Process Engineer, Fluor Engineers, Inc., Houston, Texas: Fluid Flow, Two-Phase Pressure Drop Computation
- **Thomas E. Taylor, P.E.,** Senior Engineer, Foster Wheeler Development Corp., Livingston, New Jersey: *Fluidized Bed Combustion*
- Thaddeus W. Tomkowit, Logistics Manager, Chemicals and Pigments Department, E. I. du Pont de Nemours and Co., Inc., Wilmington, Delaware: Fluorocarbons
- Baki Yara, Professor, Colorado School of Mines, Golden, Colorado: Froth Flotation
- Adam Zanker, Ch.E., M.Sc., Senior Research Engineer, Haifa Oil Refineries Ltd., Haifa, Israel: Fluidization, Spouted Beds

Conversion to SI Units

To convert from	То	Multiply by
acre	square meter (m ²)	4.046×10^{3}
angstrom	meter (m)	1.0×10^{-10}
are	square meter (m ²)	1.0×10^{2}
atmosphere	newton/square meter (N/m ²)	1.013×10^{5}
bar	newton/square meter (N/m ²)	1.0×10^{5}
barrel (42 gallon)	cubic meter (m ³)	0.159
Btu (International Steam Table)	joule (J)	1.055×10^{3}
Btu (mean)	joule (J)	1.056×10^{3}
Btu (thermochemical)	joule (J)	1.054×10^{3}
bushel	cubic meter (m³)	3.52×10^{-2}
calorie (International Steam Table)	joule (J)	4.187
calorie (mean)	joule (J)	4.190
calorie (thermochemical)	joule (J)	4.184
centimeter of mercury	newton/square meter (N/m ²)	1.333×10^{3}
centimeter of water	newton/square meter (N/m ²)	98.06
cubit	meter (m)	0.457
degree (angle)	radian (rad)	1.745×10^{-2}
denier (international)	kilogram/meter (kg/m)	1.0×10^{-7}
dram (avoirdupois)	kilogram (kg)	1.772×10^{-3}
dram (troy)	kilogram (kg)	3.888×10^{-3}
dram (U.S. fluid)	cubic meter (m ³)	3.697×10^{-6}
dyne	newton (N)	1.0×10^{-5}
electron volt	joule (J)	1.60×10^{-19}
erg	joule (J)	1.0×10^{-7}
fluid ounce (U.S.)	cubic meter (m³)	2.96×10^{-5}
foot	meter (m)	0.305
furlong	meter (m)	2.01×10^{2}
gallon (U.S. dry)	cubic meter (m³)	4.404×10^{-3}
gallon (U.S. liquid)	cubic meter (m³)	3.785×10^{-3}
gill (U.S.)	cubic meter (m³)	1.183×10^{-4}
grain	kilogram (kg)	6.48×10^{-5}
gram	kilogram (kg)	1.0×10^{-3}
horsepower	watt (W)	7.457×10^{2}
horsepower (boiler)	watt (W)	9.81×10^{3}
horsepower (electric)	watt (W)	7.46×10^{2}
hundred weight (long)	kilogram (kg)	50.80
hundred weight (short)	kilogram (kg)	45.36
inch	meter (m)	2.54×10^{-2}
inch mercury	newton/square meter (N/m ²)	3.386×10^{3}
inch water	newton/square meter (N/m2)	2.49×10^{2}
kilogram force	newton (N)	9.806

To convert from	То	Multiply by
kip	newton (N)	4.45×10^{3}
knot (international)	meter/second (m/s)	0.5144
league (British nautical)	meter (m)	5.559×10^{3}
league (statute)	meter (m)	4.83×10^{3}
light year	meter (m)	9.46×10^{15}
liter	cubic meter (m³)	0.001
micron	meter (m)	1.0×10^{-6}
mil	meter (m)	2.54×10^{-6}
mile (U.S. nautical)	meter (m)	1.852×10^{3}
mile (U.S. statute)	meter (m)	1.609×10^{3}
millibar	newton/square meter (N/m ²)	100.0
millimeter mercury	newton/square meter (N/m ²)	1.333×10^{2}
oersted	ampere/meter (A/m)	79.58
ounce force (avoirdupois)	newton (N)	0.278
ounce mass (avoirdupois)	kilogram (kg)	2.835×10^{-2}
ounce mass (troy)	kilogram (kg)	3.11×10^{-2}
ounce (U.S. fluid)	cubic meter (m ³)	2.96×10^{-5}
pascal	newton/square meter (N/m ²)	1.0
peck (U.S.)	cubic meter (m ³)	8.81×10^{-3}
pennyweight	kilogram (kg)	1.555×10^{-3}
pint (U.S. dry)	cubic meter (m ³)	5.506×10^{-4}
pint (U.S. liquid)	cubic meter (m ³)	4.732×10^{-4}
poise	newton second/square meter $(N \cdot s/m^2)$	0.10
pound force (avoirdupois)	newton (N)	4.448
pound mass (avoirdupois)	kilogram (kg)	0.4536
pound mass (troy)	kilogram (kg)	0.373
poundal	newton (N)	0.138
quart (U.S. dry)	cubic meter (m³)	1.10×10^{-3}
quart (U.S. liquid)	cubic meter (m³)	9.46×10^{-4}
rod	meter (m)	5.03
roentgen	coulomb/kilogram (c/kg)	2.579×10^{-4}
second (angle)	radian (rad)	4.85×10^{-6}
section	square meter (m ²)	2.59×10^{6}
slug	kilogram (kg)	14.59
span	meter (m)	0.229
stoke	square meter/second (m ² /s)	1.0×10^{-4}
ton (long)	kilogram (kg)	1.016×10^{3}
ton (metric)	kilogram (kg)	1.0×10^{3}
ton (short, 2000 pounds)	kilogram (kg)	9.072×10^{2}
torr	newton/square meter (N/m2)	1.333×10^{2}
yard	meter (m)	0.914

Contents of Volume 23

Contributors to Volume 23	vi
Conversion to SI Units	х
Fluid Flow, Two-Phase Design Robert Kern	1
Fluid Flow, Two-Phase Pressure Drop Computation Rafik Soliman	14
Fluid Flow, Water Hammer John A. Kremers	23
Fluidics Harry F. Fabisch	28
Fluidization, Spouted Beds Adam Zanker	45
Fluidized Bed Combustion Thomas E. Taylor	59
Fluidized Bed Combustors, Performance of V. Ganapathy	72
Fluidized Beds, Estimating Velocity V. Ganapathy	76
Fluidized Beds and Gas Particle Systems J. M. Matsen, S. J. Rossetti, and J. S. Halow	80
Fluidized Beds, Optimum Catalyst Fines Recovery Burton W. Arnold and John E. Gwyn	196
Fluorine edited by John J. McKetta	205
Fluorocarbons Ralph C. Downing, Frederick W. Mader, and Thaddeus W. Tomkowit	216
Fluorspar edited by John J. McKetta	270
Foam Fractionation Robert Lemlich	296
Foams Stig Friberg and Paul Liang	312
Forecasting and Planning, Technological Richard C. Davis	333

Forest Products: Economics of Timber Supply Charles W. McKetta	342
Formaldehyde James R. Fair and Richard C. Kmetz	350
Formic Acid A. Aguilo and T. Horlenko	371
Foundation Design for Vessels Gregory W. May	398
Freeze Drying C. Judson King	438
Froth Flotation Baki Yarar and S. R. Rao	454

Fluid Flow, Two-Phase Design

Here is the simplest and least frustrating method for sizing pipes when twophase flow exists in a pipeline. Also presented are useful tips that exploit the inherent flexibility in the distribution of pressure losses in a piping system so that the designer can obtain reasonable sizes for pipes and components.

Two-phase-flow theories and experiments have a threefold significance for the process-piping designer. It has been shown that:

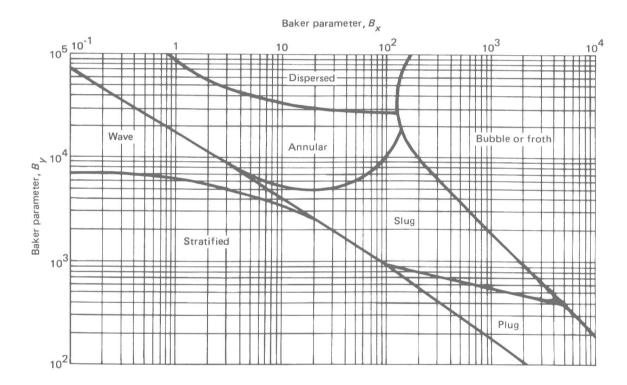
- 1. If the vapor content of a liquid line increases, the friction loss is greater than the single-phase liquid pressure loss, and is greater than the pressure loss calculated with the average density.
- 2. For a given vapor-liquid ratio and associated physical properties, a characteristic flow pattern develops.
- 3. Between the various flow patterns, unit pressure losses can differ when comparing borderline cases.

Piping design for two-phase flow has been investigated by a great number of researchers through rational and empirical steps [1, 2]. And limitations, generalizations and simplifications have been introduced for providing practical methods of design.

We will assume here that two-phase flow is isothermal, turbulent in both the liquid and vapor phases, and steady (liquid and vapor move with the same velocity), and that pressure loss is not more than 10% of the absolute downstream pressure.

An often-asked question is: How accurate are two-phase-flow calculations? If actual pipelines closely resemble the experimental conditions, deviations are small. The application of correlations for two-phase flow to processpiping design is arbitrary. Experiments are usually done with small-diameter, straight, and relatively short pieces of horizontal or vertical pipe. Under laboratory conditions, flow patterns are kept constant and flow conditions consistent. However, most process piping probably has changing flow patterns in various segments of the line because of the three-dimensional pipe configurations in which one finds horizontal and vertical runs, elevation changes, offsets, branch connections, manifolds, pipe components, reducers, and other restrictions. Sizable deviations can be expected in prediction of friction loss compared to actually measured values. Because of this, pipe runs for two-phase flow should be short and simple.

We present here the simplest, and in its practical application the least frustrating, method of design from among the many available ones. Let us compute the resistance for two-phase flow in two main steps. These are:


Select a possible flow pattern by calculating the coordinates of a flow-region chart.

Determine unit pressure losses by calculating only the vapor-phase unit loss, corrected by an applicable correlation for two-phase flow.

Two-Phase-Flow Regions: Baker Parameters

We select two-phase-flow patterns [3] from Fig. 1. The borders of the various flow patterns in Fig. 1 are shown as lines. In reality, these borders have rather broad transition zones [4].

We can establish a particular flow region from the Baker parameters, B_x

		Two-	Phase Flow C	orrelations		
Dispersed	Bubble	Slug	Stratified	Wave	Plug	Annular
Use Fig. 3 and Eq. (3)	$\frac{\phi = 14.2 X^{0.75}}{(W_{l}/A)^{0.1}}$	$\frac{\phi = 1,190 X^{0.815}}{\left(W/A\right)^{05}}$ Avoid slug flow	$\frac{\phi = 15,400 X}{(W/A)^{0.3}}$ Horizontal pipe	Use Fig. 5 and Eq. (9) and (10) Horizontal pipe	$\frac{\phi = 27,315 X^{0.855}}{(W_{//A})^{0.17}}$	$\phi = aX^b$ $a = 4.8 - 0.3125 d$ $b = 0.343 - 0.021 d$ $d = 1.D.$ of pipe, in For pipe 12-in an over, use $d = 10$.

Courtesy: Mr. Ovid Baker and The Oil and Gas Journal.

FIG. 1. Baker parameters determine the type of two-phase flow and the appropriate two-phase-flow correlation sets unit loss.

and B_y . From data supplied or usually available to the piping designer, the Baker parameters can be expressed as:

$$B_{\nu} = 2.16 W_{\nu} / A \sqrt{\rho_l \rho_{\nu}} \tag{1}$$

 B_{y} depends on the vapor-phase flow rate, vapor and liquid densities, and pipe size. The practical significance of pipe size is that by changing pipe diameters, the type of flow might also be changed, which in turn changes friction losses in the pipe.

$$B_x = 531 \left(\frac{W_i}{W_v}\right) \left(\frac{\sqrt{\rho_l \rho_v}}{\rho_l^{2/3}}\right) \left(\frac{\mu_l^{1/3}}{\sigma_l}\right) \tag{2}$$

In Eq. (2), we can substitute the ratio of percent liquid to percent vapor for W_l/W_v , and

$$\sqrt{\rho_l \rho_v}/{\rho_l}^{2/3} = (\rho_v)^{0.5}/(\rho_l)^{0.166}$$

 B_x depends on the weight-flow ratio and the physical properties of the liquid and vapor phases. Once calculated, B_x does not change with alternative pipe diameters. The position of the B_x line in Fig. 1 changes only if the liquid-vapor proportion changes and, to a much lesser extent, if the physical properties of the concurrently flowing liquid and vapor change. This can occur in long pipelines where relatively high friction losses reduce the pressure. Consequently, the vapor content of the mixture increases with a corresponding decrease in vapor density. The B_x line will shift somewhat to the left.

In Eq. (2), σ_l is the liquid-phase surface tension [7, 8]. For the surface tension of water at various temperatures, see the chart by Yaws and Setty [9]. For the surface tension of paraffinic hydrocarbons and mixtures, consult the *Engineering Data Book* [10].

The intersection of B_x and B_y in Fig. 1 determines the flow region for the calculated liquid-vapor ratio and the physical properties of the liquid and vapor. With increasing vapor content, the point of intersection moves up and to the left.

Unit Losses for Two-Phase Flow

The calculations of unit losses for vapor-liquid mixtures are based on the method of Lockhart and Martinelli [5]. Only the essential relationships are repeated here. We will use these with the customary data for practical piping design. The general equation is:

$$\Delta p_{100(\text{two-phase})} = \Delta p_{100(\text{vapor})} \phi^2 \tag{3}$$

We calculate the pressure drop of the vapor phase by assuming that only vapor flows in the pipeline. We then correct the calculated vapor-phase unit loss with the correlations shown in Fig. 1. Most of these correlations result from experiments with large-scale, horizontal industrial piping [4].

The forms of the correlations (in Fig. 1) are identical:

$$\phi = aX^b \tag{4}$$

where a includes the vapor-phase flow rate and the pipe's cross-section, and b is a constant (in annular flow, only pipe diameters appear as variants in a and b), and X is the Lockhart-Martinelli, two-phase-flow modulus:

$$X^{2} = \Delta p_{100(\text{liquid})} / \Delta p_{100(\text{vapor})}$$
(5)

In Eq. (5), $\Delta p_{100(\text{liquid})}$ is calculated by assuming only liquid flows in the pipe, and $\Delta p_{100(\text{vapor})}$ by assuming only vapor flows in the same size pipe. The modulus, X^2 , remains constant for one set of flow conditions and is independent of pipe size within two to three sequential diameters.

After inserting Darcy's equation in the numerator and denominator of Eq. (5) and simplifying, the two-phase-flow modulus becomes:

$$X^{2} = (W_{l}/W_{v})^{2}(\rho_{v}/\rho_{l})(f_{l}/f_{v})$$
(6)

where f_l is the liquid-phase and f_v the vapor-phase friction factor. The modulus can be obtained directly by calculating the liquid-phase and vapor-phase Reynolds numbers and using Fig. 2. (Alternatively, friction factors can be determined from Figs. 5 and 6, *Chem. Eng.*, p. 65 (December 23, 1974).)

Reynolds numbers are calculated separately for the vapor and liquid phases by using the same pipe diameter, corresponding flow rates, and viscosities from:

$$N_{Re} = 6.31 W/du$$

A convenient form of Darcy's equation for unit pressure-loss calculations in pipelines for liquid or vapor is restated here:

$$\Delta p_{100} = 0.000336 (fW^2)/d^5 \rho \tag{7}$$

In Eq. (7), we use the same diameter for the liquid-phase and vapor-phase calculations, and the corresponding phase flow rate, density, and friction factor. Also, in Eq. (7), we must use the Moody friction factors from Fig. 2.

A generalized form suggested by Blazius for the Lockhart-Martinelli relation expresses the friction factors for turbulent flow as:

$$f_l = 0.046/(N_{\text{Re}})_l^{0.2}$$

 $f_v = 0.046/(N_{\text{Re}})_v^{0.2}$