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Preface

In writing this book I have tried to keep mathematical prerequisites to a mini-
mum. The reader who is essentially innocent of mathematical knowledge be-
yond that taught in high school should be able to read at least halfway through
Chapter VIII plus parts of the rest of the book, though such a reader will
need to skip the occasional formula. That is enough of the book for all of
the major ideas to be presented. The Introduction may seem daunting since
it refers to ideas that are not explained until later—trust me, they are ex-
plained. A reader who learned freshman calculus once, but perhaps does not
remember it very well, and who has had a logic course that included a proof
of the completeness theorem will be in fine shape throughout the book, ex-
cept for various “technical remarks,” an appendix to Chapter VI, and a few
parts of Chapter IX. Those few technical discussions require varying degrees
of mathematical sophistication and knowledge of general mathematical logic
plus occasional knowledge of elementary recursion theory, model theory, or
modal logic.

Thanks are due Bonnie Kent, Vann McGee, Sidney Morgenbesser, and
Sarah Stebbins for their infinite patience in listening to my many half-baked
ideas and for their substantial help in culling and completing them while I
was writing this book. As they learned, I cannot think without the give and
take of conversation. Thanks also to Ti-Grace Atkinson, Jeff Barrett, William
Boos, Hartry Field, Alan Gabbey, Haim Gaifman, Alexander George, Allen
Hazen, Gregory Landini, Penelope Maddy, Robert Miller, Edward Nelson,
Ahmet Omurtag, David Owen, Charles Parsons, Thomas Pogge, Vincent
Renzi, Scott Shapiro, Mark Steiner, and Robert Vaught for their thoughtful
comments on an early version of the book. Those comments have led to sig-
nificant improvements. And thanks to Thomas Pogge for his substantial help
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in correcting my translations from German. Any remaining mistakes are, of
course, my own.

Thanks are also due my parents, Dorothy and Leroy Lavine, not only for
their moral support, which I very much appreciated, but also for their gener-
ous financial support, without which the preparation of this book would not
have been possible. My wife, Caroline, and daughter, Caila, deserve the most
special thanks of all, for tolerating with such understanding my absences and
the stresses on our family life that the writing of a book inevitably required.
This book is dedicated to them.
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Introduction

In the latter half of the nineteenth century Georg Cantor introduced the infi-
nite into mathematics. The Cantorian infinite has been one of the main nu-
trients for the spectacular flowering of mathematics in the twentieth century,
and yet it remains mysterious and ill understood.

At some point during the 1870s Cantor realized that sets—that is, collec-
tions in a familiar sense that had always been a part of mathematics—were
worthy of study in their own right. He developed a theory of the sizes of infi-
nite collections and an infinite arithmetic to serve as a generalization of ordi-
nary arithmetic. He generalized his theory of sets so that it could encompass
all of mathematics. The theory has become crucial for both mathematics and
the philosophy of mathematics as a result. Unfortunately, Cantor had been
naive, as Cantor himself and Cesare Burali-Forti realized late in the nine-
teenth century and as Bertrand Russell realized early in the twentieth. His
simple and elegant set theory was inconsistent—it was subject to paradoxes.

The history of set theory ever since the discovery of the paradoxes has been
one of attempting to salvage as much as possible of Cantor’s naive theory.
Formal axiom systems have been developed in order to codify a somewhat
arbitrarily restricted part of Cantor’s simple theory, formal systems that have
two virtues: they permit a reconstruction of much of Cantor’s positive work,
and they are, we hope, consistent. At least the axiomatic theories have been
formulated to avoid all of the known pitfalls. Nonetheless, they involve cer-
tain undesirable features: First, the Axiom of Choice is a part of the theories
niot so much because it seems true—it is at best controversial—but because
it seems to be required to get the desired results. Second, since present-day
set theory is ad hoc, the result of retreat from disaster, we cannot expect it to
correspond in any very simple way to our uneducated intuitions about collec-
tions. Those are what got Cantor into trouble in the first place.

1



2 I. INTRODUCTION

We can never rely on our intuitions again. The fundamental axioms of
mathematics—those of the set theory that is its modern basis—are to a large
extent arbitrary and historically determined. They are the remote and imper-
fectly inferred remnants of Cantor’s beautiful but tragically flawed paradise.

The story I have just told is a common one, widely believed. Not one word
of it is true. That is important, not just for the history of mathematics but
for the philosophy of mathematics and many other parts of philosophy as
well. The story has influenced our ideas about the mathematical infinite, and
hence our ideas about mathematics and about abstract knowledge in general,
in many deep ways.

Both elementary number theory and the geometry of the Greeks, for all
that they are abstract, have clear ties to experience. They are, in fact, often
thought to result from idealizing that experience. Modern mathematics, in-
cluding much of the mathematics of physics, is frequently thought to be ab-
stract in a much more thoroughgoing sense. As I shall put it, modern math-
ematics is not only abstract but also remote, because it is set-theoretic:! The
story tells us that modern axiomatic set theory is the product not of idealiza-
tion but of the failure of an attempted idealization.

Since science and often mathematics are thought of as quintessential exam-
ples of human knowledge, modern epistemology tries to come to grips with
scientific and mathematical knowledge, to see it as knowledge of a typical or
core kind. That poses a serious problem for epistemology, since mathematical
knowledge and the scientific knowledge that incorporates it is thought to be
$O remote.

The whole picture of mathematical knowledge that drives the epistemol-
ogy is wrong. As this book will demonstrate, set theory, as Cantor and Ernst
Zermelo developed it, is connected to a kind of idealization from human ex-
perience much like that connected to the numbers or to Euclidean geometry.

Cantor studied the theory of trigonometric series during the 1870s. He
became interested in arbitrary sets of real numbers in the process of making

1. When I say that modern mathematics is set-theoretic, I am not referring to the so-
called set-theoretic foundations of mathematics, which play little role in this book. What
I have in mind is the ubiquitous use of set-theoretic concepts in mathematics, concepts
like open set, closed set, countable set, abstract structure, and so on and on. The concepts
mentioned were, as we shall see in Chapter III, introduced by Cantor in the course of
the same investigations in which he introduced his theory of infinite numbers and their
arithmetic.
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that theory apply to more general classes of functions. His work was part of a
long historical development that had in his day culminated in the idea that a
function from the real numbers to the real numbers is just any association—
however arbitrary—from each real number to a single other real number, the
value of the function. The term arbitrary is to make it clear that no rule or
method of computation need be involved. That notion of a function is the one
we use today.

Cantor’s study of the theory of trigonometric series led him to this progres-
sion of transfinite “indexes”:

0,l,...,oo,oo+1,oo+2,...,oo-2,...,oo-3,...,

2 3 00 (oo
O0= e Q050 2 e OO0 - 00 Ry

Cantor’s set theory began as, and always remained, an attempt to work out
the consequences of the progression, especially the consequences for sets of
real numbers. Despite the usual story, Cantor’s set theory was a theory not
of collections in some familiar sense but of collections that can be counted
using the indexes—the finite and transfinite ordinal numbers, as he came to
call them. Though Cantor came to realize the general utility of his theory for
codifying a large part of mathematics, that was never his main goal.

Cantor’s original set theory was neither naive nor subject to paradoxes. It
grew seamlessly out of a single coherent idea: sets are collections that can be
counted. He treated infinite collections as if they were finite to such an extent
that the most sensitive historian of Cantor’s work, Michael Hallett, wrote of
Cantor’s “finitism.” Cantor’s theory is a part of the one we use today.

Russell was the inventor of the naive set theory so often attributed to Can-
tor. Russell was building on work of Giuseppe Peano. Russell was also the
one to discover paradoxes in the naive set theory he had invented. Cantor,
when he learned of the paradoxes, simply observed that they did not apply to
his own theory. He never worried about them, since they had nothing to do
with him. Burali-Forti didn’t discover any paradoxes either, though his work
suggested a paradox to Russell.

Cantor’s theory had other problems. It did not, in its original form, include
the real numbers as a set. Cantor had, for good reason, believed until the
1890s—very late in his career—that it would include them. (Most everything
else I am saying here is known to one or another historian or mathematician,
but the claim that Cantor had a smooth theory that broke down in the 1890s is
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new here. It is argued in detail in §IV.2.)? Cantor grafted a new assumption on
to his theory as soon as he realized he needed it, an assumption that allowed
him to incorporate the real numbers, but the assumption caused big trouble.

The new assumption was his version of what is today the Power Set Axiom.
The trouble it caused was that his theory was supposed to be a theory of
collections that can be counted, but he did not know how to count the new
collections to which the Power Set Axiom gave rise. The whole theory was
therefore thrown into doubt, but not, let me emphasize, into contradiction and
paradox. It seemed that counting could no longer serve as the key idea. Cantor
did not know how to replace it.

Zermelo came to the rescue of Cantor’s theory of sets in 1904. He isolated
a principle inherent in the notion of an arbitrary function, a principle that had
been used without special note by many mathematicians, including Cantor,
in the study of functions and that had also been used by Cantor in his study
of the ordinal numbers. Zermelo named that principle the Axiom of Choice.
Though the principle had been used before Zermelo without special notice, no
oversight had been involved: the principle really is inherent in the notion of an
arbitrary function. What Zermelo noted was that the principle could be used
to “count,” in the Cantorian sense, those collections that had given Cantor so
much trouble, which restored a certain unity to set theory.

The Axiom of Choice was never, despite the usual story, a source of contro-
versy. Everyone agreed that it is a part of the notion of an arbitrary function.
The brouhaha that attended Zermelo’s introduction of Choice was a dispute
about whether the notion of an arbitrary function was the appropriate one to
use in mathematics (and indeed about whether it was a coherent notion). The
rival idea was that functions should be taken to be given only by rules, an
idea that would put Choice in doubt. The controversy was between advocates
of taking mathematics to be about arbitrary functions and advocates of taking
mathematics to be about functions given by rules—not about Choice per se,
but about the correct notion of function. Arbitrary functions have won, and
Choice comes with them. There is, therefore, no longer any reason to think of
the Axiom of Choice as in any way questionable.

Zermelo’s work was widely criticized. One important criticism was that
he had used principles that, like Russell’s, led to known contradictions. He
hadn’t. In order to defend his theorem that the real numbers can be “counted,”

2. The reference is to Chapter IV, Section 2. A reference to §2 would be a reference
to Section 2 of the present chapter.



I. INTRODUCTION 5

Zermelo gave an axiomatic presentation of set theory and a new proof of the
theorem on the basis of his axioms. The axioms were to help make it clear that
he had been working on the basis of a straightforwardly consistent picture all
along. That is a far cry from the common view that he axiomatized set theory
to provide a consistent theory in the absence of any apparent way out of the
paradoxes.

There was a theory developed as a retreat from the disastrous Russellian
theory and its precursor in Gottlob Frege, namely, the theory of types. But
it never had much to do with Cantorian set theory. I discuss it only in so far
as that is necessary to distinguish it from Cantorian set theory. In the process
of discussing it, I introduce a distinctive use Russell suggested for something
like schemas,’ a use that shows that schemas have useful properties deserving
of more serious study. Such a study is a running subtheme of this book.

It did not take long for Thoralf Skolem and Abraham Fraenkel to note that
Zermelo’s axioms, while they served Zermelo’s purpose of defending his the-
orem, were missing an important principle of Cantorian set theory—what
is now the Replacement Axiom. The universal agreement about the truth of
the Replacement Axiom that followed is remarkable, since the axiom wasn’t
good for anything. That is, at a time when Replacement was not known to
have any consequences about anything except the properties of the higher
reaches of the Cantorian infinite, it was nonetheless immediately and univer-
sally accepted as a correct principle about Cantorian sets.

Chapters II-V establish in considerable detail that it is the historical sketch
just given that is correct, not the usual one I parodied above, and they include
other details of the development of set theory. Just one more sample—the
iterative conception of set, which is today often taken to be the conception
that motivated the development of set theory and to be the one that justifies
the axioms, was not so much as suggested, let alone advocated by anyone,
until 1947.

There are three main philosophical purposes for telling the story just
sketched. The first is to counteract the baneful influence of the standard ac-
count, which seems to have convinced many philosophers of mathematics
that our intuitions are seriously defective and not to be relied on and that the
axioms of mathematics are therefore to a large extent arbitrary, historically

3. A schema is a statement form used to suggest a list of statements. For example,
X = X, where the substitution class for X is numerals, is a schema that has as instances,
among others,0=0, 1 =1,and 2 =2.
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determined, conventional, and so forth. The details vary, but the pejoratives
multiply.

On the contrary, set theory is not riddled with paradoxes. It was never in
such dire straits. It developed in a fairly direct way as the unfolding of a
more or less coherent conception. (Actually, I think there have been two main
strands in the development of the theory, symbolized above by the notion of
counting and by Power Set. As I discuss in §V.5, it could be clearer how
they fit together. One symptom of our lack of clarity on the issue is the
independence of the Continuum Hypothesis. But that is a far cry from the
usual tale of woe.)

The second purpose is to show what as a matter of historical fact we know
about the Cantorian infinite on the basis of clear and universal intuitions that
distinctively concern the infinite. The two most striking cases of things we
know about the Cantorian infinite on the basis of intuition are codified as
Choice and Replacement. How we could know such things? It seems com-
pletely mysterious. The verdict has often been that we do not—our use of
Choice and Replacement is to a large extent arbitrary, historically determined,
conventional, and so forth. But that is not true to the historical facts of math-
ematical practice, facts that any adequate philosophy of mathematics must
confront. (Allow me to take the liberty of ignoring constructivist skepticism
about such matters in the Introduction. I shall confront it in the text.)

The third purpose is to make clearer the nature of intuition—the basis on
which we know what we do. I have been using the term intuition because it is
so familiar, but I do not mean the sort of armchair contemplation of a Platonic
heaven or the occult form of perception that the term conjures up for many.
Whatever intuition is, it is very important to mathematics:

In mathematics, as in any scientific research, we find two tendencies
present. On the one hand, the tendency toward abstraction . . . On the
other hand, the tendency toward intuitive understanding fosters a more
‘immediate grasp of the objects one studies, a live rapport with them, so
to speak, which stresses the concrete meaning of their relations.

... It is still as true today as it ever was that intuitive understanding
plays a major role in geometry. And such concrete intuition is of great
value not only for the research worker, but also for anyone who wishes
to study and appreciate the results of research in geometry. (Page iii of
David Hilbert’s preface to [HCV52].)

The quotation is from a book about geometry, but the point is far more gen-
eral.
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Just as one scientific theory can displace another because of its superior

ability to systematize, one mathematical theory can displace another. Unex-
pected developments can spawn new theories, which can in turn lead to fruit-
ful developments in old theories and become so intertwined with them that
the new and the old become indistinguishable. We shall see examples of those
things: The modern notion of a function evolved gradually out of the desire
to see what curves can be represented as trigonometric series. The study of
arbitrary functions, in the modern sense, led Cantor to the ordinal numbers,
which led to set theory. And set theory became so intertwined with the the-
ories of functions and of the real numbers as to transform them completely.
That is all a part of the story told in Chapters IT and III. Mathematics does not
have the same ties to experiment as science, but the way mathematics evolves
is nonetheless very similar to the way that science evolves.
. The view of mathematics just outlined is usually thought to be antitheti-
cal to the possibility of any distinctive sort of mathematical intuition. New
mathematics has been thought to evolve out of old without any further con-
straint than what can be proved. But that cannot have been right for most
of the history of modern mathematics: from, say, the first half of the seven-
teenth century until the second half of the nineteenth there was no coherent
systematization or axiomatization for much of mathematics and certainly no
adequate notion of proof.

Mathematicians necessarily saw themselves as working on the basis of an
intuitive conception, relying to some extent on what was obvious, to some
extent on connections with physics, and to some extent—but only to some
extent, since proof was not a completely reliable procedure—on proof. (See
Chapter IL.) I believe that most mathematicians today still see themselves
as working in much the same conceptually based and quasi-intuitive way,
though that is much harder to show, since rigorous standards of proof and
precise axiomatizations are now available. The intuitive conceptions that un-
derlie mathematical theories evolve, as do the theories, but the intuitions both
constrain the theories and suggest new developments in them in unexpected
ways.

The development of set theory is an excellent example of the positive and
necessary role intuition plays in mathematics. Because set theory is in so
many respects unlike the mathematics that had gone before, it is clear that
prior training was far from an adequate guide for Cantor. Besides, the pro-
gression that he found does, in some sense, have clear intuitive content. There
is a great and mysterious puzzle in the suggestiveness of Cantor’s progres-
sion that can hardly be overstated. The progression is infinite, and we have
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absolutely no experience of any kind of the infinite. So what method are we
using—what method did Cantor use—to make sense of the progression? The
question is another version of the one raised above about Choice and Re-
placement.

It is difficult to understand how we can know any mathematical truths at
all, since the subject matter of mathematics is so abstract. But the problem is
particularly acute for truths about the infinite. There is no doubt that we know
that 2 + 2 = 4 in some sense or other, and that that knowledge is somehow
connected to our experience that disjoint pairs combine to form a quadruple.
The facts are indisputable and have multifarious connections to human ex-
perience. But there is genuine doubt about the truth of, say, Ny + Ny = 8o,
because, for example, there is doubt about whether there could be &, things.*
Everyone agrees we must in some sense accept that 2 + 2 =4, but it is rea-
sonable to be altogether skeptical about the infinite. Worse still, it is not clear
what connections to human experience truths about the infinite might have. A
modern philosopher of mathematics put it this way:

The human mind is finite and the set theoretic hierarchy is infinite. Pre-
sumably any contact between my mind and the iterative hierarchy can
involve at most finitely much of the latter structure. But in that case, I
might just as well be related to any one of a host of other structures that
agree with the standard hierarchy only on the minuscule finite portion
I’ve managed to grasp. [Mad90, p. 79]

There is a general philosophical problem about knowledge of abstract ob-
jects, mathematical objects in particular. But the special case of knowledge
of infinite mathematical objects is a distinctive problem for which distinctive
solutions have been suggested. Chapters VI and VII are concerned with that
problem of the infinite. In Chapter VI, I survey various accounts of mathe-
matical knowledge of the infinite that attempt to show how it can come out
of experience. They begin with a theory of knowledge and try to fit math-
ematics to it. Intuitionism, various forms of formalism, and one version of
David Hilbert’s program are discussed. I use a Russellian picture of schemas
to clarify how Hilbert’s finitary mathematics could avoid any commitment to
the infinite. It is a consequence of each of the philosophies surveyed that we
could not know what we in fact do.

4. The symbol is a capital Hebrew aleph. R, (pronounced “aleph two”) stands for
one of Cantor’s infinite numbers.



