Stefan Leue
Tarja Johanna Systd (Eds.)

o Scenarios:
~ Models, Transformations
= and Tools

International Workshop
Dagstuhl Castle, Germany, September 2003
Revised Selected Papers

@ Springer

Stefan Leue Tarja Johanna Systi (Eds.)

Scenarios:
Models, Transformations
and Tools

International Workshop
Dagstuhl Castle, Germany, September 7-12, 2003
Revised Selected Papers

@ Springer

Volume Editors

Stefan Leue

University of Konstanz

Department of Computer and Information Science
78457 Konstanz, Germany

E-mail: Stefan.Leue @uni-konstanz.de

Tarja Johanna Systd

Tampere University of Technology
Institute of Software Systems
33101 Tampere, Finland

E-mail: cstasy @cs.uta.fi

Library of Congress Control Number: 2005928335

CR Subject Classification (1998): F.3.1-2,C.2.4,D.2.1,D.24-5,D.3.1, K.6.5

ISSN 0302-9743
ISBN-10 3-540-26189-3 Springer Berlin Heidelberg New York
ISBN-13 978-3-540-26189-6 Springer Berlin Heidelberg New York

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is
concerned, specifically the rights of translation, reprinting, re-use of illustrations, recitation, broadcasting,
reproduction on microfilms or in any other way, and storage in data banks. Duplication of this publication
or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965,
in its current version, and permission for use must always be obtained from Springer. Violations are liable
to prosecution under the German Copyright Law.

Springer is a part of Springer Science+Business Media
springeronline.com

© Springer-Verlag Berlin Heidelberg 2005
Printed in Germany

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India
Printed on acid-free paper SPIN: 11495628 06/3142 543210

Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Switzerland
John C. Mitchell

Stanford University, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
Oscar Nierstrasz

University of Bern, Switzerland
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

University of Dortmund, Germany
Madhu Sudan

Massachusetts Institute of Technology, MA, USA
Demetri Terzopoulos

New York University, NY, USA
Doug Tygar

University of California, Berkeley, CA, USA
Moshe Y. Vardi

Rice University, Houston, TX, USA
Gerhard Weikum

Max-Planck Institute of Computer Science, Saarbruecken, Germany

3466

Preface

Visual notations and languages continue to play a pivotal réle in the design
of complex software systems. In many cases visual notations are used to de-
scribe usage or interaction scenarios of software systems or their components.
While representing scenarios using a visual notation is not the only possibility,
a vast majority of scenario description languages is visual. Scenarios are used
in telecommunications as Message Sequence Charts, in object-oriented system
design as Sequence Diagrams, in reverse engineering as execution traces, and
in requirements engineering as, for example, Use Case Maps or Life Sequence
Charts. These techniques are used to capture requirements, to capture use cases
in system documentation, to specify test cases, or to visualize runs of existing
systems. They are often employed to represent concurrent systems that inter-
act via message passing or method invocation. In telecommunications, for more
than 15 years the International Telecommunication Union has standardized the
Message Sequence Charts (MSCs) notation in its recommendation Z.120. More
recently, with the emergence of UML as a predominant software design method-
ology, there has been special interest in the development of the sequence dia-
gram notation. As a result, the most recent version, 2.0, of UML encompasses
the Message Sequence Chart notation, including its hierarchical modeling fea-
tures. Other scenario-flavored diagrams in UML 2.0 include activity diagrams
and timing diagrams.

To a large extent the attractiveness of visual scenario notations stems from
the ease with which these diagrams can be recognized and understood. On the
other hand, the ease of use of these diagrams brings with it the danger that
system specifications and designs understate the inherent system complexity
and lead to incomplete system models. A research focus is therefore directed at
making scenario notations amenable to formal treatment — this includes models
for their formal representations, transformations between different notations and
abstraction levels, and tools that support editing, analysis and synthesis for
scenario notations.

The seminar on which this proceedings volume reports was entitled Scenarios:
Models, Transformations and Tools and was held as Seminar Number 03371
during September 7-12, 2003, at Schloss Dagstuhl, Germany. It was organized
as a continuation of a series of workshops that have been co-located with larger
conferences such as the International Conference on Software Engineering (ICSE)
and the Conference on Object-Oriented Programming, Systems, Languages, and
Applications (OOSPLA) since 2000. This volume is a post-event proceedings
volume and contains selected papers based on presentations given during the
seminar. All included papers were thoroughly peer-reviewed in two rounds of
reviewing.

VI Preface

The paper by Haugen, Husa, Runde and Stglen opens the first section of
papers that deal with the semantics and analysis of scenario notations. The
authors of this paper argue for the need to use a three-event semantics which
distinguishes the sending event, the receiving event and the consumption event
in timed sequence diagrams. An interactive scenario design process by which the
system synthesizes a design model by learning from sets of positive and nega-
tive scenarios, represented as sequence diagrams, is described in the paper by
Harel, Kugler and Weiss. An analysis tool stands at the end of their tool chain.
When analyzing Scenario specifications it is important to recognize the limits
of decidability. The paper by Muscholl and Peled reviews important decidabil-
ity results regarding Sequence Diagrams and Message Sequence Charts, another
popular visual scenario notation. It is frequently observed that the application
of modeling formalisms in specific application domains requires dedicated se-
mantics. Cremers and Mauw propose in their paper an operational semantics for
Messages Sequence Charts applied in the domain of security protocols.

One objective of the Dagstuhl seminar was to entice practical work that as-
sesses the suitability of different scenario design approaches to a common case
study. Two half-days during the seminar were devoted to modeling the case study
known as the Autonomous Shuttle System using different design approaches and
tools. The paper by Giese and Klein describe this case study. Some of the sub-
sequent papers in this volume refer to it.

We mentioned above that many but not all scenario formalisms are visual.
In his paper, Dromey introduces a textual scenario description language called
Design Behavior Trees and exemplifies this design notation by application to the
Early Warning System case study proposed by Harel and Politi.

The paper by Diethelm, Geiger and Ziindorf offers a thorough treatment of
the Autonomous Shuttle System case study using the Story Driven Modeling
design approach. The CASE tool Fujaba, which underlies this study, enables
editing, analysis and synthesis based on a collection of scenarios. The Use Case
Maps notation has recently evolved as a new visual requirements notation that
focusses on expressing the causalities of events happening along use cases. In their
paper, Petriu, Amyot, Woodside and Jiang illustrate the use of the Use Case
Maps notation by applying it to capturing requirements for the Autonomous
Shuttle System case study.

It has long been recognized that Message Sequence Charts and related sce-
nario notations can prove helpful in software testing. The paper by Beyer and
Dulz suggests the use of collections of scenarios in the synthesis of a stochastic
usage model, called Markov Chain Usage Models. These models are later used
as the basis for testing stochastic properties of real-time systems.

Both the formal analysis of variants of Message Sequence Chart models and
the synthesis of correct executable code from these models are at the heart
of the paper by Bontemps, Heymans and Schobbens. Since both problems are
either computationally expensive or intractable, the authors propose sound and
complete “lightweight” approximations of the original problems. The synthesis
problem is also the subject of the paper by Giese, Klein and Burmester. The

Preface VII

authors suggest the derivation of behavior patterns from scenario specifications.
The patterns will later be used for compositional system verification.

The modeling of mobile systems is addressed in the paper by Kosiuczenko.
The author suggests a graphical scenario notation to represent object mobility
as an extension of UML Sequence Diagrams and suggests a semi-formal inter-
pretation for this notation.

Message Sequence Charts are frequently used at the early stages of the soft-
ware design process, and it is desirable to derive executable design models from
them. The MSC2SDL tool that Khendek and Zhang describe synthesizes SDL
models from collections of MSC specifications. The authors illustrate their ap-
proach by using the Autonomous Shuttle System case study as a reference.

Object-oriented systems tend to be described by the services that the object
instances can provide, and often assume that an object may provide different
services as it plays different roles. The paper by Kriiger and Mathews illustrates
the use of Scenario Diagrams in describing the different services that object
instances may provide. They also show how a complete system view can be
derived from this model. The authors exemplify the use of their notation by
applying it to the Center TRACON Automation System (CTAS) case study,
another benchmark case study for scenario-based system design.

The collection of papers included in this volume covers a major portion of the
discussions that took place during the seminar. More information, including the
program, transparencies of the presentations, and a summary of the outcome of
the seminar, is available online under the URL http://www.dagstuhl.de/03371/

Acknowledgements. We thank Francis Bordeleau for co-organizing this seminar
with us and for helping us in the initial phases of the editing of this volume.
We are truly grateful to Schloss Dagstuhl and its staff for providing us with the
very pleasant atmosphere that made a very productive seminar come about. The
permission to use the Springer LNCS online reviewing system helped us a lot
in the compilation of this volume, and we wish to thank Tiziana Margaria and
Martin Karusseit for their support.

March 2005 Tarja Systd (Tampere)
Stefan Leue (Konstanz)

Organization

Seminar Organizers

F. Bordeleau

S. Leue

T. Systa

Referees

D. Amyot K. Heljanko I. Schieferdecker
Y. Bontemps F. Khendek S. Somé

F. Bordeleau A. Knapp T. Systa

J.P. Corriveau H. Kugler S. Uchitel

H. Giese S. Leue G. Weiss

M. Glinz C. Lohr M. Woodside
S. Graf E. Mékinen A. Zindorf
R. Grosu S. Mauw

. Haugen D. Peled

Lecture Notes in Computer Science

For information about Vols. 1-3449

please contact your bookseller or Springer

Vol. 3569: F. Bacchus, T. Walsh (Eds.), Theory and Ap-
plications of Satisfiability Testing, SAT 2005. XII, 492
pages. 2005.

Vol. 3556: H. Baumeister, M. Marchesi, M. Holcombe
(Eds.), Extreme Programming and Agile Processes in
Software Engineering. XIV, 332 pages. 2005.

Vol. 3555: T. Vardanega, A. Wellings (Eds.), Reliable Soft-

ware Technology — Ada-Europe 2005. XV, 273 pages.
2005.

Vol. 3552: H. de Meer, N. Bhatti (Eds.), Quality of Service
—IWQoS 2005. XV, 400 pages. 2005.

Vol. 3547: F. Bomarius, S. Komi-Sirvi6 (Eds.), Product
Focused Software Process Improvement. XIII, 588 pages.
2005.

Vol. 3543: L. Kutvonen, N. Alonistioti (Eds.), Distributed
Applications and Interoperable Systems. XI, 235 pages.
2005.

Vol. 3541: N.C. Oza, R. Polikar, J. Kittler, F. Roli (Eds.),
Multiple Classifier Systems. XII, 430 pages. 2005.

Vol. 3537: A. Apostolico, M. Crochemore, K. Park (Eds.),
Combinatorial Pattern Matching. XI, 444 pages. 2005.

Vol. 3536: G. Ciardo, P. Darondeau (Eds.), Applications
and Theory of Petri Nets 2005. XI, 470 pages. 2005.

Vol. 3535: M. Steffen, G. Zavattaro (Eds.), Formal Meth-
ods for Open Object-Based Distributed Systems. X, 323
pages. 2005.

Vol. 3532: A. G6émez-Pérez, J. Euzenat (Eds.), The Se-
mantic Web: Research and Applications. XV, 728 pages.
2005.

Vol. 3531: J. Ioannidis, A. Keromytis, M. Yung (Eds.), Ap-
plied Cryptography and Network Security. XI, 530 pages.
2005.

Vol. 3528: P.S. Szczepaniak, J. Kacprzyk, A. Niewiadom-
ski (Eds.), Advances in Web Intelligence. X VII, 513 pages.
2005. (Subseries LNAI).

Vol. 3527: R. Morrison, F. Oquendo (Eds.), Software Ar-
chitecture. XII, 263 pages. 2005.

Vol. 3526: S.B. Cooper, B. Lowe, L. Torenvliet (Eds.),
New Computational Paradigms. XVII, 574 pages. 2005.

Vol. 3525: A.E. Abdallah, C.B. Jones, J.W. Sanders (Eds.),
Communicating Sequential Processes. XIV, 321 pages.
2005.

Vol. 3524: R. Barték, M. Milano (Eds.), Integration of Al

and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems. XI, 320 pages. 2005.

Vol. 3523: J.S. Marques, N.P. de la Blanca, P. Pina (Eds.),
Pattern Recognition and Image Analysis, Part II. XXVI,
733 pages. 2005.

Vol. 3522: J.S. Marques, N.P. de la Blanca, P. Pina (Eds.),
Pattern Recognition and Image Analysis, Part I. XXVI,
703 pages. 2005.

Vol. 3521: N. Megiddo, Y. Xu, B. Zhu (Eds.), Algorithmic
Applications in Management. XIII, 484 pages. 2005.

Vol. 3520: O. Pastor, J. Falcdo e Cunha (Eds.), Advanced
Information Systems Engineering. XVI, 584 pages. 2005.

Vol. 3519: H. Li, P. J. Olver, G. Sommer (Eds.), Computer
Algebra and Geometric Algebra with Applications. IX,
449 pages. 2005.

Vol. 3518: T.B. Ho, D. Cheung, H. Li (Eds.), Advances in
Knowledge Discovery and Data Mining. XXI, 864 pages.
2005. (Subseries LNAI).

Vol. 3517: H.S. Baird, D.P. Lopresti (Eds.), Human Inter-
active Proofs. IX, 143 pages. 2005.

Vol. 3516: V.S. Sunderam, G.D.v. Albada, PM.A. Sloot,
J.J. Dongarra (Eds.), Computational Science —ICCS 2005,
Part ITI. LXIII, 1143 pages. 2005.

Vol. 3515: V.S. Sunderam, G.D.v. Albada, P.M.A. Sloot,
J.J. Dongarra (Eds.), Computational Science - ICCS 2005,
Part II. LXIII, 1101 pages. 2005.

Vol. 3514: V.S. Sunderam, G.D.v. Albada, PM.A. Sloot,
J.J. Dongarra (Eds.), Computational Science - ICCS 2005,
Part I. LXIII, 1089 pages. 2005.

Vol. 3513: A. Montoyo, R. Mufioz, E. Métais (Eds.), Nat-
ural Language Processing and Information Systems. XII,
408 pages. 2005.

Vol. 3512: J. Cabestany, A. Prieto, F. Sandoval (Eds.),
Computational Intelligence and Bioinspired Systems.
XXV, 1260 pages. 2005.

Vol. 3510: T. Braun, G. Carle, Y. Koucheryavy, V. Tsaous-
sidis (Eds.), Wired/Wireless Internet Communications.
XIV, 366 pages. 2005.

Vol. 3509: M. Jiinger, V. Kaibel (Eds.), Integer Program-
ming and Combinatorial Optimization. XI, 484 pages.
2005.

Vol. 3508: P. Bresciani, P. Giorgini, B. Henderson-Sellers,
G. Low, M. Winikoff (Eds.), Agent-Oriented Information
Systems II. X, 227 pages. 2005. (Subseries LNAI).

Vol. 3507: F. Crestani, I. Ruthven (Eds.), Information Con-
text: Nature, Impact, and Role. XIII, 253 pages. 2005.

Vol. 3506: C. Park, S. Chee (Eds.), Information Security
and Cryptology — ICISC 2004. XIV, 490 pages. 2005.

Vol. 3505: V. Gorodetsky, J. Liu, V. A. Skormin (Eds.), Au-
tonomous Intelligent Systems: Agents and Data Mining.
XIII, 303 pages. 2005. (Subseries LNAI).

Vol. 3504: A'F. Frangi, PI. Radeva, A. Santos, M. Her-
nandez (Eds.), Functional Imaging and Modeling of the
Heart. XV, 489 pages. 2005.

Vol. 3503: S.E. Nikoletseas (Ed.), Experimental and Effi-
cient Algorithms. XV, 624 pages. 2005.

Vol. 3502: F. Khendek, R. Dssouli (Eds.), Testing of Com-
municating Systems. X, 381 pages. 2005.

Vol. 3501: B. Kégl, G. Lapalme (Eds.), Advances in Artifi-
cial Intelligence. XV, 458 pages. 2005. (Subseries LNAI).

Vol. 3500: S. Miyano, J. Mesirov, S. Kasif, S. Istrail, P.
Pevzner, M. Waterman (Eds.), Research in Computational
Molecular Biology. XVII, 632 pages. 2005. (Subseries
LNBI).

Vol. 3499: A. Pelc, M. Raynal (Eds.), Structural Informa-
tion and Communication Complexity. X, 323 pages. 2005.

Vol. 3498: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part III. L, 1077 pages.
2005.

Vol. 3497: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part II. L, 947 pages.
2005.

Vol. 3496: J. Wang, X. Liao, Z. Yi (Eds.), Advances in
Neural Networks — ISNN 2005, Part II. L, 1055 pages.
2005. |

Vol. 3495: P. Kantor, G. Muresan, F. Roberts, D.D. Zeng,
F.-Y. Wang, H. Chen, R.C. Merkle (Eds.), Intelligence and
Security Informatics. XVIII, 674 pages. 2005.

Vol. 3494: R. Cramer (Ed.), Advances in Cryptology —
EUROCRYPT 2005. XIV, 576 pages. 2005.

Vol. 3493: N. Fuhr, M. Lalmas, S. Malik, Z. Szl4vik (Eds.),
Advances in XML Information Retrieval. XI, 438 pages.
2005.

Vol. 3492: P. Blache, E. Stabler, J. Busquets, R. Moot
(Eds.), Logical Aspects of Computational Linguistics. X,
363 pages. 2005. (Subseries LNAI).

Vol. 3489: G.T. Heineman, I. Crnkovic, H.W. Schmidt,
J.A. Stafford, C. Szyperski, K. Wallnau (Eds.),
Component-Based Software Engineering. XI, 358 pages.
2005.

Vol. 3488: M.-S. Hacid, N.V. Murray, Z.W. Ras§, S.
Tsumoto (Eds.), Foundations of Intelligent Systems. XIII,
700 pages. 2005. (Subseries LNAI).

Vol. 3486: T. Helleseth, D. Sarwate, H.-Y. Song, K. Yang
(Eds.), Sequences and Their Applications - SETA 2004.
XII, 451 pages. 2005.

Vol. 3483: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gana, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part IV. XXVII, 1362 pages. 2005.

Vol. 3482: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gana, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part III. LXVI, 1340 pages. 2005.

Vol. 3481: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gana, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part II. LXTV, 1316 pages. 2005.

Vol. 3480: O. Gervasi, M.L. Gavrilova, V. Kumar, A. La-
gana, H.P. Lee, Y. Mun, D. Taniar, C.J.K. Tan (Eds.), Com-
putational Science and Its Applications — ICCSA 2005,
Part I. LXV, 1234 pages. 2005.

Vol. 3479:T. Strang, C. Linnhoff-Popien (Eds.), Location-
and Context-Awareness. XII, 378 pages. 2005.

Vol. 3478: C. Jermann, A. Neumaier, D. Sam (Eds.),
Global Optimization and Constraint Satisfaction. XIII,
193 pages. 2005.

Vol. 3477: P. Herrmann, V. Issarny, S. Shiu (Eds.), Trust
Management. XII, 426 pages. 2005.

Vol. 3476: J. Leite, A. Omicini, P. Torroni, P. Yolum (Eds.),
Declarative Agent Languages and Technologies. XII, 289
pages. 2005.

Vol. 3475: N. Guelfi (Ed.), Rapid Integration of Software
Engineering Techniques. X, 145 pages. 2005.

Vol. 3474: C. Grelck, F. Huch, G.J. Michaelson, P. Trinder
(Eds.), Implementation and Application of Functional
Languages. X, 227 pages. 2005.

Vol. 3468: H.W. Gellersen, R. Want, A. Schmidt (Eds.),
Pervasive Computing. XIII, 347 pages. 2005.

Vol. 3467: J. Giesl (Ed.), Term Rewriting and Applica-
tions. XIII, 517 pages. 2005.

Vol. 3466: S. Leue, T.J. Systd (Eds.), Scenarios: Models,
Transformations and Tools. XII, 279 pages. 2005.

Vol. 3465: M. Bernardo, A. Bogliolo (Eds.), Formal Meth-

- ods for Mobile Computing. VII, 271 pages. 2005.

Vol. 3464: S.A. Brueckner, G.D.M. Serugendo, A. Kara-
georgos, R. Nagpal (Eds.), Engineering Self-Organising
Systems. XIII, 299 pages. 2005. (Subseries LNAI).

Vol. 3463: M. Dal Cin, M. Kainiche, A. Pataricza (Eds.),
Dependable Computing - EDCC 2005. XVI, 472 pages.
2005.

Vol. 3462: R. Boutaba, K.C. Almeroth, R. Puigjaner, S.
Shen, J.P. Black (Eds.), NETWORKING 2005. XXX,
1483 pages. 2005.

Vol. 3461: P. Urzyczyn (Ed.), Typed Lambda Calculi and
Applications. XI, 433 pages. 2005.

Vol. 3460: O. Babaoglu, M. Jelasity, A. Montresor, C. Fet-
zer, S. Leonardi, A. van Moorsel, M. van Steen (Eds.),
Self-star Properties in Complex Information Systems. IX,
447 pages. 2005.

Vol. 3459: R. Kimmel, N.A. Sochen, J. Weickert (Eds.),
Scale Space and PDE Methods in Computer Vision. XI,
634 pages. 2005.

Vol. 3458: P. Herrero, M..S. Pérez, V. Robles (Eds.), Scien-
tific Applications of Grid Computing. X, 208 pages. 2005.

Vol. 3456: H. Rust, Operational Semantics for Timed Sys-
tems. XII, 223 pages. 2005.

Vol. 3455: H. Trehame, S. King, M. Henson, S. Schneider
(Eds.), ZB 2005: Formal Specification and Development
in Z and B. XV, 493 pages. 2005.

Vol. 3454: J.-M. Jacquet, G.P. Picco (Eds.), Coordination
Models and Languages. X, 299 pages. 2005.

Vol. 3453: L. Zhou, B.C. Ooi, X. Meng (Eds.), Database
Systems for Advanced Applications. XXVII, 929 pages.
2005.

Vol. 3452: F. Baader, A. Voronkov (Eds.), Logic for Pro-
gramming, Artificial Intelligence, and Reasoning. XI, 562
pages. 2005. (Subseries LNAI).

Vol. 3450: D. Hutter, M. Ullmann (Eds.), Security in Per-
vasive Computing. XI, 239 pages. 2005.

Table of Contents

Scenarios: Models, Transformations and Tools

Why Timed Sequence Diagrams Require Three-Event Semantics
Dystein Haugen, Knut Eilif Husa, Ragnhild Kobro Runde,
Ketil Stolen

Some Methodological Observations Resulting from Experience Using
LSCs and the Play-In/Play-Out Approach
David Harel, Hillel Kugler, Gera Weissc.ccviiiniinenon..

Deciding Properties of Message Sequence Charts
Anca Muscholl, Doron Peled iiiieiio..

Operational Semantics of Security Protocols
Cas Cremers, Sjouke Mauwcoiuiiiiiiieiiainainn..

Autonomous Shuttle System Case Study
Holger Giese, Florian Klein,

Genetic Design: Amplifying Our Ability to Deal With Requirements
Complexity
R. Geoff Dromey

Applying Story Driven Modeling to the Paderborn Shuttle System
Case Study
Ira Diethelm, Leif Geiger, Albert Zindorf coueun..

Traceability and Evaluation in Scenario Analysis by Use Case Maps
Dorin B. Petriu, Daniel Amyot, Murray Woodside, Bo Jiang

Scenario-Based Statistical Testing of Quality of Service Requirements
Matthias Beyer, Winfried Dulzccco i

Lightweight Formal Methods for Scenario-Based Software Engineering
Yves Bontemps, Patrick Heymans, Pierre-Yves Schobbens...........

Pattern Synthesis from Multiple Scenarios for Parameterized Real-Time
UML Models
Holger Giese, Florian Klein, Sven Burmester......................

XII Table of Contents

Partial Order Semantics of Sequence Diagrams for Mobility
Piotr Kosiuczenko i 212

From MSC to SDL: Overview and an Application to the Autonomous
Shuttle Transport System
Ferhat Khendek, Xiao Jun Zhangcccouiiiiiiiinienn.. 228

Component Synthesis from Service Specifications
Ingolf H. Kriiger, Reena Mathewccouuiiiueennin... 255

Author Index 279

Why Timed Sequence Diagrams Require
Three-Event Semantics

@ystein Haugen!, Knut Eilif Husa?, Ragnhild Kobro Runde!,
and Ketil Stglen!3

! Department of Informatics, University of Oslo

2 Ericsson
3 SINTEF ICT, Norway

Abstract. STAIRS is an approach to the compositional development of
sequence diagrams supporting the specification of mandatory as well as
potential behavior. In order to express the necessary distinction between
black-box and glass-box refinement, an extension of the semantic frame-
work with three event messages is introduced. A concrete syntax is also
proposed. The proposed extension is especially useful when describing
time constraints. The resulting approach, referred to as Timed STAIRS,
is formally underpinned by denotational trace semantics. A trace is a
sequence of three kinds of events: events for transmission, reception and
consumption. We argue that such traces give the necessary expressive-
ness to capture the standard UML interpretation of sequence diagrams
as well as the black-box interpretation found in classical formal methods.

1 Introduction to STAIRS

Sequence diagrams have been used informally for several decades. The first stan-
dardization of sequence diagrams came in 1992 [ITU93] — often referred to as
MSC-92. Later we have seen several dialects and variations. The sequence di-
agrams of UML 1.4 [OMGOO] were comparable to those of MSC-92, while the
recent UML 2.0 [OMGO4] has upgraded sequence diagrams to conform well to
MSC-2000 [ITU99).

Sequence diagrams show how messages are sent between objects or other
instances to perform a task. They are used in a number of different situations.
They are for example used by an individual designer to get a better grip of a
communication scenario or by a group to achieve a common understanding of
the situation. Sequence diagrams are also used during the more detailed design
phase where the precise inter-process communication must be set up according to
formal protocols. When testing is performed, the behavior of the system can be
described as sequence diagrams and compared with those of the earlier phases.

Sequence diagrams seem to have the ability to be understood and produced
by professionals of computer systems design as well as potential end-users and
stakeholders of the (future) systems. Even though sequence diagrams are intu-
itive — a property which is always exploited, it is not always obvious how one goes

S. Leue and T.J. Systd (Eds.): Scenarios, LNCS 3466, pp. 1-25 , 2005.
(© Springer-Verlag Berlin Heidelberg 2005

2 @. Haugen et al.

about making the sequence diagrams when a certain situation is analyzed. It is
also the case that intuition is not always the best guide for a precise interpreta-
tion of a complicated scenario. Therefore we have brought forth an approach for
reaching a sensible and fruitful set of sequence diagrams, supported by formal
reasoning. We called this approach STAIRS — Steps To Analyze Interactions
with Refinement Semantics [HS03].

STAIRS distinguishes between positive and negative traces and accepts that
some traces may be inconclusive meaning that they have not yet or should not
be characterized as positive or negative. STAIRS views the process of developing
the interactions as a process of learning through describing. From a fuzzy, rough
sketch, the aim is to reach a precise and detailed description applicable for formal
handling. To come from the rough and fuzzy to the precise and detailed, STAIRS
distinguishes between three sub-activities: (1) supplementing, (2) narrowing and
(3) detailing.

Supplementing categorizes inconclusive behavior as either positive or nega-
tive. The initial requirements concentrate on the most obvious normal situations
and the most obvious exceptional ones. Supplementing supports this by allowing
less obvious situations to be treated later. Narrowing reduces the allowed behav-
ior to match the problem better. Detailing involves introducing a more detailed
description without significantly altering the externally observable behavior.

STAIRS distinguishes between potential alternatives and mandatory or oblig-
atory alternatives. A special composition operator named xalt facilitates the
specification of mandatory alternatives.

Figure 1 shows our STAIRS example — an interaction overview diagram de-
scription of the making of a dinner at an ethnic restaurant.

sd Dinner J
sd Entree) sd SideOrder)

Fig. 1. Interaction overview diagram of a dinner

Why Timed Sequence Diagrams Require Three-Event Semantics 3

The dinner starts with a salad and continues with a main course that consists
of an entree and a side order, which are made in parallel. For the side order there
is a simple choice between three alternatives and the restaurant is not obliged
to have any particular of them available. Supplementing side orders could be to
offer soya beans in addition, while narrowing would mean that the restaurant
could choose only to serve rice and never potatoes nor fries. It would still be
consistent with the specification and a valid refinement. On the other hand,
the entree has more absolute requirements. The restaurant is obliged to offer
vegetarian as well as meat, but it does not have to serve both beef and pork.
This means that Indian as well as Jewish restaurants are refinements (narrowing)
of our dinner concept, while a pure vegetarian restaurant is not valid according
to our specification.

The remainder of the paper is divided into six sections: Section 2 motivates
the need for a three event semantics for sequence diagrams. Section 3 intro-
duces the formal machinery; in particular, it defines the syntax and semantics of
sequence diagrams. Section 4 defines two special interpretations of sequence dia-
grams, referred to as the standard and the black-box interpretation, respectively.
Section 5 demonstrates the full power of Timed STAIRS as specification formal-
ism. Section 6 introduces glass-box and black-box refinement and demonstrates
the use of these notions. Section 7 provides a brief conclusion and compares
Timed STAIRS to other approaches known from the literature.

2 Motivating Timed STAIRS

STAIRS works well for its purpose. However, there are certain things that cannot
be expressed within the framework as presented in [HSO03]. For instance time
constraints and the difference between glass-box and black-box view of a system.
This section motivates the need for this extra expressiveness.

Let us now look closer at the details of making the Beef in Figure 1.! From
Figure 2 it is intuitive to assume that the working of the Cook making Beef can
be explained by the following scheme: The Cook receives an order for main dish
(of type Beef) and then turns on the heat and waits until the heat is adequate.
Then he fetches the sirloin meat from the refrigerator before putting it on the
grill. Then he fetches the sirloin from the stove (hopefully when it is adequately
grilled). He then sends the steak to the customer.

We reached this explanation of the procedures of the cook from looking locally
at the cook’s lifeline in the Beef diagram. The input event led to one or more
outputs, before he again would wait for an input. We found it natural to assume
that the input event meant that the cook handled this event, consumed it and

! This sequence diagram is not a complete specification of Beef. The supplementing
has not yet been finished. From a methodological point of view, the diagram should
be “closed” with an assert when the supplementing has been finished. This to state
that what is still left as inconclusive behavior should from now on be understood as
negative. Otherwise, we do not get the semantics intended by Figure 1.

4 . Haugen et al.

sd Beef J
Cook Stove Refrigerator
T T T
| : |
main dish please } | |
= | l
: turn on heat : :
| | |
I heat is adequate | !
< ! fetch_meat !
: fetched_meat(sirloin) } }
e |]
: put on grill (sirloin) : :
I > |
{ fetch_meat : :
{ i '
i fetched_meat(sirloin) |
main dish:sirloin . .
j I
| I
1 |

Fig. 2. Sequence diagram of Beef

acted upon it. This intuition gives rise to what we here will call the standard
interpretation of sequence diagrams where an input event is seen as consumption
of the event, and where the directly following output events of the trace are
causally linked to the consumption. Thus, we can by considering each separate
lifeline locally determine the transitions of a state machine describing the lifeline.

Our description of how the beef is made comes from a quiet day, or early
in the evening when there were not so many customers and the kitchen had no
problems to take care of each order immediately. Furthermore our description
was probably made for one of those restaurants where the customers can look
into the kitchen through glass. It was a glass-box description. We want, however,
to be able to describe the situation later in the evening when the restaurant is
crammed with customers and in a restaurant where there is only a black door
to the kitchen. We would like to assume that even though the restaurant is
full, the kitchen will handle our order immediately, but alas this is of course
not the case. We can only observe the kitchen as a black-box. We observe the
waiters coming through the door as messengers — orders one way and dishes the
other. From these observations we could make estimates of the efficiency of the
kitchen. Notice that the efficiency of the kitchen cannot be derived from when
the customers placed the orders because the waiters may stop at several tables
before they enter the kitchen. Comparing black-box observations of the kitchen
with our glass-box one, we realize that in the glass-box description no event was
attached to passing through the door. The order was sent by the customer and
consumed by the chef. The passing through the door represents that the kitchen
is receiving the message but not necessarily doing something with it. As long

Why Timed Sequence Diagrams Require Three-Event Semantics 5

as you are not interested in timing matters, the difference is seldom practically
significant, but when time matters, the difference between when a message is
received and when it is consumed is crucial. How is the kitchen organized to
handle the orders in a swift and fair manner?

Motivated by this we will use three events to represent the communication
of a message: the sending event, the receiving event and the consumption event,
and each of these events may have a timestamp associated. We will introduce
concrete syntax for sequence diagrams to capture this and the distinction is also
reflected in the semantics. This will give us sufficient expressiveness to describe
a black-box interpretation as well as the standard glass-box interpretation.

3 Formal Foundation

In the following we define the notion of sequence diagram. In particular, we
formalize the meaning of sequence diagrams in denotational trace semantics.

3.1 Syntax of Sequence Diagrams

A message is a triple (s, tr, re) of a signal s, a transmitter ¢r, and a receiver re.
M denotes the set of all messages. The transmitters and receivers are lifelines.
L denotes the set of all lifelines.

We distinguish between three kinds of events; a transmission event tagged
by an exclamation mark “!”, a reception event tagged by a tilde “~”, or a
consumption event tagged by a question mark “?”. K denotes {!,~,?}.

Every event occurring in a sequence diagram is decorated with a unique
timestamp. 7' denotes the set of timestamp tags. We use logical formulas with
timestamp tags as free variables to impose constraints on the timing of events.
By F(v) we denote the set of logical formulas whose free variables are contained
in the set of timestamp tags v.

E denotes the set of all events. Formally, an event is a triple of kind, message
and timestamp tag

EFE=KxMxT
We define the functions
k.._.e E—-K, m_e€eFEFE—->M, t._eE—->T, tri_,re._cE—1L

to yield the kind, message, timestamp tag, transmitter and receiver of an event,
respectively.

N denotes the set of natural numbers, while Ny denotes the set of natural
numbers including 0.

The set of syntactically correct sequence diagrams D is defined inductively.
D is the least set such that:

- EcD
—deD=negde DA assertd € D

