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John Roebling had sense enough to know what he
didn’t know. So he designed the stiffness of the
truss on the Brooklyn Bridge roadway to be six
times what a normal calculation based on known
static and dynamic loads would have called for.
When Roebling was asked whether his proposed
bridge wouldn’t collapse like so many others, he
said “No, because I designed it six times as strong
as it needs to be, to prevent that from happening”

— Jon Bentley, “Programming Pearls”



Preface

Overview and Goals

This book describes various aspects of cryptographic security architecture design, with a
particular emphasis on the use of rigorous security models and practices in the design. The
first portion of the book presents the overall architectural basis for the design, providing a
general overview of features such as the object model and inter-object communications. The
objective of this portion of the work is to provide an understanding of the software
architectural underpinnings on which the rest of the book is based.

Following on from this, the remainder of the book contains an analysis of security policies
and kernel design that are used to support the security side of the architecture. The goal of
this part of the book is to provide an awareness and understanding of various security models
and policies, and how they may be applied towards the protection of cryptographic
information and data. The security kernel design presented here uses a novel design that
bases its security policy on a collection of filter rules enforcing a cryptographic module-
specific security policy. Since the enforcement mechanism (the kernel) is completely
independent of the policy database (the filter rules), it is possible to change the behaviour of
the architecture by updating the policy database without having to make any changes to the
kernel itself. This clear separation of policy and mechanism contrasts with current
cryptographic security architecture approaches which, if they enforce controls at all, hardcode
them into the implementation, making it difficult to either change the controls to meet
application-specific requirements or to assess and verify them.

To provide assurance of the correctness of the implementation, this thesis presents a
design and implementation process that has been selected to allow the implementation to be
verified in a manner that can reassure an outsider that it does indeed function as required. In
addition to producing verification evidence that is understandable to the average user, the
verification process for an implementation needs to be fully automated and capable of being
taken down to the level of running code, an approach that is currently impossible with
traditional methods. The approach presented here makes it possible to perform verification at
this level, something that had previously been classed as “beyond A1” (that is, not achievable
using any known technology).

Finally, two specific issues that arise from the design presented here, namely the
generation and protection of cryptovariables such as encryption and signature keys, and the
application of the design to cryptographic hardware, are presented. These sections are
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intended to supplement the main work and provide additional information on areas that are
often neglected in other works.

Organisation and Features

A cryptographic security architecture constitutes the collection of hardware and software that
protects and controls the use of encryption keys and similar cryptovariables. Traditional
security architectures have concentrated mostly on defining an application programming
interface (API) and left the internal details up to individual implementers. This book presents
a design for a portable, flexible high-security architecture based on a traditional computer
security model. Behind the API it consists of a kernel implementing a reference monitor that
controls access to security-relevant objects and attributes based on a configurable security
policy. Layered over the kernel are various objects that abstract core functionality such as
encryption and digital signature capabilities, certificate management, and secure sessions and
data enveloping (email encryption). This allows them to be easily moved into cryptographic
devices such as smart cards and crypto accelerators for extra performance or security. Chapter
1 introduces the software architecture and provides a general overview of features such as the
object model and inter-object communications.

Since security-related functions that handle sensitive data pervade the architecture,
security must be considered in every aspect of the design. Chapter 2 provides a
comprehensive overview of the security features of the architecture, beginning with an
analysis of requirements and an introduction to various types of security models and security
kernel design, with a particular emphasis on separation kernels of the type used in the
architecture. The kernel contains various security and protection mechanisms that it enforces
for all objects within the architecture, as covered in the latter part of the chapter.

The kernel itself uses a novel design that bases its security policy on a collection of filter
rules enforcing a cryptographic module-specific security policy. The implementation details
of the kernel and its filter rules are presented in Chapter 3, which first examines similar
approaches used in other systems and then presents the kernel design and implementation
details of the filter rules.

Since the enforcement mechanism (the kernel) is completely independent of the policy
database (the filter rules), it is possible to change the behaviour of the architecture by
updating the policy database without having to make any changes to the kernel itself. This
clear separation of policy and mechanism contrasts with current cryptographic security
architecture approaches that, if they enforce controls at all, hardcode them into the
implementation, making it difficult either to change the controls to meet application-specific
requirements or to assess and verify them. The approach to enforcing security controls that is
presented here is important not simply for aesthetic reasons but also because it is crucial to
the verification process discussed in Chapter 5.

Once a security system has been implemented, the traditional (in fact, pretty much the
only) means of verifying the correctness of the implementation has been to apply various
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approaches based on formal methods. This has several drawbacks, which are examined in
some detail in Chapter 4. This chapter covers various problems associated not only with
formal methods but with other possible alternatives as well, concluding that neither the
application of formal methods nor the use of alternatives such as the CMM present a very
practical means of building high-assurance security software.

Rather than taking a fixed methodology and trying to force-fit the design to fit the
methodology, this book instead presents a design and implementation process that has been
selected to allow the design to be verified in a manner that can reassure an outsider that it
does indeed function as required, something that is practically impossible with a formally
verified design. Chapter 5 presents a new approach to building a trustworthy system that
combines cognitive psychology concepts and established software engineering principles.
This combination allows evidence to support the assurance argument to be presented to the
user in a manner that should be both palatable and comprehensible.

In addition to producing verification evidence that is understandable to the average user,
the verification process for an implementation needs to be fully automated and capable of
being taken down to the level of running code, an approach that is currently impossible with
traditional methods. The approach presented here makes it possible to perform verification at
this level, something that had previously been classed as “beyond A1” (that is, not achievable
using any known technology). This level of verification can be achieved principally because
the kernel design and implementation have been carefully chosen to match the functionality
embodied in the verification mechanism. The behaviour of the kernel then exactly matches
the functionality provided by the verification mechanism and the verification mechanism
provides exactly those checks that are needed to verify the kernel. The result of this co-
design process is an implementation for which a binary executable can be pulled from a
running system and re-verified against the specification at any point, a feature that would be
impossible with formal-methods-based verification.

The primary goal of a cryptographic security architecture is to safeguard cryptovariables
such as keys and related security parameters from misuse. Sensitive data of this kind lies at
the heart of any cryptographic system and must be generated by a random number generator
of guaranteed quality and security. If the cryptovariable generation process is insecure then
even the most sophisticated protection mechanisms in the architecture won’t do any good.
More precisely, the cryptovariable generation process must be subject to the same high level
of assurance as the kernel itself if the architecture is to meet its overall design goal, even
though it isn’t directly a part of the security kernel.

Because of the importance of this process, an entire chapter is devoted to the topic of
generating random number for use as cryptovariables. Chapter 6 begins with a requirements
analysis and a survey of existing generators, including extensive coverage of pitfalls that must
be avoided. It then describes the method used by the architecture to generate cryptovariables,
and applies the same verification techniques used in the kernel to the generator. Finally, the
performance of the generator on various operating systems is examined.

Although the architecture works well enough in a straightforward software-only
implementation, the situation where it really shines is when it is used as the equivalent of an
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operating system for cryptographic hardware (rather than having to share a computer with all
manner of other software, including trojan horses and similar malware). Chapter 7 presents a
sample application in which the architecture is used with a general-purpose embedded
system, with the security kernel acting as a mediator for access to the cryptographic
functionality embedded in the device. This represents the first open-source cryptographic
processor, and is capable of being built from off-the-shelf hardware controlled by the
software that implements the architecture.

Because the kernel is now running in a separate physical device, it is possible for it to
perform additional actions and checks that are not feasible in a general-purpose software
implementation. The chapter covers some of the threats that a straightforward software
implementation is exposed to, and then examines ways in which a cryptographic coprocessor
based on the architecture can counter these threats. For example, it can use a trusted I/O path
to request confirmation for actions such as document signing and decryption that would
otherwise be vulnerable to manipulation by trojan horses running in the same environment as
a pure software implementation.

Finally, the conclusion looks at what has been achieved, and examines avenues for future
work.

Intended Audience

This book is intended for a range of readers interested in security architectures, cryptographic
software and hardware, and verification techniques, including:

e Designers and implementers: The book discusses in some detail design issues
and approaches to meeting various security requirements.

e Students and researchers: The book is intended to be both a general tutorial for
study and an in-depth reference providing links to detailed background material
for further research.
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