| CRYPTOGRAPHIC
SECURIEY
ARCHITECTURE

| DESIGN AND VERIFICATION

b
ot
e

TER GUTMA NKZ



rag(
(k, 1 o

Peter Gutmann

Cryptographic Security
Architecture

Design and Verification

With 149 Illustrations

[ ARTAREN

E200400159

4€): Springer



Peter Gutmann

Department of Computer Science

University of Auckland

Private Bag 92019

Auckland

New Zealand

pgut001 @cs.auckland.ac.nz
http://www.cs.auckland.ac.nz/~pgut001/cryptlib/

Cover illustration: During the 16th and 17th centuries the art of fortress design advanced from ad hoc
methods which threw up towers and walls as needed, materials allowed, and fashion dictated, to a
science based on the use of rigorous engineering principles. This type of systematic security architec-
ture design was made famous by Sebastien le Prestre de Vauban, a portion of whose fortress of Neuf-
Brisach on the French border with Switzerland is depicted on the cover.

¢ "!
¥ % .
Library of Congress Cataloging-in-Publication Data p, T o '\‘
Gutmann, Peter. s 4
Cryptographic Security Architecture / Peter Gdtmann. ' ?
p. cm. 3 it e "4
Includes bibliographical references and index. *, , PALY './
ISBN 0-387-95387-6 (alk. paper) .

1. Computer security. 2. Cryptography. . Title. e
QA76.9.A25 G88 2002
005.8—dc21 2002070742

ISBN 0-387-95387-6 Printed on acid-free paper.

© 2004 Springer-Verlag New York, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission
of the publisher (Springer-Verlag New York, Inc., 175 Fifth Avenue, New York, NY 10010, USA), except for
brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary
rights.

Printed in the United States of America.
987654321 SPIN 10856194
Typesetting: Pages created using the author’s Word files.
WWW.springer-ny.com

Springer-Verlag New York Berlin Heidelberg
A member of BertelsmannSpringer Science+Business Media GmbH



Cryptographic Security Architecture



Springer
New York
Berlin
Heidelberg
Hong Kong
London

Milan

Paris

Tokyo



John Roebling had sense enough to know what he
didn’t know. So he designed the stiffness of the
truss on the Brooklyn Bridge roadway to be six
times what a normal calculation based on known
static and dynamic loads would have called for.
When Roebling was asked whether his proposed
bridge wouldn’t collapse like so many others, he
said “No, because I designed it six times as strong
as it needs to be, to prevent that from happening”

— Jon Bentley, “Programming Pearls”



Preface

Overview and Goals

This book describes various aspects of cryptographic security architecture design, with a
particular emphasis on the use of rigorous security models and practices in the design. The
first portion of the book presents the overall architectural basis for the design, providing a
general overview of features such as the object model and inter-object communications. The
objective of this portion of the work is to provide an understanding of the software
architectural underpinnings on which the rest of the book is based.

Following on from this, the remainder of the book contains an analysis of security policies
and kernel design that are used to support the security side of the architecture. The goal of
this part of the book is to provide an awareness and understanding of various security models
and policies, and how they may be applied towards the protection of cryptographic
information and data. The security kernel design presented here uses a novel design that
bases its security policy on a collection of filter rules enforcing a cryptographic module-
specific security policy. Since the enforcement mechanism (the kernel) is completely
independent of the policy database (the filter rules), it is possible to change the behaviour of
the architecture by updating the policy database without having to make any changes to the
kernel itself. This clear separation of policy and mechanism contrasts with current
cryptographic security architecture approaches which, if they enforce controls at all, hardcode
them into the implementation, making it difficult to either change the controls to meet
application-specific requirements or to assess and verify them.

To provide assurance of the correctness of the implementation, this thesis presents a
design and implementation process that has been selected to allow the implementation to be
verified in a manner that can reassure an outsider that it does indeed function as required. In
addition to producing verification evidence that is understandable to the average user, the
verification process for an implementation needs to be fully automated and capable of being
taken down to the level of running code, an approach that is currently impossible with
traditional methods. The approach presented here makes it possible to perform verification at
this level, something that had previously been classed as “beyond A1” (that is, not achievable
using any known technology).

Finally, two specific issues that arise from the design presented here, namely the
generation and protection of cryptovariables such as encryption and signature keys, and the
application of the design to cryptographic hardware, are presented. These sections are



viii Preface

intended to supplement the main work and provide additional information on areas that are
often neglected in other works.

Organisation and Features

A cryptographic security architecture constitutes the collection of hardware and software that
protects and controls the use of encryption keys and similar cryptovariables. Traditional
security architectures have concentrated mostly on defining an application programming
interface (API) and left the internal details up to individual implementers. This book presents
a design for a portable, flexible high-security architecture based on a traditional computer
security model. Behind the API it consists of a kernel implementing a reference monitor that
controls access to security-relevant objects and attributes based on a configurable security
policy. Layered over the kernel are various objects that abstract core functionality such as
encryption and digital signature capabilities, certificate management, and secure sessions and
data enveloping (email encryption). This allows them to be easily moved into cryptographic
devices such as smart cards and crypto accelerators for extra performance or security. Chapter
1 introduces the software architecture and provides a general overview of features such as the
object model and inter-object communications.

Since security-related functions that handle sensitive data pervade the architecture,
security must be considered in every aspect of the design. Chapter 2 provides a
comprehensive overview of the security features of the architecture, beginning with an
analysis of requirements and an introduction to various types of security models and security
kernel design, with a particular emphasis on separation kernels of the type used in the
architecture. The kernel contains various security and protection mechanisms that it enforces
for all objects within the architecture, as covered in the latter part of the chapter.

The kernel itself uses a novel design that bases its security policy on a collection of filter
rules enforcing a cryptographic module-specific security policy. The implementation details
of the kernel and its filter rules are presented in Chapter 3, which first examines similar
approaches used in other systems and then presents the kernel design and implementation
details of the filter rules.

Since the enforcement mechanism (the kernel) is completely independent of the policy
database (the filter rules), it is possible to change the behaviour of the architecture by
updating the policy database without having to make any changes to the kernel itself. This
clear separation of policy and mechanism contrasts with current cryptographic security
architecture approaches that, if they enforce controls at all, hardcode them into the
implementation, making it difficult either to change the controls to meet application-specific
requirements or to assess and verify them. The approach to enforcing security controls that is
presented here is important not simply for aesthetic reasons but also because it is crucial to
the verification process discussed in Chapter 5.

Once a security system has been implemented, the traditional (in fact, pretty much the
only) means of verifying the correctness of the implementation has been to apply various



Preface ix

approaches based on formal methods. This has several drawbacks, which are examined in
some detail in Chapter 4. This chapter covers various problems associated not only with
formal methods but with other possible alternatives as well, concluding that neither the
application of formal methods nor the use of alternatives such as the CMM present a very
practical means of building high-assurance security software.

Rather than taking a fixed methodology and trying to force-fit the design to fit the
methodology, this book instead presents a design and implementation process that has been
selected to allow the design to be verified in a manner that can reassure an outsider that it
does indeed function as required, something that is practically impossible with a formally
verified design. Chapter 5 presents a new approach to building a trustworthy system that
combines cognitive psychology concepts and established software engineering principles.
This combination allows evidence to support the assurance argument to be presented to the
user in a manner that should be both palatable and comprehensible.

In addition to producing verification evidence that is understandable to the average user,
the verification process for an implementation needs to be fully automated and capable of
being taken down to the level of running code, an approach that is currently impossible with
traditional methods. The approach presented here makes it possible to perform verification at
this level, something that had previously been classed as “beyond A1” (that is, not achievable
using any known technology). This level of verification can be achieved principally because
the kernel design and implementation have been carefully chosen to match the functionality
embodied in the verification mechanism. The behaviour of the kernel then exactly matches
the functionality provided by the verification mechanism and the verification mechanism
provides exactly those checks that are needed to verify the kernel. The result of this co-
design process is an implementation for which a binary executable can be pulled from a
running system and re-verified against the specification at any point, a feature that would be
impossible with formal-methods-based verification.

The primary goal of a cryptographic security architecture is to safeguard cryptovariables
such as keys and related security parameters from misuse. Sensitive data of this kind lies at
the heart of any cryptographic system and must be generated by a random number generator
of guaranteed quality and security. If the cryptovariable generation process is insecure then
even the most sophisticated protection mechanisms in the architecture won’t do any good.
More precisely, the cryptovariable generation process must be subject to the same high level
of assurance as the kernel itself if the architecture is to meet its overall design goal, even
though it isn’t directly a part of the security kernel.

Because of the importance of this process, an entire chapter is devoted to the topic of
generating random number for use as cryptovariables. Chapter 6 begins with a requirements
analysis and a survey of existing generators, including extensive coverage of pitfalls that must
be avoided. It then describes the method used by the architecture to generate cryptovariables,
and applies the same verification techniques used in the kernel to the generator. Finally, the
performance of the generator on various operating systems is examined.

Although the architecture works well enough in a straightforward software-only
implementation, the situation where it really shines is when it is used as the equivalent of an



X Preface

operating system for cryptographic hardware (rather than having to share a computer with all
manner of other software, including trojan horses and similar malware). Chapter 7 presents a
sample application in which the architecture is used with a general-purpose embedded
system, with the security kernel acting as a mediator for access to the cryptographic
functionality embedded in the device. This represents the first open-source cryptographic
processor, and is capable of being built from off-the-shelf hardware controlled by the
software that implements the architecture.

Because the kernel is now running in a separate physical device, it is possible for it to
perform additional actions and checks that are not feasible in a general-purpose software
implementation. The chapter covers some of the threats that a straightforward software
implementation is exposed to, and then examines ways in which a cryptographic coprocessor
based on the architecture can counter these threats. For example, it can use a trusted I/O path
to request confirmation for actions such as document signing and decryption that would
otherwise be vulnerable to manipulation by trojan horses running in the same environment as
a pure software implementation.

Finally, the conclusion looks at what has been achieved, and examines avenues for future
work.

Intended Audience

This book is intended for a range of readers interested in security architectures, cryptographic
software and hardware, and verification techniques, including:

e Designers and implementers: The book discusses in some detail design issues
and approaches to meeting various security requirements.

e Students and researchers: The book is intended to be both a general tutorial for
study and an in-depth reference providing links to detailed background material
for further research.

Acknowledgements

This book (in its original thesis form) has been a long time in coming. My thesis supervisor,
Dr. Peter Fenwick, had both the patience to await its arrival and the courage to let me do my
own thing, with occasional course corrections as some areas of research proved to be more
fruitful than others. I hope that the finished work rewards his confidence in me.

I spent the last two years of my thesis as a visiting scientist at the IBM T.J. Watson
Research Centre in Hawthorne, New York. During that time the members of the global
security analysis lab (GSAL) and the smart card group provided a great deal of advice and
feedback on my work, augmented by the considerable resources of the Watson research



Preface xi

library. Leendert van Doorn, Paul Karger, Elaine and Charles Palmer, Ron Perez, Dave
Safford, Doug Schales, Sean Smith, Wietse Venema, and Steve Weingart all helped
contribute to the final product, and in return probably found out more about lobotomised
flatworms and sheep than they ever cared to know.

Before coming to IBM, Orion Systems in Auckland, New Zealand, for many years
provided me with a place to drink Mountain Dew, print out research papers, and test various
implementations of the work described in this book. Paying me wages while I did this was a
nice touch, and helped keep body and soul together.

Portions of this work have appeared both as refereed conference papers and in online
publications. Trent Jaeger, John Kelsey, Bodo Médller, Brian Oblivion, Colin Plumb, Geoff
Thorpe, Jon Tidswell, Robert Rothenburg Walking-Owl, Chris Zimman, and various
anonymous conference referees have offered comments and suggestions that have improved
the quality of the result. As the finished work neared completion, Charles “lint” Palmer,
Trent “gcc —wall” Jaeger and Paul “Iclint” Karger went through various chapters and pointed
out sections where things could be clarified and improved.

Finally, I would like to thank my family for their continued support while I worked on my
thesis. After its completion, the current book form was prepared under the guidance and
direction of Wayne Wheeler and Wayne Yuhasz of Springer-Verlag. During the reworking
process, Adam Back, Ariel Glenn, and Anton Stiglic provided feedback and suggestions for
changes. The book itself was completed despite Microsoft Word, with diagrams done using
Visio.



Contents

Preface vii
OVEIVIEW AN GGOAIS . .v v vrvsnerenennrorssssnsnnnassnns ssosssisedss s (65655 EETEIE S HESHH EE0RRERI RIS HETENEESP RV ORERF TS vii
Organisation and Featlres v sssmmamssmmonrmommssmpiermemieiesrmsasesseimasisessassarensonsosrasmes viii
INtended AUIENCE ....vooveieiiierieciee ettt et s st X
ACKNOWIedgemEnts . s sz smers sxsmssarsissovsmmmsnsass cormims s oo sy oF 07 €rwverssesaesin ssevrsa s oy X

1 The Software Architecture 1
1.1 INEEOAUCEION . ...etiieiie ettt ettt s sae e et sae s et e ebe e saeeeare e 1
1.2 An Introduction to Software Architecture...........ccccooiiiiiiiiiiiiiiiinii s 2

1.2.1 The Pipe-and-Filter Model...........cccooiviiiiiiiiiiniiiiiiiniiieec e 3
1.2.2 The Object-Oriented Model .......c..ccueveeieiriiiiiiiiiiiiiiiie e 4
1.2.3 The Event-Based MOdel.........cccceiiiitininieieninecenereccentcreit et ss et eaens 5
1.2.4 The Layered Model........cccoieiininiiniiiicienecieiiccie et 6
1.2.5 The Repository Model.......c.coeeeirerenininiiiiiiccncinnce e 6
1.2.6 The Distributed Process Model..........ccooeeoiierieiniiininiienicic e 7
1.2.7 The Forwarder-Receiver Model...........ccccoevieviininiiininiiniiiiniiiciiecie e 7
1.3 Architecture Design Goalsiuiummmimsmmmmsmsmsismsmnmsnmwsass s s 8
1.4 The Object MOdel .......cooiiiiiiiiiiiiii i 9
1:4.1 User«€>'Object INtETACHON susussussonsmsmssmmesusssssussmms v sessasssevensssas s sspusssvesssssssisssissss 10
1.4.2 AcCtion ODJectS: . vvumumnssssssssressuorusssntessasssssssuessissvess s hess aes s s e s anms s mes 12
1:4.3 Data, CONAINETS: vs. oo vsssnessusnssunss sosman voss i 6oy ors e S Vs S T S VST R T SRS Sy 13
1.4.4 Key and Certificate CONtAINGTS ..c.c.ccviivviinimimisiimmmmsioniinmsmssmesososenosssseisnoss 14
1.4.5 Security Attribute Containers. .. s s s s 15
1.4.6 The Overall Architectural and Object Model...........cccceeveenienieniiniienienicnicnee 15
1.5 Object INerNalS ....cc..ooiiiiiiieiieiiieiiee e s 17
1.5.1 Object Internal Details .......c..coceeiiiiiiiiiiiiiiiii e 18
1.5.2 Data FOrMAtS .....cc.eoviiiiiiiiiieniceniieerece ettt st s 20
1.6 Interobject COMMUNICALIONS ......eoverueruieeremrererinierie sttt ns 21
1.6.1 Message ROULINE ......coouiiiiiniiiiiiiiiiciieiicciieiieiees e 23
1.6.2 Message Routing Implementation...........cccceeiiiiiiiiiiiiiniiiiini e 25
1.6.3 Alternative Routing Strategies ........cooveeruienierieriiiiiiiciiiiiiie e 26
1.7 The Message DispatCher «oouemmusmpesvesses srorsossssensimss ises sisssmassss st fue e vEsasesi vosss sssveorsss 27
1.7.1 Asynchronous versus Synchronous Message Dispatching ...........cccocovveieinninnnn 30
1.8 ODJECE REUSE ...ovviviinieeieeierieeeesie ettt sttt st s 31
1.8.1 Object Dependencies........cc.ccecueririeierieieniiiiienienieerseesic e s 34



Xiv Contents

1.9 Object Management Message FIOW ... 35
1.10 Other Kernel MEChaNISIMS. .....ccueeiueeriiieiiiiiiiiiiiiciie sttt 37
1.10.1 SEMAPROTES ...eveeitieiteiieit ettt 38
R 1y s U e ee 38
1.10.3 Event NOtITICAtION .vvevrrenveensnnenns cosss iassssisisssass sesnestsmessvassnssssessvassavmess assussosassuressvess 39
1.1 1 REEIEIEIICES ..veiiivvieiiei ettt ettt ettt et bb e e s b e et 39
2 The Security Architecture 45
2.1 Security Features of the ArchiteCture. ........coooviiiiiiiiiiiiiiiiie 45
2.1.1 Security Architecture Design Goals........c.ooooiiiiiiiiiniiii 46
2.2 Introduction to Security MecChaniSms ...........ccccccovuiiiiiiiiiiiiniiiiieeee e 47
2.2.1 ACCESS CONIIOL...ovnrennnsnnenemessnssossssss s sssssssssn svvas S35 a3s THERSH S8H e 943300 5053 3708 sewsvansoos 47
222 ReTerenCe IVTOTIEOTS ..o onsnens s e ssisisssmmssimss s s iemssss v s sss £9Tma s s pgss sy e s e 49
2.2.3 Security Policies and Models.......cuamwmsmreammswemmsssmamssssamssssssms 49
2.2.4 Security Models after Bell-LaPadula...........ccccocoiiiiiiiiic 51
2.2.5 Security Kernels and the Separation Kernel ... 54
2.2.6 The Generalised TOCB........coreeerianerecnmemsusissosimsisinisissssssssssressosssvs ssnvassasssss sa o 57
2.2.7 Implementation Complexity ISSUES .........cocooiiiiiiiiiii 59
2.3 The eryptlib Security KErnel smssmmsmumrssmmoms srviissssssvossaisimsasassmms sowvevasmyassses 61
2.3.1 Extended Security Policies and Models ..........ccccooiviiiiiiiiiiiiii 63
2.3.2 Controls Enforced by the Kemmel......onsmsmmmmmmminimimmnommmisessasmmasien 65
2.4 The Object Life CYCLe ..ottt 66
2.4.1 Object Creation and DeStrUCtION .........ccoeiuiiiiiiiiiiiicie e 68
2.5 0Object Access CONLIOL. .......oumammmwimsermsmsmesssssstsme e o srim s e sirs sevsassssvs ey s fasears 70
2.5.1 Object Security Implementation... sy 72
2.5.2 External and Internal Object ACCESS ...c..eerviriieiiiiiiiciiiiiiiiiciic i 74
2.6 'Object Usage ContiOks s wmimssisemomsnssismsa st ssssasassns s 75
2.6.1 Permission INheritance .......ooovviieeiiieriinieiie e 76
2.6.2 The Security Controls as an Expert System.........cccocooviiiiiiiiiiiiiini, 77
2:6.3 Other ObjeStCONIOLS wummmvmsmummnemsmssrrsmmssines svvessess ssesmonss oo e sasneraseinn 78
2.7 Protecting Objects Outside the Architecture...........ocoovvivviiiiiiiiiiiii 79
2.7.1 Key Export Security Features ......c.cocveveriniiiiiiiiiiiiiiicic e 81
2.8 Object Attribute SEOUITEY surms s rermvemes e e smsss o s S T s s e om 5974w 557455 82
2.9 RETEICIICES ...uveiiiiieeitie ettt ettt ettt ettt ettt e st e et a e s raa e e e e e e e e e e snaeeeaes 83
3 The Kernel Implementation 93
3.1 Kernel Message ProCeSSING........cccvevuerieiiriiiieiiiiiiiiie ittt 93
3.1.1 Rule-based Policy Enforcement..........cccoovieiiiiiiiiiiiniiiiiiiiiiiicccee e 93
3.1.2 The DTOS/Flask AppProach.......ccccccoceeviiiiiiiiiiiiiiiiiiiiiiiiiciee e 94
3.1.3 Object-based Access CONtIOl.......ccceviiiiiiiiiiiiiiiiii e 96
3.1.4 Meta-Objects for Access CONtrol..........ocevuiviiiiiiiiiniiiiiicieecee 98
3.1.5 Access Control via Message Filter Rules.........cccccccnivvienininiiniiiiiiiiiin, 99

3.2 FIEEr RUIE STIUCKULE ....vvveiiiiiiei ettt e e et e e e e e e e e e s et bnn bt aeeaeaaeaeeeeaaneas 101



Contents XV

321 FIIEE RULES oo eeeeee et eit e ettt e et e sbee s sabe e e eas s e ssbe e s sbb e st saa s s b s s e et 102
3.3 AtrIDULE ACL SEIUCIUIE ...cuveivieieeeetiesireeee e e siee ettt et st 106
3.3.1 AEEIDULE ACLS eveviieiiireeeeete ettt b e st 108
3.4 MechaniSm ACL STIUCTUTE . ......verveereeereeriieiiii ettt st ettt 112
3.4.1 MechaniSm ACLS......ccviiiieieeie ettt 113
3.5 Message Filter Implementation .........ccceeereieneiiiiii s 117
3.5.1 Pre-dispatch FilterS.........coooiiiiiiiiiiiniiiinii 117
3.5.2 Post-dispatch FIIerS ......cccceiiiiiiiiiiiiiieeie 119
3.6 Customising the Rule-Based POliCY .......cooeriiiiiiii 120
3.7 Miscellaneous Implementation ISSUES .......oc.oieieieininininis 122
3.8 PEITOTITIAIICE ..vvveveeeeeeeeeeeeeeeseeese st eb e et e et et ease s b et e b eaa e sreea s e b e s s es ettt 123
3.0 RETEIEIICES - cnvveeeveeieieeteeeaveeeteeeueeesseesaeeeureesaeesas e sab e e b e e sab s s b s e b s e b e e sb st s s as s et s b 123
4 Verification Techniques 127
4,1 TEUEOAUCTION ..o e ossvonsmnsss 65336540013 05453 £55E S S ST EE B SR A S oS daeuwa s ntbodansumassnaomansss ot sntasns samsssd 127
4.2 Formal Security Veriflcation.........ccooueimiiiiiniiniiieieiici 127
4.2.1 Formal Security Model Verification ..........ccooveieinininininiis 130
4.3 Problems with Formal Verification........ccoccoveeeiviiiiiiiiiiiiiiis s 131
4.3.1 Problems with Tools and Scalability..........cccvviiviiiiiiiiiniiiii 131
4.3.2 Formal Methods as a Swiss Army ChainSaw .........cccoveeviiiinniniencnieninenne 133
4.3.3 What Happens when the Chainsaw Sticks ........cccooeeennnicinn 135
4.3.4 What is being Verified/Proven? ..........ccocoeiiviieisninnninicci 138
4.3.5 Credibility of Formal Methods...........ocoiiiiiiieiniiiiiici 142
4.3.6 Where Formal Methods are Cost-Effective..........ccoiiiiiiiiniininnn 144
4.3.7 Whither Formal MethodsS? .......c.eeviiiiiiiiiniiiiiiin et 145
4.4 Problems with other Software Engineering Methods.........ccocooviiniiinnniiniis 146
4.4.1 Assessing the Effectiveness of Software Engineering Techniques..................... 149
4.5 Alternative APProaches. ........ccoiviiiiiiiiiiiiiiiiiiiie e 152
4.5.1 Extreme PrOGramiming ..........cccoovveirimiriainieinieesiesenreieiensiee s 153
4.5.2 Lessons from Alternative Approaches ........cccoceeviiiiinniniinnenini 154
.6 RETEICIICES . nveeee i e eeeee e ettt e e eee e e e sebab e e e s s bbb e s e s e bbb s e e s st e e e s st e st b s 154
5 Verification of the cryptlib Kernel 167
5.1 An Analytical Approach to Verification Methods ........ccoooiciiiiiiiniis 167
5.1.1 Peer Review as an Evaluation MechaniSm..........ccocvvievimniiinnininncniccens 168
5.1.2 Enabling Peer REVIEW .....cccciiiiiiiiiiiiiiiieiiet e 170
5.1.3 Selecting an Appropriate Specification Method ... 170
5.1.4 A Unified SPecifiCation.........cccoooiiiiiiimiiiiiniiiiee e 173
5.1.5 Enabling Verification All the way DOWIL........ccoomiiiniiiiiiis 174
5.2 Making the Specification and Implementation Comprehensible ..., 175
5.2.1 Program COZNILION ........ciiiriiiitiiiiisieie et 176
5.2.2 How Programmers Understand Code...........coooveiniiiniiniiiiiii 177
5.2.3 Code Layout to Aid Comprehension............coceveinieineiniiininiiiiins 180



Xvi Contents

5.2.4 Code Creation and BUgs.........ceoiiiiiiiiienieiiceieene e 182
5.2.5 Avoiding Specification/Implementation Bugs ...........ccccoviiiiiiniiiiiiinnnn 183
5.3 Verification All the Way DOWILscosussesssossssssmsmsssmssssomsrumsris s srosvars sisssrsonses sovs 184
5.3.1 Programming With ASSETHONS ...cc.uiseessesstossismmiomionisismsmsasss ivssssmmsssrsmsinsssaness 186
5.3.2 Specification USing ASSEITIONS ::ucsussmsvssns svssmmssmmessissupssmumsssssss ssssssarsesss ssvmssvions 188
5.3.3 Specification LanguUages sue.sosuessssssssessassmsimmsmssssnsmvesis i sve s 189
5.3.4 English-like Specification Languages...........cccveeriiriiniieiiieeniienienieeieesee e 190
T o[- 192
S Ll 0 1 ] 193
e D Y I L 194
5.3:8 Other APProaches: s rmmmsmsmras o s v s s v S R 197
5.4 The Verification PrOCEeSS ......coocuiiiiiiiiiiiiiiicic et 199
5.4.1 Verification of the Kernel Filter Rules.........c.cccoccoiiiiiiiiiiinicece 199
5.4.2 Specification-Based TeStiNg...........ccooeiiiiiiiiiiiiiiiiecce e 200
5.4.3 Verification with ADL .......ccccooiiiiiiiiiiiic e 202
DS COMCIUSTONY 5 oo s ies 555 55 484500 S 8 S A a5 ST 203
5.6 RETEIEICES ...ttt ettt ettt sttt ettt et e bee e 204
6 Random Number Generation 215
6.1 INEFOAUCTION ....eouiiiniiiiiii ettt ettt et ettt enbee e enee e 215
6.2 Requirements and Limitations of the Generator ..............ccoceoeveiiienienieniinieicnceenne 218
6.3 Existing Generator Designs and Problems...........cccceeviiiiiiiiiiiiiciicceiic e 221
6.3.1 The Applied Cryptography GENErator............cceeireerieiieriiiieieeie e eieeie e 223
6.3.2 The ANSI X9.17 GENETALOT ......coruiiiiiiriieiiiieiiieiie ettt ees 224
6.3.3 The PGP 2.X GENETALOT .....oecuiiiiiieiiieiie ittt a e ens 225
Lo e o Ul e € Tl o L2 o) T —— 227
6.3.5 The /dev/random GeNerator ............ccceevieriiieiiieiie ettt ere e ens 228
L N (ol a1 )1 (=T 1) e E— 230
6.3.7 The SSh GENEIALOr .....ccueiiiiieiieiii ettt st eaee e ens 231
6.3:8 The SSLeay/OpenSSL, GENETAtOL s o 232
6.3.9 The CryptOAP] GENETAtOT sosuuewsssssnss sss ssuvssumsassvmsssnssosins s ssvss s svn s svssssasssensnissss 235
6:3.10 The Capstone/Fortezza Generator s s s ssssmmunnsnvasmssrssmosasiasissinssmossssnsess 236
6:3.11 The Intel GENETator «::u isus s svunsosion sossussspassmsssssmmesmmssvisssssosarsnres s ivs i5s s ssb dsavs 238
6.4 The cryptlib GENETALOT .....c..ceouiiiieiiriieiieiceeete sttt 239
6.4.1 The MiXing FUNCHON.........coooiiiiiiiiiie ittt 239
6.4.2 Protection 0f POOL OULPUL........cocveviiiieriiiiiienientesecerc e 240
6.4.3 OUtPUt POST-PIOCESSING ....ccvviiieieiniiiiietirieeie ettt ettt ettt e e sae e 242
6.4.4 Other PreCautions ........coiiieiieiiiiie ettt e veeaeesraeeaaeeas 242
6.4.5 NONCE GENETALION ....eovviiiiieiieiiieeie et eee et e stee et ebe et e e e esbeesteesraeebeeereeeareeneeas 242
6.4.6 Generator ContinuOUS TeSES .....cceeruiiieiiieieii ettt 243
6.4.7 Generator VerifiCation ...........coocieiiiiiienieeiie e eie ettt 244
6.4.8 System-specific Pitfalls..........coocoiiiiii 245
6.4.9 A Taxonomy Of GENEIALOLS. ......ccouiiiuiieiiieiieetierieeete ettt et eveeereeeaee e 248

6.5 The Entropy ACCUMUIAtOT .........cocuiiiiiiiiiiieiie ettt 249



Contents Xvil

6.5.1 Problems with User-Supplied ENtropy.......ccccccooviiiiiiiiiiiiiiiiieiie 249
6.5.2 Entropy Polling Strate@y .........occoiiirmiiiiiiiiiiieiieiei 250
6.5.3 WIN16 POLINE ..ovovenieeeeiieeeieeeeicneieieeiii sttt s 251
6.5.4 Macintosh and OS/2 POLNG ......ccocviiiiiiiiiiiiiiii e 251
6.5.5 BEOS POIINE . ...c.viiieiiiiiieiteeiteitt ettt 252
6.5.6 WIN32 POIIING ..ottt 252
6.5.7 UNIX POLIE ..ottt 253
6.5.8 Other ENtrOPY SOUICES ...cuveivieiieiieiieiieiiciieie ittt 256
6.6 Randomness-Polling ReSUIS s s i cssessusssimsvmssssspusossrorsravane sssuvasnssss snsmvassaseron 256
6.6.1 Data Compression as an Entropy Estimation Tool...........cc.ccooiiiiiinn 257
6.6.2 Win16/Windows 95/98/ME Polling Results..........ccccooeiviiiiiiiiiiiiiiiiiiiii, 259
6.6.3 Windows NT/2000/XP Polling Results .........ccccccoviiiiiiiiniiiiiiiiiis 260
6.6.4 Unix Polling RESUILS ... osmmsmmmmvamsmossssmm s i ssm s e weysoreis 261
6.7 Extensions to the Basic Polling Model ...........ccccooiiiiiiiiiiiiie 261
6.8 Protecting the Randomness Pool............ccooiiii 263
6:9 CONCINSION ssusumssummnsrsmmmmsnmsmsim s mirsvsens o wra avevsins vasevsss s assassn smasssss s doms s s asn oms shsss s oes 266
6.0 RETEIETITES 1. vveuvenernnernersnnensmssussssenssmossans smsssnn s asssns o6 Siss4s S5 TS ERRRR HFHH0 33 0 S RERRSFVHTEFHE S 267
7 Hardware Encryption ModUIes .........coeueeiennieninineinenieentinseeneessensnesessissasssssssssassosssssas 275
7.1 Problems with Crypto on End-User Systems ...........ccoooooiiiiiiiiiiiiiiiii 275
7.1.1 The Root:0f the PrODIEIL . ......owceeenveeesimsmsiss sosssmsssm ssmms smessasiss ssvasmmiss sesvanysssses 277
7.1.2 SOIVING the PLODIEIL. ... .. voerserssrsnrsnssanssississssusvssssssisssmssssemsssms s samen s 5550 507335035 858 279
7.1.3 Coprocessor Design ISSUES..........ocoiiiiiiiiiiiiiiii e 280
T2 The: COPTOCETEON soysnsrsvassss s ermensmss semesssmsosss sumsmsm v sses sy su e wes cous sorsansausasmssason s ovs s 283
T:2:1 iCoprocessor HArdWart s omvssirsisiavioramsason sy 283
7.2.2-Coprocessor FITMWATE «..uus.svmvnsusimmsismmssss o ssescssasia sasvssnsavavanssssaess 285
7.2:3 FIrmware :SeTUD.. usseimsnsssserssmusmososesssssssssmsssimss s s mgsss moss s avissavinavanemsesans 286
7.3 Crypto Functionality Implementation ...........cccoocoiviiiiiiiiiiiiii 287
7.3.1 Communicating with the COProCesSOor ......c...cocieeuiiiiiiiiiiiiiiiii i 289
7.3.2 Communications Hardware .............ccocciiiiiiiiiiiiiiiiiiiiceccec e 289
7.3.3 Communications SOftWare ..........cooceeriiiiiiiiiiiiiiiii e 290
7.3.4 Coprocessor Session COntrol .........ccociiiiiiiiiiiiiiinic e 291
7.3.5 Open versus Closed-Source COProCeSSOTS.........oiiuiiiiiiiiiiiiiieieiet et 293
7.4 Extended Security Functionality ............cccisimmimiminmmismmm ssesmasiisimssssosees 294
7.4.1 Controlling Coprocessor ACHIONS .........cceeuiiieiiiniiiiinieiniiriiieerie i ereeieeseesnens 294
4.2 TINSTEATIO) PALNi..c.veeoonemnmmmmonsnnnnossnsis 554560 56550040 557855805 05805 0TSSR S5 AR S O A 295
7.4.3 Physically Isolated Crypto .......ccococieviiiiiiiiiiiiiiii e 296
7.4.4 Coprocessors in Hostile ENvironments ............ccccocoviiiiiiiiiiiiieie 297
7.5 CONCIUSION ..ottt ettt et 299
706 RETCTEIICES v vveervenos crmners answmnios sanassms emsmmne samnss s anses s sdss 654 565 SESHTH ST RREFER SRV HS RS ERO S FRA SV ROES 299
8 CONCIUSION «eceeerreirieiiuieitiiitintcirtetetsteeseesnessseesssessssssssesssessesasssessaessssssanssasasaessnssssss 305

8. 1 TCONICIIISTON ...omom s o s 005565055 SE 8 4 455 60 S5 4 055 0 SO A S SR S ST 305



xviii  Contents
8.1.1 Separation Kernel Enforcing Filter RUIES ...............ccocevevevemeeereoeeoooooo . 305
8.1.2 Kernel and Verification Co-deSIgN ............ocooeurvieeeeeeeeeeeeoeeeoeoeoo 306
8.1.3 Use of Specification-based TeStING...............co.o.ovevevereeeereeeeeeeeeeeeooeo 306
8.1.4 Use of Cognitive Psychology Principles for Verification ..............o.oovvvvvvvinnl 307
8.1.5 Practical DESIZN .....c.ccovrueueiiuieieiieieeeceeeeeeeeeeeee e 307
8.2 FUuture RESEAICH.......c.c.eueuiuiuiueiiitiieiete oo 308
9 GIOSSALY ..uuencrecnrrecnrennnneneerennesesnesennenes 309

Index 317




