T An
Interpreter-Based
Approaﬂh

7

N

Programming Languages

An Interpreter-Based Approach

Samuel N. Kamin
University of lllinois at Urbana-Champaign

A
vy
Addison-Wesley Publishing Company, Inc.
Reading, Massachusetts ¢ Menlo Park, California @ New York
Don Mills, Ontario ¢ Wokingham, England e Amsterdam
Bonn e Sydney e Singapore @ Tokyo e Madrid e San Juan

The APLitalic font was designed by Joey Tuttle and copyrighted by I.P. Sharp Asso-
ciates.

Library of Congress Cataloging-in-Publication Data

Kamin, Samuel N.
Programming Languges.

Bibliography: P.

Includes index.

1. Programming languages (electronic computers). 2. Interpreters (computer
programs).
I. Title.
QAT6.7.K35 1990 005.13'3 88-34998
ISBN 0-201-06824-9

Reprinted with corrections May, 1990.
Copyright © 1990 by Addison-Wesley Publishing Company

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written permission of the publisher. Printed in the
United States of America.

BCDEFGHIJ-MA-943210

For Judy and Rebecca

Preface

The chief goal of my work as educator and author is to help
people learn to write beautiful programs.

Donald E. Knuth, Computer Programming as an Art,
1974 ACM Turing Award Lecture

Beauty in programs, as in poetry, is not language-independent. There is an
aesthetic dimension in programming that is visible only to the multi-lingual
programmer. My purpose in writing this book has been to present that dimen-
sion in the plainest possible way.

My focus in this endeavor has been on non-imperative languages, since
they present a stark aesthetic contrast with what the reader is assumed al-
ready to know — namely, PAscAL. A study of the comparatively subtle
differences among more traditional languages would be less likely to make a
strong impression. My specific choice, reflecting the principal concepts under-
lying non-imperative languages generally, is: Lisp, APL, SCHEME, SAsL, CLU,
SMALLTALK, and PROLOG.

The beauty in these languages reveals itself slowly. Not only are the con-
ceptual difficulties great, but they are compounded by the usual problems of
learning new syntax, memorizing function and procedure names, dealing with
a compiler, and other such minutiae. The challenge is to present clearly what
is aesthetically interesting, and to avoid what is not.

I have tried to meet this challenge directly, in this way: Each language is
presented in a syntactically and semantically simplified form, and for each we
provide an interpreter, written in PASCAL. The more educated reader will be
struck by this immediately, as the sample programs appear quite different from
those in the real languages. No doubt some will think too much has been omit-
ted, but it is my hope and intention that the central concepts in each language
have been preserved.

The use of interpreters for simplified language subsets contributes to the
overall pedagogical style, which is characterized by these principles:

Concreteness. I have emphasized the presentation of specific programs in each
language. (If I were attempting to instill an appreciation of poetry, I
would do it not with abstract principles or history, but with poems, and

v

vi PREFACE

the same principle applies here, albeit on a more prosaic level.) Moreover,
the languages can be described very specifically, and can be completely
understood.

Multiple presentations of concepts. Each language is described both “top-down,”
by syntactic and semantic descriptions and sample programs, and “bot-
tom-up” by the language’s interpreter. Each chapter has a section docu-
menting its interpreter, which is then listed in an Appendix.

Ezxploiting prior knowledge. The use of interpreters is a way of building on the
reader’s knowledge of PASCAL to teach him new languages. PASCAL is
also used to illustrate concepts such as type-checking and scope.

Generalities emerge from specifics. Readers will learn about recursion by see-
ing many examples of LIsP functions, about higher-order functions by
seeing them used in SCHEME, and so on. (The exercises aim at making
the concepts still more concrete.) Furthermore, the use of interpreters
tends to wash out many nonessential distinctions among the languages
covered, allowing unifying principles to reveal themselves.

Overview

The ACM Curriculum 78 recommendations (Austing, et.al. [1979]) describe the
course CS8, Organization of Programming Languages, as “an applied course in
programming language concepts.” The current book is intended as a text for
CS8, as well as for self-study. It takes a “comparative” approach, which is to
say that it covers specific languages, teaching general concepts only as they
arise in particular languages. Each of the first eight chapters covers a different
language; this coverage includes a complete context-free syntax (easy because
the languages are highly simplified), an interpreter written in PASCAL, and, of
course, many sample programs. Chapters 9 and 10 cover, respectively, compi-
lation and memory management.

Chapter 1 discusses the design of a simple interpreter for a language with
Lisp-like syntax (though without LISP data structures), with the complete PAs-
CAL code given in Appendix B. The principal design criterion of this and all
the interpreters is simplicity. The student is assumed to have a good knowledge
of PASCAL. The only warning to be given is that our code makes heavy use
of recursive procedures; the student whose knowledge of recursion is weak will
need to spend extra time studying the Appendix. On the other hand, it is not
expected that students have had much experience writing recursive procedures;
the study of Lisp is largely intended to provide such experience.

The languages covered in Chapters 2 through 8 are, in order, Lisp, APL,
SCHEME, SASL, CLU, SMALLTALK, and ProLoG. Each of these chapters has
roughly the same structure:

o General introduction to the language, its history, and its influence.

e Discussion of the basic ideas of the language, its syntax and semantics,
and simple examples.

PREFACE vii

o The design of the interpreter for the language; some code is listed here,
some in the Appendix.

e One or more larger (several page) examples.

o Aspects of the language as it is in real life, including its true syntax and
interesting language features not included in our version. This section is
not intended for use as a reference, nor to give a complete definition of the
language, but merely to provide the student with a “reading knowledge”
of the language.

o A brief summary, suggestions for further study, and a glossary of terms
commonly associated with the language.

o Exercises, divided in two parts: programs in the language, and modifica-
tions to the interpreter.

Some chapters have additional sections exploring concepts pertinent to that
language or describing different languages based on similar concepts.

Listings of all the interpreters, in PASCAL, are available in machine-readable
form from the author (see below). The individual instructor may wish to use
them in different ways. Some possibilities are:

e Have students study interpreters for, and write programs in, all or a sub-
set of the languages covered. Studying the interpreters will most likely
take the form of assigning some of the interpreter-modification exercises.

e Have each student study an interpreter for only one or two of the lan-
guages, and write programs in some or all of the remaining languages.

e Use the interpreters as “black boxes;” that is, do not study the inter-
preters per se. In that case, this book has the advantage of maintaining
some syntactic uniformity across languages, thereby focusing more atten-
tion on the essential features of each language, less on their syntax or
other idiosyncracies.

The “prerequisite structure” of the chapters is summarized in this chart:

APL CLu — SMALLTALK
'y
/ / !
|
Chapter 1 Lisp —— SCHEME —— SASL

ProLoc Chapter 10

Chapter 9, Chapter 9
section 9.3-9.6 part 2

viii PREFACE

LisP is a “weak prerequisite” for CLU and PROLOG, in that some examples
in those chapters use lists and recursion in Lisp-like ways.

Obtaining the Interpreters

The interpreter code, and all the code appearing in this book, can be obtained
by “anonymous ftp”: ftp to node uihub.cs.uiuc.edu, sigh on as anonymous,
giving your own name as the password, then cd to directory uinc/kamin.distr.
You may either copy the compressed tar file distr.tar.Z (then uncompress
and de-tar to get the distr directory), or simply copy the distr directory.
For questions or comments, contact the author at: Computer Science Dept.,
Univ. of Illinois, 1304 W. Springfield, Urbana, IL 61801, or by electronic mail
at: kamin@cs.uiuc.edu.

Acknowledgments

I have benefited from the comments and criticisms of many colleagues and
students at the University of Illinois. The comments of Luddy Harrison, Tim
Kraus, and Vipin Swarup have affected virtually every page. Ralph John-
son gave the manuscript a thorough reading. Others here whose help has
been highly appreciated are (in alphabetical order) Subutai Ahmad, Nachum
Dershowitz, Ken Forbus, Alan Frisch, Simon Kaplan, Kyung Min, Uday Reddy,
Ed Reingold, Hal Render, Vince Russo, and Dong Tang.

Among the outside reviewers, I would especially like to thank Andrew Appel
and Ryan Stansifer for their useful feedback and their continuing interest in the
project. Other helpful reviews were provided by Neta Amit, Myla Archer, Ray
Ford, Takayuki Dan Kimura, William J. Pervin, and Clifford Walinsky. Thanks
also to Dave Jackson, Jim DeWolf, and Helen Wythe of Addison-Wesley and
Lori Pickert of Archetype Publishing.

Writing a book is a strange mixture of pain and pleasure. For easing the
pain and enhancing the pleasure, I thank my wife Judy.

S.N.K.

Contents

PartI Starting Off

1 The Basic Evaluator
1.1 TheLanguage« o v e i it i it
1.2 The Structure of the Interpreter
1.3 Where WeGofromHere.
1.4 EXEICISES . . v v v v i v e e e e e e e e e e e e e

Part II Using Larger Values

2 LISP
21 Thelanguage.
2.2 Implementation
2.3 Example — Relational Data Bases
24 Example —evalinLISP.
25 LISPastReallyIs
2.6 SUMMATY ¢ v it e e e e e e
2.7 EXercises v v vt it e e

3 APL
31 ThelLanguage.
3.2 Implementation
3.3 Example — Drawing a Histogram
34 APLastReallyIs.
35 Summary e e e
36 Exercises e

Part III Functional Programming

4 SCHEME
41 lambda e
42 Thelanguage.,
4.3 Implementation,

-

—
o O 00 W W

—

23

25
26
37
39
46
51
57
59

85
66
75
77
83
87
88

93
95

95
97

ix

CONTENTS

X
4.4 Example — Term-Rewriting Systems 116
4.5 Example —evalin SCHEME 123
46 SCHEMEasItReallyIs 123
4.7 SCHEME vs. LISP, or Lexical Scope vs. Dynamic Scope 128
4.8 Related Language — ML 137
4.9 Summary e e e e e e e e 146
4,10 EXerciSes . . v v v v v i e e e e e 148

5 SASL 153
5.1 Lazy Evaluation 155
52 TheLanguage. it 158
53 Implementation 166
5.4 Example — Satisfiability of Boolean Expressions 170
5.5 Example — The Reachability Problem 172
56 SASLasItReallyls 175
57 SASLvs. SCHEME 176
5.8 Related Language — ACaleulus 178
59 GraphReduction, 186
510 Summary e 197
511 Exercises i i e e 199

Part IV Object-Oriented Programming 205

6 CLU 207
6.1 Data Abstraction 208
62 TheLanguage.« .. 210
6.3 Implementation 221
6.4 Example — Polynomials 225
65 CLUasItReallyIs. 229
6.6 Related Language — ADA 236
6.7 Program Verification 249
6.8 Summary 264
6.9 Exercises 266

7 SMALLTALK 271
71 TheLanguage. 273
7.2 Implementation 292
7.3 Example —Numbers. 208
7.4 Example — Discrete-Event Simulation 304
75 SMALLTALK asItReallyIs 316
7.6 Related Language —C++ 326
T7 Summary 341

7.8

Exercises e 344

CONTENTS

Part V Logic Programming

8 PROLOG
8.1 Logic as a Programming Language
82 TheLanguage. v i ittt ii.
8.3 Implementation
8.4 Example — The Blocks World
85 PROLOGasItReallyIs......................
8.6 PROLOG and Mathematical Logic
8.7 Summarz
88 Exercises

Part VI Implementation Issues

9 Compilation
9.1 MachineLanguage
9.2 Translation of Language of Chapter 1
9.3 Translationof SCHEME
9.4 Stack-Allocation of AR’s for the Language of Chapter 1
9.5 Stack-Allocation of AR’s for PASCAL
9.6 Summary
9.7 Exercises

10 Memory Management
10.1 Stacking Arguments
10.2 Heap Management
10.3 Mark-Scan Garbage Collection
10.4 The Semi-Space Method
10.5 Reference-Counting
10.6 Summary
10.7 Exercises

BNF

Interpreter for Chapter 1
Interpreter for LISP
Interpreter for APL
Interpreter for SCHEME

Interpreter for SASL

Q 9 ®3 0O o w »

Interpreter for CLU

xi

349

351
351
354
373
381
386
389
400
403

407

409
410
412
417
423
425
439
440

445
449
453
454
460
468
471
473

477
479
497
505
523
533

543

xii
H Interpreter for SMALLTALK

I Interpreter for PROLOG

J Interpreters from Chapter 10

J.1 Stack-Based Interpreter

J.2 Reference-Counting Interpreter
Bibliography

Index

CONTENTS

557
571

589
589
596

607

619

Part |
Starting Off

The idea of this book is to learn about programming languages both by pro-
gramming in them and by studying interpreters for them.

In Part I, then, we present the language and interpreter which will be used as
the basis for the languages and interpreters in the remainder of the book. The
language we interpret here is intended to be about the minimal language, using
the simplest syntax, which contains enough features to be called a programming
language. The programming environment is, likewise, skeletal, providing only
the ability to enter programs (no editing) and run them. Finally, the interpreter
is built for simplicity, and to this goal all concerns of efficiency have been
sacrificed.

My fondest hope is that the student will feel moved to correct these various
deficiencies, in both this and subsequent chapters. Suggestions for improvement
are made throughout the book, especially in the programming exercises that
end each chapter.

Chapter 1
The Basic Evaluator

This chapter describes a simple language whose constructs should be regarded
as simplified versions of the constructs of PASCAL, written in a syntax designed
for ease of parsing. We then present the interpreter for that language, giving
the code in PASCAL in Appendix B. The chapter ends with an outline of what
this book is about and why.

1.1 The Language

Our interpreter is interactive. The user will enter two kinds of inputs: function
definitions, such as:

(define double (x) (+ x x))
and expressions, such as:
(double 5).

Function definitions are simply “remembered” by the interpreter, and expres-
sions are evaluated. “Evaluating an expression” in this language corresponds
to “running a program” in most other languages.

The subsections of this section present the language’s syntax, its semantics,
and examples. It is to be hoped that the reader will soon find the syntax, if
not elegant, at least not a major hindrance.

I.1.1 SYNTAX
The syntax of our language is like that of LISP, and can be very simply defined:!

input — expression | fundef
fundef — (define function arglist expression)

I Appendix A gives an explanation of this notation.

4 CHAPTER 1 THE BASIC' EVALUATOR

arglist — (variable*)
expression — value
variable

l

| (if expression expression expression)
| (while expression expression)

\ (set variable expression)

| (begin expression™)

| (optr expression*)

optr — function | value-op
value — integer
valueop — +|-|x*|/|=]|<|>]|print

function — name
variable —— name

integer — sequence of digits, possibly preceded by minus sign

name — any sequence of characters not an integer, and not,
containing a blank or any of the following charac-
ters: () ;.

A function cannot be one of the “keywords” define, if, while, begin, or
set, or any of the value-op’s. Aside from this, names can use any characters
on the keyboard. Comments are introduced by the character ;’ and continue
to the end of the line; this is why *;’ cannot occur within a name. A session is
terminated by entering “quit”; thus, it is highly inadvisable to use this name
for a variable.

Expressions are fully parenthesized. Our purpose is to simplify the syn-
tax by eliminating such syntactic recognition problems as operator precedence.
Thus, the PASCAL assignment

i=2% +i—k/3;
becomes
(set i (- (+ (x 2 j) i) (/ k 3))).

The advantage is that the latter is quite trivial to parse, where the former is
not. Our form may be unattractive, but then most PASCAL programmers will
agree that assignments of even this much complexity occur rarely.

1.1.2 SEMANTICS

The meanings of expression’s are presented informally here (and more formally
in Section 1.2.8). Note first that integers are the only values; when used in
conditionals (if or while), zero represents false and one (or any other nonzero
value) represents true.

(if e; es e3) — If e; evaluates to zero, then evaluate es; otherwise evaluate
e9.

1.1 THE LANGUAGE 5

(while e; ey) — Evaluate eg; if it evaluates to zero, return zero; otherwise,
evaluate e and then re-evaluate e;; continue this until e; evaluates to
zero. (A while expression always returns the same value, but that really
doesn’t matter since it is being evaluated only for its side-effects.)

(set x e) — Evaluate e, assign its value to variable x, and return its value.

(begin e; ... e,) — Evaluate each of e; ... ey, in that order, and return
the value of e,,.

(f e; ... e,) — Evaluate each of e; ... e,, and apply function f to those
values. £ may be a value-op or a user-defined function; if the latter, its
definition is found and the expression defining its body is evaluated with
the variables of its arglist associated with the values of e; ... e,.

if, while, set, and begin are called control operations.

All the value-op’s take two arguments, except print, which takes one. The
arithmetic operators +, -, *, and / do the obvious. The comparison operators
do the indicated comparison and return either zero (for false) or one (for true).
print evaluates its argument, prints its value, and returns its value.

As in PASCAL, there are global variables and formal parameters. When
a variable reference occurs in an expression at the top level (as opposed to
a function definition), it is necessarily global. If it occurs within a function
definition, then if the function has a formal parameter of that name, the variable
is that parameter, otherwise it is a global variable. This corresponds to the
static scope of PASCAL, in the (relatively uninteresting) case where there are
no nested procedure or function declarations.? There are no local variables per
se, only formal parameters.

1.1.3 EXAMPLES

As indicated earlier, the user enters function definitions and expressions inter-
actively. Function definitions are stored; expressions are evaluated and their
values are printed. Our first examples involve no function definitions. “->” is
the interpreter’s prompt; an expression following a prompt is the user’s input,
and everything else is the interpreter’s response:

-> 3
3

> (+47)
11

-> (set x 4)
4

2For more on static scope, see Section 4.7 (the chapter on ScHEME), and also Chapter 9.

